0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ABXS002A3X41-SRZ

ABXS002A3X41-SRZ

  • 厂商:

    ABB

  • 封装:

    -

  • 描述:

    非隔离 PoL 模块 直流转换器 1 输出 16 ~ 34V - - - 2.32A 8V - 16V 输入

  • 数据手册
  • 价格&库存
ABXS002A3X41-SRZ 数据手册
GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Modules 8Vdc –16Vdc input; 16Vdc to 34Vdc output; 65W Output power (max.) Features RoHS Compliant ▪ Compliant to RoHS II EU “Directive 2011/65/EU” ▪ Compliant to IPC-9592 (September 2008), Category 2, Class II ▪ Compatible in a Pb-free or SnPb reflow environment (Z versions) ▪ Compliant to REACH Directive (EC) No 1907/2006 ▪ Wide Input voltage range (8Vdc-16Vdc) ▪ Output voltage programmable from 16 to 34Vdc via external resistor ▪ Tunable LoopTM to optimize dynamic output voltage response ▪ Power Good signal Applications ▪ Output overcurrent protection (non-latching) ▪ ▪ Over temperature protection ▪ Remote On/Off ▪ Ability to sink and source current ▪ Support Pre-biased Output ▪ Optimized for conduction-cooled applications ▪ Small size: 27.9 mm x 11.4 mm x 7.5 mm(MAX) (1.1 in x 0.45 in x 0.295 in) ▪ Wide operating temperature range [-40°C to 85°C] ▪ ANSI/UL* 62368-1 and CAN/ CSA† C22.2 No. 62368-1 Recognized, DIN VDE‡ 0868-1/A11:2017 (EN623681:2014/A11:2017) ▪ ISO** 9001 and ISO 14001 certified manufacturing facilities Industrial equipment ▪ Distributed power architectures ▪ Telecommunications equipment Vin+ VIN Vout+ VOUT PGOOD MODULE RTUNE CTUNE TRIM Cin Co RTrim ON/OFF GND SIG_GND GND Description The Boost power modules are non-isolated dc-dc converters that can deliver up to 65W of output power. The module can operate over a wide range of input voltage (VIN = 8Vdc-16Vdc) and provide an adjustable 16 to 34VDC output. The output voltage is programmable via an external resistor. Features include remote On/Off, over current and over temperature protection. The module also includes the Tunable LoopTM feature that allows the user to optimize the dynamic response of the converter to match the load with reduced amount of output capacitance leading to savings on cost and PWB area. * UL is a registered trademark of Underwriters Laboratories, Inc. † CSA is a registered trademark of Canadian Standards Association. VDE is a trademark of Verband Deutscher Elektrotechniker e.V. ** ISO is a registered trademark of the International Organization of Standards ‡ March 9, 2021 ©2017 General Electric Company. All rights reserved. GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability. Parameter Input Voltage Device Symbol Min Max Unit All VIN -0.3 18 V All TA -40 85 °C All Tstg -55 125 °C Continuous Operating Ambient Temperature (see Thermal Considerations section) Storage Temperature Electrical Specifications Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. Parameter Device Symbol Min Typ Max Unit Operating Input Voltage All VIN 8 ⎯ 16 Vdc Maximum Input Current All IIN1max 10 Adc VO,set = 16 Vdc IIN ,No load 32 mA 110 mA 10 mA 1 A2s 285 mAp-p (VIN=8V, Vout=34V IO=IO, max ) Input No Load Current (VIN = 12Vdc, IO = 0, module enabled) VO,set = 34Vdc IIN, No load Input Stand-by Current (VIN = 12Vdc, module disabled) All IIN ,stand-by Inrush Transient All I12t Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1μH source impedance; VIN =8 to 16V, IO= IOmax ; See Test Configurations) All Input Ripple Rejection (120Hz) All March 9, 2021 ©2017 General Electric Company. All rights reserved. 5 15 dB Page 2 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Electrical Specifications (continued) Parameter Device Symbol Min Typ Max Unit Output Voltage Set-point (with 0.1% tolerance for external resistor used to set output voltage) All Vo, set ±1% % VO, set Output Voltage (Over all operating input voltage, resistive load, and temperature conditions until end of life) All Vo, set ±3% % VO, set Adjustment Range (selected by an external resistor) All Vo 16 34 Vdc Output Regulation Line (VIN=VIN, min to VIN, max) All 0.4 % VO, set Load (IO=IO, min to IO, max) All 0.4 % VO, set Temperature (Tref=TA, min to TA, max) All 