0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A42MX16-1PQG208I

A42MX16-1PQG208I

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    208-BFQFP

  • 描述:

    IC FPGA 140 I/O 208QFP

  • 详情介绍
  • 数据手册
  • 价格&库存
A42MX16-1PQG208I 数据手册
DS2316 Datasheet 40MX and 42MX FPGA Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com © 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. About Microsemi Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com. 5172136. 16.0 8/17 Contents 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Revision 16.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 15.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 14.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 13.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 12.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 11.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 9.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 2 2 2 40MX and 42MX FPGA Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 High Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 High Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 HiRel Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Ease of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plastic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceramic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 3 3 3 5 6 6 7 7 3 40MX and 42MX FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 3.2 3.3 3.4 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Dual-Port SRAM Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.3 Routing Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.4 Clock Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.5 MultiPlex I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 User Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.3 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.5 Power-Up/Down in Mixed-Voltage Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.6 Transient Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.7 Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 General Power Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 Static Power Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.3 Active Power Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.4 Equivalent Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.5 CEQ Values for Microsemi MX FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.6 Test Circuitry and Silicon Explorer II Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.7 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.9 JTAG Mode Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DS2316 Datasheet Revision 16.0 iii 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.4.10 TRST Pin and TAP Controller Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.11 Boundary Scan Description Language (BSDL) File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.1 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.2 User Guides and Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.0 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7.1 5 V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8.1 3.3 V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9.1 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.9.3 Output Drive Characteristics for 3.3 V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9.4 Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.9.5 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.10.1 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.10.2 Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.10.3 Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.10.4 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10.5 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10.6 Dual-Port SRAM Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.10.7 Predictable Performance: Tight Delay Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.11.1 Critical Nets and Typical Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.11.2 Long Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.3 Timing Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.4 Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.5 PCI System Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.11.6 PCI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 DS2316 Datasheet Revision 16.0 iv Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Plastic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Ceramic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Temperature Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Speed Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Voltage Support of MX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fixed Capacitance Values for MX FPGAs (pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Device Configuration Options for Probe Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Test Access Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Supported BST Public Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Boundary Scan Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute Maximum Ratings for 40MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute Maximum Ratings for 42MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Absolute Maximum Ratings for 40MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings for 42MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC Specification (5.0 V PCI Signaling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC Specifications (5.0V PCI Signaling)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DC Specification (3.3 V PCI Signaling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AC Specifications for (3.3 V PCI Signaling)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 42MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCCA = 5.0 V) . . . 40 40MX Temperature and Voltage Derating Factors(Normalized to TJ = 25°C, VCC = 5.0 V) . . . . . 41 42MX Temperature and Voltage Derating Factors(Normalized to TJ = 25°C, VCCA = 3.3 V) . . . . 41 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V) . . . . 42 Clock Specification for 33 MHz PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Timing Parameters for 33 MHz PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A40MX02 Timing Characteristics (Nominal 5.0 V Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A40MX02 Timing Characteristics (Nominal 3.3 V Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . 48 A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . 54 A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . 58 A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . 62 A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . 66 A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . 69 A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . 73 A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . 77 A42MX36 Timing Characteristics (Nominal 3.3 V Operation) DS2316 Datasheet Revision 15.0 v Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Table 54 Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . 81 Configuration of Unused I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 PL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PL68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 PQ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 VQ80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 TQ176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 BG272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS2316 Datasheet Revision 15.0 vi Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 42MX C-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 42MX C-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 42MX S-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 A42MX24 and A42MX36 D-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 A42MX36 Dual-Port SRAM Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 MX Routing Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock Networks of 42MX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Quadrant Clock Network of A42MX36 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 42MX I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PCI Output Structure of A42MX24 and A42MX36 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Silicon Explorer II Setup with 40MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Silicon Explorer II Setup with 42MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 42MX IEEE 1149.1 Boundary Scan Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device Selection Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical Output Drive Characteristics (Based Upon Measured Data) . . . . . . . . . . . . . . . . . . . . . . . 30 40MX Timing Model* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 42MX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 42MX Timing Model (Logic Functions Using Quadrant Clocks) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 42MX Timing Model (SRAM Functions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Module Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Flip-Flops and Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input Buffer Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Output Buffer Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 42MX SRAM Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 42MX SRAM Synchronous Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled) . . . . . . . . . . . . 38 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled) . . . . . . . . . . . . 39 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 PL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PL68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 VQ80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 TQ176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 DS2316 Datasheet Revision 16.0 vii Figure 51 Figure 52 Figure 53 BG272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS2316 Datasheet Revision 16.0 viii Revision History 1 Revision History The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication. 