0.4 % VO, set 3% mVpk-pk 150 mVpk-pk 50 mV Input Noise on nominal input at 25°C (VIN=VIN, nom and IO=IO, min to IO, max Cin =220uF) Peak-to-Peak (Full Bandwidth) for all Vo ⎯ All Output Ripple and Noise on nominal output at 25°C (VIN=VIN, nom and IO=IO, min to IO, max Co:2x33uF Peak-to-Peak (Full bandwidth) RMS (Full bandwidth) External All Capacitance1 Without the Tunable LoopTM ESR ≥ 1 mΩ All CO, max 10 100 μF ESR ≥ 0.15 mΩ All CO, max 47 470 μF ESR ≥ 10 mΩ All CO, max 470 μF All Po 65 Watts With the Tunable LoopTM Output power 0 16Vout Output Current 24Vout 28Vout 4.06 2.71 Io 2.32 34Vout Output Current Limit Inception (Hiccup Mode) (current limit does not operate in sink mode) A 1.91 All IO, lim 150 % Io,max VO, = 16Vdc η 96 % VIN= 12Vdc, TA=25°C VO, = 24Vdc η 94.5 % IO=IO, max , VO= VO,set VO, = 28Vdc η 94 % Efficiency 322 kHz ⎯ ⎯ 1 External capacitors may require using the new Tunable LoopTM feature to ensure that the module is stable as well as getting the best transient response. See the Tunable LoopTM section for details. Switching Frequency March 9, 2021 All fsw ©2017 General Electric Company. All rights reserved. Page 3 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) General Specifications Parameter Device Calculated MTBF (IO=0.8IO, max, TA=40°C) Telecordia Issue 3 Method 1 Case 3 Min Typ All Max Unit 46, 178, 053 ⎯ Weight 5 (0.176) Hours ⎯ g (oz.) Feature Specifications Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information. Parameter Device Symbol Min Typ Max Unit Input High Current All IIH ― ― 1 mA Input High Voltage All VIH 2.5 ― VIN, max Vdc Input low Current All IIL ― ― 1 mA Input Low Voltage All VIL -0.2 ― 0.6 Vdc Case 1: On/Off input is enabled and then input power is applied (delay from instant at which VIN = VIN, min until Vo = 10% of (Vo, set - Vin)) All Tdelay1 ― 24 ― msec Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until Vo = 10% of (Vo, set - Vin)) All Tdelay1 ― 24 ― msec Output voltage Rise time (time for Vo to rise from 10% of (Vo, set - Vin), set to 90% of (Vo, set - Vin)) All Trise1 32 ― msec On/Off Signal Interface (VIN=VIN, min to VIN, max ; open collector or equivalent, Signal referenced to GND) Device Code with no suffix – Negative Logic (See Ordering Information) (On/OFF pin is open collector/drain logic input with external pull-up resistor; signal referenced to GND) Logic High (Module OFF) Logic Low (Module ON) Turn-On Delay and Rise Times (VIN=VIN, nom, IO=IO, max , VO to within ±1% of steady state) Output voltage overshoot (TA = 25oC VIN= VIN, min to VIN, max,IO = IO, min to IO, max) With or without maximum external capacitance March 9, 2021 3 ©2017 General Electric Company. All rights reserved. % VO, set Page 4 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Feature Specifications (cont.) Parameter Over Temperature Protection (See Thermal Considerations section) Device Symbol All Tref Min Typ Max 120 Units °C Input Undervoltage Lockout Turn-on Threshold All Turn-off Threshold All 7.7 Hysteresis All 0.5 All 107.6 6.9 Vdc Vdc Vdc PGOOD (Power Good) Signal Interface Open Drain, Vsupply  5VDC Overvoltage threshold for PGOOD ON Overvoltage threshold for PGOOD OFF All 112.8 Undervoltage threshold for PGOOD ON All 92.2 Undervoltage threshold for PGOOD OFF All 87.9 Pulldown resistance of PGOOD pin All 94 Sink current capability into PGOOD pin All March 9, 2021 ©2017 General Electric Company. All rights reserved. 6 %VO, set %VO, set %VO, set %VO, set  mA Page 5 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Characteristic Curves The following figures provide typical characteristics for the ABXS002at 16Vo and 25oC. 4.5 EFFICIENCY,  (%) OUTPUT CURRENT, Io (A) 3.5 NC 0.5m/s (100LFM) 2.5 2m/s 1m/s (200LFM) 1.5 (400LFM) 0.5 50 55 OUTPUT VOLTAGE VO (V) (100mV/div) IO (A) (2Adiv) TIME, t (2us/div) OUTPUT VOLTAGE VO (V) (3.85 V/div) VIN (V) (10 V/div) VO (V) (3.85V/div) VON/OFF (V) (5V/div) 75 80 85 Figure 4. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=3x10uF+220uF, CTune=6800pF, RTune=30.1kΩ INPUT VOLTAGE OUTPUT VOLTAGE ON/OFF VOLTAGE 70 TIME, t (2ms /div) Figure 3. Typical output ripple and noise (CO=66 μF ceramic, VIN = 12V, Io = Io,max, ). TIME, t (20ms/div) TIME, t (20ms/div) Figure 5. Typical Start-up Using On/Off Voltage (Io = Io,max). March 9, 2021 65 Figure 2. Derating Output Current versus Ambient Temperature and Airflow., VIN=10V OUTPUT CURRENT, VO (V) (100mV/div) OUTPUT VOLTAGE Figure 1. Converter Efficiency versus Output Current. 60 AMBIENT TEMPERATURE, TA OC OUTPUT CURRENT, IO (A) Figure 6. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). ©2017 General Electric Company. All rights reserved. Page 6 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Characteristic Curves The following figures provide typical characteristics for the ABXS002at 24Vo and 25oC. 3.0 2.5 EFFICIENCY,  (%) OUTPUT CURRENT, Io (A) NC 2.0 0.5m/s (100LFM) 1.5 2.0m/s (400LFM) 1m/s (200LFM) 1.0 3.0m/s (600LFM) 0.5 0.0 50 55 OUTPUT VOLTAGE VO (V) (200mV/div) IO (A) (1Adiv) TIME, t (2us/div) OUTPUT VOLTAGE VO (V) (5.8V/div) INPUT VOLTAGE VO (V) (5.8V/div) 75 80 85 Figure 10. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=3x10uF+220uF, CTune=3300pF, RTune=30.1kΩ VIN (V) (10V/div) OUTPUT VOLTAGE ON/OFF VOLTAGE VON/OFF (V) (5V/div) 70 TIME, t (1ms /div) Figure 9. Typical output ripple and noise (CO=66μF ceramic, VIN = 12V, Io = Io,max, ). TIME, t (20ms/div) TIME, t (20ms/div) Figure 11. Typical Start-up Using On/Off Voltage (Io = Io,max). March 9, 2021 65 Figure 8. Derating Output Current versus Ambient Temperature and Airflow., VIN=12V OUTPUT CURRENT, VO (V) (100mV/div) OUTPUT VOLTAGE Figure 7. Converter Efficiency versus Output Current. 60 AMBIENT TEMPERATURE, TA OC OUTPUT CURRENT, IO (A) Figure 12. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). ©2017 General Electric Company. All rights reserved. Page 7 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Characteristic Curves The following figures provide typical characteristics for the ABXS002at 28Vo and 25oC. 2.5 EFFICIENCY,  (%) OUTPUT CURRENT, Io (A) 2.0 NC 0.5m/s (100LFM) 1.5 1.0m/s (200LFM) 1.0 2.0m/s (400LFM) 0.5 0.0 50 60 85 VO (V) (200mV/div) OUTPUT VOLTAGE OUTPUT VOLTAGE VO (V) (6.7V/div) VIN (V) (10V/div) VO (V) (6.7V/div) 80 Figure 16. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, Cout=9x10uF, CTune=3300pF, RTune=30.1kΩ INPUT VOLTAGE OUTPUT VOLTAGE VON/OFF (V) (5V/div) 75 TIME, t (1ms /div) Figure 15. Typical output ripple and noise (CO=66μF ceramic, VIN = 12V, Io = Io,max, ). ON/OFF VOLTAGE 70 IO (A) (1Adiv) TIME, t (2us/div) TIME, t (20ms/div) TIME, t (20ms/div) Figure 17. Typical Start-up Using On/Off Voltage (Io = Io,max). March 9, 2021 65 Figure 14. Derating Output Current versus Ambient Temperature and Airflow. VIN = 12V OUTPUT CURRENT VO (V) (100mV/div) OUTPUT VOLTAGE Figure 13. Converter Efficiency versus Output Current. 55 AMBIENT TEMPERATURE, TA OC OUTPUT CURRENT, IO (A) Figure 18. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). ©2017 General Electric Company. All rights reserved. Page 8 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Characteristic Curves The following figures provide typical characteristics for the ABXS002at 34Vo and 25oC 2.5 EFFICIENCY,  (%) OUTPUT CURRENT, Io (A) 2.0 1.5 NC 0.5m/s (100LFM) 1.0 2m/s (400LFM) 0.5 1m/s (200LFM) 3.0m/s (600LFM) 0.0 25 45 OUTPUT VOLTAGE VO (V) (8.2V/div) VIN (V) (10V/div) Figure 22. Transient Response to Dynamic Load Change from 0.9A to 1.9A at 12Vin, Cout=9x10uF, CTune=1000pF, RTune=30.1kΩ INPUT VOLTAGE VO (V) (8.2V/div) 85 VO (V) (200mV/div) OUTPUT VOLTAGE OUTPUT CURRENT VO (V) (100mV/div) OUTPUT VOLTAGE VON/OFF (V) (5V/div) 75 TIME, t (1ms /div) Figure 21. Typical output ripple and noise (CO=66μF ceramic, VIN = 12V, Io = Io,max, ). ON/OFF VOLTAGE 65 Figure 20. Derating Output Current versus Ambient Temperature and Airflow. VIN = 12V TIME, t (2us/div) TIME, t (20ms/div) TIME, t (20ms/div) Figure 23. Typical Start-up Using On/Off Voltage (Io = Io,max). March 9, 2021 55 IO (A) (1Adiv) Figure 19. Converter Efficiency versus Output Current. OUTPUT VOLTAGE 35 AMBIENT TEMPERATURE, TA OC OUTPUT CURRENT, IO (A) Figure 24. Typical Start-up Using Input Voltage (VIN = 12V, Io = Io,max). ©2017 General Electric Company. All rights reserved. Page 9 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Design Considerations Input Filtering To minimize input voltage ripple, ceramic capacitors are recommended at the input of the module. Figure 25 shows the input ripple voltage 300 Output Ripple (mVp-p) The ABXS002Open Frame module should be connected to a low ac-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability. 