1.1 Revision 16.0 Table 4, page 7 is edited in this revision to add the temperature grade, “I” for the column A42MX09 and row PQFP144 1.2 Revision 15.0 The following is a summary of the changes in revision 15.0 (Published in December 2016) of this document. • • • 1.3 Table 15, page 23 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Table 22, page 27 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Table 23, page 27 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Revision 14.0 The following is a summary of the changes in revision 14.0 of this document. • • • • 1.4 Added CQFP package information for A42MX16 device in Product Profile, page 3 and Ceramic Device Resources, page 6 (SAR 79522). Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 7 (SAR 79519) Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 15 (SAR 38754) Added Figure 53, page 160 CQ172 package (SAR 79522). Revision 13.0 The following is a summary of the changes in revision 13.0 of this document. • • 1.5 Added Figure 42, page 99 PQ144 Package for A42MX09 device (SAR 69776) Added Figure 52, page 155 PQ132 Package for A42MX09 device (SAR 69776) Revision 12.0 The following is a summary of the changes in revision 12.0 of this document. • • 1.6 Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 15 (SAR 42096 Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793) Revision 11.0 The following is a summary of the changes in revision 11.0 of this document. • • 1.7 The FuseLock logo and accompanying text was removed from the User Security, page 14. This marking is no longer used on Microsemi devices (PCN 0915) The Development Tool Support, page 21 was updated (SAR 38512) Revision 10.0 The following is a summary of the changes in revision 10.0 of this document. DS2316 Datasheet Revision 16.0 1 Revision History • • • • 1.8 Ordering Information, page 5 was updated to include lead-free package ordering codes (SAR 21968) The User Security, page 14 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673) The Transient Current, page 15 is new (SAR 36930). Package names were revised according to standards established in Package Mechanical Drawings (SAR 34774) Revision 9.0 The following is a summary of the changes in revision 9.0 of this document • In Table 20, page 25, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5 In Table 22, page 27, VOH was changed from 3.7 to 2.4 for the min in industrial and military. VIH had VCCI and that was changed to VCCA 1.9 Revision 6.0 The following is a summary of the changes in revision 6.0 of this document. • • • • • • • • • • • • • • The Ease of Integration, page 3 was updated The Temperature Grade Offerings, page 7 is new The Speed Grade Offerings, page 7 is new The General Description, page 8 was updated The MultiPlex I/O Modules, page 13 was updated The User Security, page 14 was updated Table 6, page 15 was updated The Power Dissipation, page 16 was updated. The Static Power Component, page 16 was updated The Equivalent Capacitance, page 17 was updated Figure 13, page 19 was updated Table 10, page 20 was updated. Figure 14, page 20 was updated. Table 11, page 21 was updated. DS2316 Datasheet Revision 16.0 2 40MX and 42MX FPGA Families 2 40MX and 42MX FPGA Families 2.1 Features The following sections list out various features of the 40MX and 42MX FPGA family devices. 2.1.1 High Capacity • • • • • 2.1.2 High Performance • • • • • 2.1.3 Commercial, Industrial, Automotive, and Military Temperature Plastic Packages Commercial, Military Temperature, and MIL-STD-883 Ceramic Packages QML Certification Ceramic Devices Available to DSCC SMD Ease of Integration • • • • • • 2.2 5.6 ns Clock-to-Out 250 MHz Performance 5 ns Dual-Port SRAM Access 100 MHz FIFOs 7.5 ns 35-Bit Address Decode HiRel Features • • • • 2.1.4 Single-Chip ASIC Alternative 3,000 to 54,000 System Gates Up to 2.5 kbits Configurable Dual-Port SRAM Fast Wide-Decode Circuitry Up to 202 User-Programmable I/O Pins Mixed-Voltage Operation (5.0 V or 3.3 V for core and I/Os), with PCI-Compliant I/Os Up to 100% Resource Utilization and 100% Pin Locking Deterministic, User-Controllable Timing Unique In-System Diagnostic and Verification Capability with Silicon Explorer II Low Power Consumption IEEE Standard 1149.1 (JTAG) Boundary Scan Testing Product Profile The following table gives the features of the products. Table 1 • Product profile Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 Capacity System Gates SRAM Bits 3,000 6,000 14,000 24,000 36,000 54,000 2,560 295 547 348 336 624 608 954 912 24 1,230 1,184 24 9.5 ns 9.5 ns 5.6 ns 6.1 ns 6.1 ns 6.3 ns Logic Modules Sequential Combinatorial Decode Clock-to-Out SRAM Modules (64x4 or 32x8) Dedicated Flip-Flops 10 348 624 DS2316 Datasheet Revision 16.0 954 1,230 3 40MX and 42MX FPGA Families Table 1 • Product profile (continued) Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 Maximum Flip-Flops 147 273 Clocks 1 1 2 2 2 6 User I/O (maximum) 57 69 104 140 176 202 PCI Yes Yes Boundary Scan Test (BST) Yes Yes 84 160, 208 208, 240 Packages (by pin count) PLCC PQFP VQFP TQFP CQFP PBGA CPGA 44, 68 100 80 516 44, 68, 84 84 100 100, 144, 80 160 100 176 928 84 100, 160, 208 100 176 172 1,410 1,822 176 208, 256 272 – 132 DS2316 Datasheet Revision 16.0 4 40MX and 42MX FPGA Families 2.3 Ordering Information The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings. Figure 1 • Ordering Information A42MX16 _ 1 PQ 100 G ES Application (Temperature Range) Blank = Commercial (0 to +70°C) I = Industrial (–40 to +85°C) M = Military (–55 to +125°C) B = MIL-STD-883 A = Automotive (–40 to +125°C) Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS Compliant Packaging Package Type PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack BG = Plastic Ball Grid Array CQ =Ceramic Quad Flat Pack PG =Ceramic Pin Grid Array Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard –F = Approximately 40% Slower than Standard Part Number A40MX02 = 3,000 System Gates A40MX04 = 6,000 System Gates A42MX09 = 14,000 System Gates A42MX16 = 24,000 System Gates A42MX24 = 36,000 System Gates A42MX36 = 54,000 System Gates DS2316 Datasheet Revision 16.0 5 40MX and 42MX FPGA Families 2.4 Plastic Device Resources Table 2 • Plastic Device Resources User I/Os Device PQFP PLCC PLCC PLCC 10044-Pin 68-Pin 84-Pin Pin A40MX02 34 57 A40MX04 34 57 PQFP 144Pin PQFP 160Pin PQFP 208Pin PQFP 240Pin VQFP TQFP PBGA VQFP 10017627280-Pin Pin Pin Pin 57 57 69 69 69 A42MX09 72 83 A42MX16 72 83 A42MX24 72 95 101 125 140 125 176 A42MX36 176 83 104 83 140 150 202 202 Note: Package Definitions: PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array 2.5 Ceramic Device Resources Table 3 • Ceramic Device Resources User I/Os Device CPGA 132-Pin CQFP 172-Pin CQFP 208-Pin CQFP 256-Pin A42MX09 95 A42MX16 A42MX36 131 176 202 Note: Package Definitions: CQFP = Ceramic Quad Flat Pack DS2316 Datasheet Revision 16.0 6 40MX and 42MX FPGA Families 2.6 Temperature Grade Offerings Table 4 • Temperature Grade Offerings Package A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 PLCC 44 C, I, M C, I, M PLCC 68 C, I, A, M C, I, M PLCC 84 PQFP 100 C, I, A, M C, I, A, M C, I, A, M C, I, M C, I, A, M C, I, A, M C, I, M PQFP 144 C, I PQFP 160 C, I, A, M C, I, M PQFP 208 C, I, M C, I, A, M C, I, A, M C, I, A, M C, I, A, M PQFP 240 VQFP 80 C, I, A, M C, I, A, M C, I, A, M VQFP 100 C, I, A, M C, I, A, M TQFP 176 C, I, A, M C, I, A, M C, I, A, M PBGA 272 C, I, M CQFP 172 C, M, B CQFP 208 C, M, B CQFP 256 C, M, B CPGA 132 C, M, B Note: C = Commercial I = Industrial A = Automotive M = Military B = MIL-STD-883 Class B 2.7 Speed Grade Offerings Table 5 • Speed Grade Offerings –F Std –1 –2 –3 P P P P P I P P P P A P M P P B P P C Note: See the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings. Contact your local Microsemi Sales representative for device availability. DS2316 Datasheet Revision 16.0 7 40MX and 42MX FPGAs 3 40MX and 42MX FPGAs 3.1 General Description Microsemi's 40MX and 42MX families offer a cost-effective design solution at 5V. The MX devices are single-chip solutions and provide high performance while shortening the system design and development cycle. MX devices can integrate and consolidate logic implemented in multiple programmable array logics (PALs), complex programmable logic devices (CPLDs), and FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus interfaces, digital signal processor (DSP), and co-processor functions. The MX device architecture is based on Microsemi’s patented antifuse technology implemented in a 0.45µm triple-metal CMOS process. With capacities ranging from 3,000 to 54,000 system gates, the MX devices provide performance up to 250 MHz, are live on power-up and have one-fifth the standby power consumption of comparable FPGAs. MX FPGAs provide up to 202 user I/Os and are available in a wide variety of packages and speed grades. A42MX24 and A42MX36 devices also feature multiPlex I/Os, which support mixed-voltage systems, enable programmable peripheral component interconnect (PCI), deliver high-performance operation at both 5.0V and 3.3V, and provide a low-power mode. The devices are fully compliant with the PCI local bus specification (version 2.1). They deliver 200 MHz on-chip operation and 6.1 ns clock-to-output performance. The 42MX24 and 42MX36 devices include system-level features such as IEEE Standard 1149.1 (JTAG) Boundary Scan Testing and fast wide-decode modules. In addition, the A42MX36 device offers dual-port SRAM for implementing fast first in first out (FIFOs), last in first out (LIFOs), and temporary data storage. The storage elements can efficiently address applications requiring wide data path manipulation and can perform transformation functions such as those required for telecommunications, networking, and DSP. All MX devices are fully tested over automotive and military temperature ranges. In addition, the largest member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened to MIL-STD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and PQ208 devices are pin-compatible. 3.2 MX Architectural Overview The MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All devices within these families are composed of logic modules, I/O modules, routing resources and clock networks, which are the building blocks for fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM modules, which are optimized for high-speed data path functions such as FIFOs, LIFOs and scratch pad memory. A42MX24 and A42MX36 also contain wide-decode modules. 3.2.1 Logic Modules The 40MX logic module is an eight-input, one-output logic circuit designed to implement a wide range of logic functions with efficient use of interconnect routing resources.