250 3x10uF Cap 6x10uF Cap 9x10uF Cap 12x10uF Cap 200 150 Input Ripple (mVp-p) 400 1x10uF 350 100 3x10 uF 300 16 250 200 18 20 22 24 26 28 30 Output Voltage (Volts) 32 34 Figure 26. Output ripple voltage .Input voltage is 12V. Scope BW Limited to 20MHz 150 100 50 0 16 18 20 22 24 26 28 30 32 34 Output Voltage (Volts) Figure 25. Input ripple voltage. Input voltage is 12V. Scope BW Limited to 20MHz Output Filtering These modules are designed for low output ripple voltage and will meet the maximum output ripple specification with 66uF ceramic capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change. Safety Considerations For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL ANSI/UL 62368-1 and CAN/CSA C22.2 No. 62368-1 Recognized, DIN VDE0868-1/A11:2017 (EN623681:2014/A11:2017). For the converter output to be considered meeting the Requirements of safety extra-low voltage (SELV) or ES1, the input must meet SELV/ES1 requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a 12A fuse in the positive input lead. To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. Figure 26 provides output ripple information, measured with a scope with its Bandwidth limited to 20MHz for different external capacitance values at various Vo. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. Optimal performance of the module can be achieved by using the Tunable LoopTM feature described later in this data sheet. March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 10 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Figure28. Circuit configuration for programming output voltage using an external resistor. Analog Feature Descriptions Remote On/Off The ABXS002 Open Frame power modules feature an On/Off pin for remote On/Off operation. For negative logic On/Off modules, the circuit configuration is shown in Fig. 27. The On/Off pin should be pulled high with an external pull-up resistor. When Q1 turns On, the On/OFF pin is pulled low. This turns Q2 off and the internal PWM Enable is pulled high and the module turns on. When Q1 is Off, Q2 turns ON and the internal PWM Enable is pulled low and the module turns OFF Without an external resistor between TRIM and sGND pins, each output of the module will be the same as input voltage. The value of the trim resistor, Rtrim for a desired output voltage, should be as per the following equation:  1.2  Rtrim =   x 200.5k  (Vo − 1.2 ) Rtrim is the external resistor in kΩ Vo is the desired output voltage. Table 1 provides Rtrim values required for some common output voltages. Table 1 VO, set (V) 16 18 20 Rtrim (KΩ) 16.257 14.321 12.798 22 11.567 24 10.553 26 9.702 28 8.978 30 8.354 32 7.812 34 7.335 Figure 27. Circuit configuration for using negative On/Off logic. Monotonic Start-up and Shutdown The module has monotonic start-up and shutdown behavior for any combination of rated input voltage, output current and operating temperature range. Startup into Pre-biased Output Analog Voltage Margining The module can start into a prebiased output as long as the prebias voltage is 0.5V less than the set output voltage. Analog Output Voltage Programming The output voltage of each output of the module can be programmable to any voltage from 16VDC to 34VDC by connecting a resistor between the Trims and GND pins of the module. V IN(+) V O(+) ON/OFF TRIM Vout Output voltage margining can be implemented in the module by connecting a resistor, Rmargin-up, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, Rmargin-down, from the Trim pin to output pin for margining-down. Figure 30 shows the circuit configuration for output voltage margining. The POL Programming Tool, available at www.gecriticalpower.com under the Downloads section, also calculates the values of Rmargin-up and Rmargin-down for a specific output voltage and % margin. Please consult your local GE Critical Power technical representative for additional details. LOAD Rtrim SGND PGND March 9, 2021 PGND ©2017 General Electric Company. All rights reserved. Page 11 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Vo Rmargin-down Tunable LoopTM MODULE The module has a feature that optimizes transient response of the module called Tunable LoopTM. Q2 Trim External capacitors are usually added to the output of the module for two reasons: to reduce output ripple and noise (see Figure 26) and to reduce output voltage deviations from the steady-state value in the presence of dynamic load current changes. Adding external capacitance however affects the voltage control loop of the module, typically causing the loop to slow down with sluggish response. Larger values of external capacitance could also cause the module to become unstable. Rmargin-up Rtrim Q1 SGND Figure 30. Circuit Configuration for margining Output voltage. Overcurrent Protection To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. The Tunable LoopTM allows the user to externally adjust the voltage control loop to match the filter network connected to the output of the module. The Tunable LoopTM is implemented by connecting a series R-C between the VOUT and TRIM pins of the module, as shown in Fig. 31. This R-C allows the user to externally adjust the voltage loop feedback compensation of the module. VOUT Overtemperature Protection RTUNE To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shut down if the overtemperature threshold of 129oC(typ) is exceeded at the thermal reference point Tref .Once the unit goes into thermal shutdown it will then wait to cool before attempting to restart. MODULE CTUNE TRIM SGND Input Undervoltage Lockout At input voltages below the input undervoltage lockout limit, the module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold. RTrim Figure. 31. Circuit diagram showing connection of RTUME and CTUNE to tune the control loop of the module Recommended values of RTUNE and CTUNE for different output capacitor combinations are given in Table 2. Table 2 shows the recommended values of RTUNE and CTUNE for different values of ceramic output capacitors up to 30x01uF that might be needed for an application to meet output ripple and noise requirements. Selecting RTUNE and CTUNE according to Table 2 will ensure stable operation of the module. In applications with tight output voltage limits in the presence of dynamic current loading, additional output capacitance will be required. Table 3 lists recommended values of RTUNE and CTUNE in order to meet 2% output voltage deviation limits for March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 12 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) some common output voltages in the presence of a 50% step change (50% of full load), with an input voltage of 12V. Please contact your GE Critical Power technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external R-C to tune the module for best transient performance and stable operation for other output capacitance values. Table 2. General recommended values of of RTUNE and CTUNE for Vin=12V and various external ceramic capacitor combinations. Vo=24V Co 10x10F 15x10F 20x10F 25x10F RTUNE 27k 24k 20k 15k 15k CTUNE 680p 1500p 2700p 3300p 6800p 30x10F Power Good The module provides a Power Good (PGOOD) signal that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going outside the specified thresholds. The PGOOD terminal can be connected through a pullup resistor (suggested value 10kΩ) to a source of 5VDC or lower. Table 3. Recommended values of RTUNE and CTUNE to obtain transient deviation of 2% of Vout for a 50% full load step load with Vin=12V Vin 12V Vo 16V 24V 28V 34V ΔI 2A 1.35A 1.1A 0.9A 3x10uF + 1x220F 9x10F 9x10F Co 3x10uF + 1x220F RTUNE 30.1kΩ 30.1kΩ 30.1kΩ 30.1kΩ CTUNE 6800pF 3300pF 3300pF 1000pF V 229mV 346mV 341mV 599mV March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 13 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Thermal Considerations Power modules operate in a variety of thermal environments; however, sufficient cooling should always be provided to help ensure reliable operation. Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Figure 32. The preferred airflow direction for the module is in Figure 33. The thermal reference points, Tref used in the specifications are also shown in Figure 33. For reliable operation the temperatures at the Q1 should not exceed 120oC. The output power of the module should not exceed the rated power of the module (Vo,set x Io,max). Please refer to the Application Note “Thermal Characterization Process For Open-Frame Board-Mounted Power Modules” for a detailed discussion of thermal aspects including maximum device temperatures. 25.4_ (1.0) Wind Tunnel PWBs Power Module 76.2_ (3.0) x 12.7_ (0.50) Probe Location for measuring airflow and ambient temperature Figure 33. Preferred airflow direction and location of hotspot of the module (Tref). Air flow Figure 32. Thermal Test Setup. March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 14 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Heat Transfer via Conduction The module can also be used in a sealed environment with cooling via conduction from the module’s top surface through a gap pad material to a coldwall, as shown below. The output current derating versus coldwall temperature, when using a thermal pad and a gap filler is shown in Figure 34. OUTPUT CURRENT, IO (A) Thermal pad: Bergquist P/N: GP2500S20 Gap filler: Bergquist P/N: GF2000 COLDPLATE TEMPERATURE, TC (oC) Figure 34. Output Current versus Coldwall Temperature; VIN =12V. March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 15 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Example Application Circuit with Tunable Loop Requirements: Vin: 12V Vout: 28V Iout: 1.7A max., worst case load transient is from 1.1A to1.7A Vout: 1.5% of Vout (420mV) for worst case load transient Vin, ripple 1.5% of Vin (180mV, p-p) Vin+ VIN Vout+ VOUT PGOOD MODULE RTUNE CTUNE CI3 CI2 TRIM CI1 CO1 CO2 CO3 RTrim ON/OFF SIG_GND GND GND CI1 1 x 1μF/25V, 0603 ceramic capacitor CI2 1 x 22μF/25V, 1210 ceramic capacitor CI3 1 x 220uF/25V, bulk electrolytic CO1 9 x 10μF/50V, 1210 ceramic capacitor CO2 NA CO3 NA CTune 3300pF ceramic capacitor (can be 1206, 0805 or 0603 size) RTune 30.1k ΩSMT resistor (can be 1206, 0805 or 0603 size) RTrim 8.955k SMT resistor (can be 1206, 0805 or 0603 size, recommended tolerance of 0.1%) March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 16 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Mechanical Outline Dimensions are in millimeters and (inches). Tolerances: x.x mm  0.5 mm (x.xx in.  0.02 in.) [unless otherwise indicated] x.xx mm  0.25 mm (x.xxx in  0.010 in.) PIN 1 2 3 4 March 9, 2021 FUNCTION PGND VOUT VIN PGND PIN 5 6 7 8 FUNCTION SGND TRIM ENABLE PGOOD ©2017 General Electric Company. All rights reserved. Page 17 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Recommended Pad Layout Dimensions are in millimeters and (inches). Tolerances: x.x mm  0.5 mm (x.xx in.  0.02 in.) [unless otherwise indicated] x.xx mm  0.25 mm (x.xxx in  0.010 in.) PIN 1 2 3 4 March 9, 2021 FUNCTION PGND VOUT VIN PGND PIN 5 6 7 8 FUNCTION SGND TRIM ENABLE PGOOD ©2017 General Electric Company. All rights reserved. Page 18 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Packaging Details The ABXS002 Open Frame modules are supplied in tape & reel as standard. Modules are shipped in quantities of 250 modules per reel. All Dimensions are in millimeters and (in inches). Reel Dimensions: Outside Dimensions: 330.2 mm (13.00”) Inside Dimensions: 177.8 mm (7.00”) Tape Width: 44.00 mm (1.732”) March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 19 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Pick and Place The ABXS002 Open Frame modules use an open frame construction and are designed for a fully automated assembly process. The modules are fitted with a label designed to provide a large surface area for pick and place operations. The label meets all the requirements for surface mount processing, as well as safety standards, and is able to withstand reflow temperatures of up to 300oC. The label also carries product information such as product code, serial number and the location of manufacture. Stencil and Nozzle Recommendations Stencil thickness of 6 mils minimum must be used for this product. The module weight has been kept to a minimum by using open frame construction. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process. The minimum recommended inside nozzle diameter for reliable operation is 3mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7 mm. MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of  30°C and 60% relative humidity varies according to the MSL rating (see JSTD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: < 40° C, < 90% relative humidity. 300 Per J-STD-020 Rev. D Peak Temp 260°C 250 Reflow Temp (°C) Surface Mount Information 200 * Min. Time Above 235°C 15 Seconds Cooling Zone 150 Heating Zone 1°C/Second *Time Above 217°C 60 Seconds 100 50 0 Reflow Time (Seconds) Figure 35. Recommended linear reflow profile using Sn/Ag/Cu solder. Post Solder Cleaning and Drying Considerations Bottom Side / First Side Assembly This module is not recommended for assembly on the bottom side of a customer board. If such an assembly is attempted, components may fall off the module during the second reflow process. Lead Free Soldering The modules are lead-free (Pb-free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect longterm reliability. Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note (AN04-001). Pb-free Reflow Profile Power Systems will comply with J-STD-020 Rev. D (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package (table 4-2). The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The recommended linear reflow profile using Sn/Ag/Cu solder is shown in Fig. 35. Soldering outside of the recommended profile requires testing to verify results and performance. MSL Rating The ABXS002 Open Frame modules have a MSL rating of 2a Storage and Handling The recommended storage environment and handling procedures for moisture-sensitive surface mount packages is detailed in J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices). Moisture barrier bags (MBB) with desiccant are required for March 9, 2021 ©2017 General Electric Company. All rights reserved. Page 20 GE Data Sheet 65W Boost Converter: Non-Isolated DC-DC Power Modules 8Vdc –16Vdc input; 16Vdc – 34Vdc output, 65W output power (max.) Ordering Information Please contact your GE Sales Representative for pricing, availability and optional features. Table 4. Device Codes Device Code Input Voltage Range Output Voltage Output Current On/Off Logic Comcodes ABXS002A3X41-SRZ 8 – 16Vdc 16 – 34Vdc 2.3A (28V) Negative 150043449 -Z refers to RoHS compliant parts Table 5. Coding Scheme Package Identifier Family A B A=Non- B=Boost Isolated, POL Non-4G Sequencing Option Input Voltage Range Output current Output voltage X S 002A3 X X=without sequencing 8-16Vdc 2.3A On/Off logic X= 4= programma positive ble output No entry = negative Remote Sense 3= Remote Sense Special Code Options ROHS Compliance 41 -SR Z 24/48V Output S = Surface Mount Z = ROHS6 R = Tape & Reel Contact Us For more information, call us at USA/Canada: +1 877 546 3243, or +1 972 244 9288 Asia-Pacific: +86-21-53899666 Europe, Middle-East and Africa: +49.89.878067-280 Go.ABB/Industrial GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. March 9, 2021 ©2017 General Electric Company. All International rights reserved. Version 1.5
ABXS002A3X41-SRZ 价格&库存

很抱歉,暂时无法提供与“ABXS002A3X41-SRZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货