(see the following figures). The logic module can implement the four basic logic functions (NAND, AND, OR and NOR) in gates of two, three, or four inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the array; latches and flip-flops can be constructed from logic modules whenever required in the application. DS2316 Datasheet Revision 16.0 8 40MX and 42MX FPGAs Figure 2 • 42MX C-Module Implementation The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). The following figure illustrates the combinatorial logic module. The S-module, shown in Figure 4, page 10, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic. Figure 3 • 42MX C-Module Implementation A0 B0 S0 D00 D01 Y D10 D11 S1 A1 B1 DS2316 Datasheet Revision 16.0 9 40MX and 42MX FPGAs Figure 4 • 42MX S-Module Implementation D00 D01 D00 D01 Y D10 D S0 D11 S1 Q OUT CLR Up to 7-Input Function Plus D-Type Flip-Flop with Clear D10 D11 S1 Y S0 D Q OUT GATE Up to 7-Input Function Plus Latch D00 D0 Y D1 S Q D D01 D10 OUT D11 S1 GATE CLR Up to 4-Input Function Plus Latch with Clear Y OUT S0 Up to 8-Input Function (Same as C-Module) A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 11). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic. 3.2.2 Dual-Port SRAM Modules The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 11. The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks. The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design. DS2316 Datasheet Revision 16.0 10 40MX and 42MX FPGAs Figure 5 • A42MX24 and A42MX36 D-Module Implementation 7 Inputs Hard-Wire to I/O Programmable Inverter Feedback to Array Figure 6 • A42MX36 Dual-Port SRAM Block Latches WD[7:0] [7:0] WRAD[5:0] MODE BLKEN WEN Write Port Logic [5:0] [5:0] Read Port Logic Latches Read Logic Latches RD[7:0] Write Logic RDAD[5:0] REN RCLK Routing Tracks WCLK 3.2.3 SRAM Module 32 x 8 or 64 x 4 (256 Bits) Routing Structure The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses. 3.2.3.1 Horizontal Routing Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 7, page 12. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets. 3.2.3.2 Vertical Routing Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 7, page 12. DS2316 Datasheet Revision 16.0 11 40MX and 42MX FPGAs 3.2.3.3 Antifuse Structures An antifuse is a “normally open” structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified. Figure 7 • MX Routing Structure Segmented Horizontal Routing Logic Modules Antifuses Vertical Routing Tracks 3.2.4 Clock Networks The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer. In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 13): • • • • Externally from the CLKA pad, using CLKBUF buffer Externally from the CLKB pad, using CLKBUF buffer Internally from the CLKINTA input, using CLKINT buffer Internally from the CLKINTB input, using CLKINT buffer The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks. The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 13). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable. DS2316 Datasheet Revision 16.0 12 40MX and 42MX FPGAs Figure 8 • Clock Networks of 42MX Devices CLKB CLKINB CLKA From Pads CLKINA CLKMOD S0 S1 Internal Signal CLKO(17) Clock Drivers CLKO(16) CLKO(15) CLKO(2) CLKO(1) Clock Tracks Figure 9 • Quadrant Clock Network of A42MX36 Devices QCLKA QCLKB QCLKC Quad Clock Modul QCLK1 QCLK3 Quad Clock Modul QCLKD *QCLK3IN *QCLK1IN S1 S0 S0 S1 Quad Clock Modul QCLK2 QCLK4 Quad Clock Modul *QCLK4IN *QCLK2IN S1 S0 S0 S1 Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals. 3.2.5 MultiPlex I/O Modules 42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations. The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 14 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the Antifuse Macro Library Guide for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation. All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 14). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the Antifuse Macro Library Guide for more details. A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 A. To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 14). When the PCI fuse is not programmed, the output drive is standard. DS2316 Datasheet Revision 16.0 13 40MX and 42MX FPGAs Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs. Figure 10 • 42MX I/O Module EN Q D PAD From Array G/CLK* To Array Q D G/CLK* Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module) Figure 11 • PCI Output Structure of A42MX24 and A42MX36 Devices STD Signal Output PCI Drive PCI Enable Fuse 3.3 Other Architectural Features The following sections cover other architectural features of 40MX and 42MX FPGAs. 3.3.1 Performance MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance. 3.3.2 User Security Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and protect against unauthorized users attempting to access the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Microsemi antifuse FPGAs protected with the highest level of security available from both invasive and noninvasive attacks. Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device. DS2316 Datasheet Revision 16.0 14 40MX and 42MX FPGAs 3.3.3 Programming Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor is designed to allow concurrent programming of multiple units from the same PC. Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively. The procedure for programming an MX device using Silicon Sculptor is as follows: 1. 2. 3. Load the *.AFM file Select the device to be programmed Begin programming When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory. For more details on programming MX devices, see the AC225: Programming Antifuse Devices application note and the Silicon Sculptor 3 Programmers User Guide. 3.3.4 Power Supply MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices. Table 6 • Voltage Support of MX Devices Device VCC 40MX 42MX VCCA VCCI Maximum Input Tolerance Nominal Output Voltage 5.0 V 5.5 V 5.0 V 3.3 V 3.6 V 3.3 V 5.0 V 5.0 V 5.5 V 5.0 V 3.3 V 3.3 V 3.6 V 3.3 V 5.0 V 3.3 V 5.5 V 3.3 V For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior. 3.3.5 Power-Up/Down in Mixed-Voltage Mode When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen: • • The input protection diode on the I/Os will be forward biased The I/Os will be at logical High In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented. 3.3.6 Transient Current Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot. DS2316 Datasheet Revision 16.0 15 40MX and 42MX FPGAs Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI. 3.3.7 Low Power Mode 42MX devices have been designed with a low power mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting low power mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin. 3.4 Power Dissipation The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation. 3.4.1 General Power Equation P =  ICCs tan dby + ICCactive  VCCI + IOL VOL N + IOH  VCCI – VOH  M EQ 1 where: • • • • • • ICCstandby is the current flowing when no inputs or outputs are changing. ICCactive is the current flowing due to CMOS switching. IOL, IOH are TTL sink/source currents. VOL, VOH are TTL level output voltages. N equals the number of outputs driving TTL loads to VOL. M equals the number of outputs driving TTL loads to VOH. Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active. 3.4.2 Static Power Component The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time. 3.4.3 Active Power Component Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation. The power dissipated by a CMOS circuit can be expressed by the equation: Power  W  = C EQ VCCA2 F  1  EQ 2 DS2316 Datasheet Revision 16.0 16 40MX and 42MX FPGAs where: • • • 3.4.4 CEQ = Equivalent capacitance expressed in picofarads (pF) VCCA = Power supply in volts (V) F = Switching frequency in megahertz (MHz) Equivalent Capacitance Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below. 3.4.5 CEQ Values for Microsemi MX FPGAs Modules (CEQM)3.5 Input Buffers (CEQI)6.9 Output Buffers (CEQO)18.2 Routed Array Clock Buffer Loads (CEQCR)1.4 To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components. Power = VCCA 2    m  C EQM f m  modules +  n C EQI f n  inputs +  p  C EQO + C L  f p  outputs + 0.5  q 1 C EQCR f q1  routed Clk1 +  r 1 f q1  routed Clk1 0.5  q 2 C EQCR f q2  routed Clk2 +  r 2 f q2  routed Clk2 + 2 EQ 3 where: m = Number of logic modules switching at frequency fm n = Number of input buffers switching at frequency fn p = Number of output buffers switching at frequency fp q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r1 = Fixed capacitance due to first routed array clock r2 = Fixed capacitance due to second routed array clock CEQM = Equivalent capacitance of logic modules in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of routed array clock in pF CL = Output load capacitance in pF fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average first routed array clock rate in MHz DS2316 Datasheet Revision 16.0 17 40MX and 42MX FPGAs fq2 = Average second routed array clock rate in MHz) Table 7 • Fixed Capacitance Values for MX FPGAs (pF) Device Type r1 routed_Clk1 r2 routed_Clk2 3.4.6 A40MX02 41.4 N/A A40MX04 68.6 N/A A42MX09 118 118 A42MX16 165 165 A42MX24 185 185 A42MX36 220 220 Test Circuitry and Silicon Explorer II Probe MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allows users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations. Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds. Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH. Figure 12, page 18 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 19 illustrates the interconnection between Silicon Explorer II and 42MX devices To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 14 for the security fuses of 40MX and 42MX devices). Table 8, page 19 summarizes the possible device configurations for probing. PRA and PRB pins are dual-purpose pins. When the “Reserve Probe Pin” is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and “Reserve Probe Pin” is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins. Figure 12 • Silicon Explorer II Setup with 40MX 16 Logic Analyzer Channels Serial Connection to Windows PC 40MX MODE SDI DCLK Silicon Explorer II SDO PRB PRA DS2316 Datasheet Revision 16.0 18 40MX and 42MX FPGAs Figure 13 • Silicon Explorer II Setup with 42MX 16 Logic Analyzer Channels Serial Connection to Windows PC 42MX MODE SDI DCLK Silicon Explorer II SDO PRB Table 8 • PRA Device Configuration Options for Probe Capability Security Fuse(s) Programmed Mode PRA, PRB1 User I/Os2 SDI, SDO, DCLK1 User I/Os2 No LOW No HIGH Probe Circuit Outputs Probe Circuit Inputs Yes Probe Circuit Secured Probe Circuit Secured 1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports.Since these pins are active during probing, input signals will not pass through these pins and may cause contention. 2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the Pin Descriptions, page 85 for information on unused I/O pins 3.4.7 Design Consideration It is recommended to use a series 70  termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70  series termination is used to prevent data transmission corruption during probing and reading back the checksum. 3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry 42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 14, page 20). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and some optional instructions. Table 9, page 20 describes the ports that control JTAG testing, while Table 10, page 20 describes the test instructions supported by these MX devices. Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector). The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state. The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. 42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin. DS2316 Datasheet Revision 16.0 19 40MX and 42MX FPGAs Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O. Figure 14 • 42MX IEEE 1149.1 Boundary Scan Circuitry Boundary Scan Register Output MUX TDO Bypass Register Control Logic JTAG TMS Instruction Decode TAP Controller TCK JTAG Instruction Register TDI Table 9 • Test Access Port Descriptions Port Description TMS Serial input for the test logic control bits. Data is captured on the rising edge of the test logic (Test Mode Select) clock (TCK). TCK (Test Clock Input) Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz. TDI (Test Data Input) Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock. TDO Serial output for test instruction and data from the test logic. TDO is set to an inactive drive (Test Data Output) state (high impedance) when data scanning is not in progress. Table 10 • Supported BST Public Instructions Instruction IR Code Instruction (IR2.IR0) Type Description EXTEST 000 Mandatory Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. SAMPLE/PRELOAD 001 Mandatory Allows a snapshot of the signals at the device pins to be captured and examined during operation HIGH Z 101 Optional Tristates all I/Os to allow external signals to drive pins. See the IEEE Standard 1149.1 specification. CLAMP 110 Optional Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. See the IEEE Standard 1149.1 specification for details. BYPASS 111 Mandatory Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain. DS2316 Datasheet Revision 16.0 20 40MX and 42MX FPGAs 3.4.9 JTAG Mode Activation The JTAG test logic circuit is activated in the Designer software by selecting Tools > Device Selection. This brings up the Device Selection dialog box as shown in the following figure. The JTAG test logic circuit can be enabled by clicking the “Reserve JTAG Pins” check box. The following table explains the pins' behavior in either mode. Figure 15 • Device Selection Wizard Table 11 • Boundary Scan Pin Configuration and Functionality Reserve JTAG Checked Unchecked TCK BST input; must be terminated to logical HIGH or LOW to avoid floating User I/O TDI, TMS BST input; may float or be tied to HIGH User I/O TDO BST output; may float or be connected to TDI of another device User I/O 3.4.10 TRST Pin and TAP Controller Reset An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles. 3.4.11 Boundary Scan Description Language (BSDL) File Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, see the BSDL Files Format Description application note. BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts. Generic files for MX devices are available on the Microsemi SoC Product Group's website: http://www.microsemi.com/soc/techdocs/models/bsdl.html. 3.5 Development Tool Support The MX family of FPGAs is fully supported by Libero® integrated design environment (IDE). Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes SynplifyPro from Synopsys, ModelSim® HDL Simulator from Mentor Graphics® and Viewdraw. Libero IDE includes place-and-route and provides a comprehensive suite of backend support tools for FPGA development, including timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. DS2316 Datasheet Revision 16.0 21 40MX and 42MX FPGAs Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi’s integrated verification and logic analysis tool. Another tool included in the Libero software is the SmartGen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Microsemi’s Libero software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synopsys, and Cadence design systems. See the Libero IDE web content at www.microsemi.com/soc/products/software/libero/default.aspx for further information on licensing and current operating system support. 3.6 Related Documents The following sections give the list of related documents which can be refered for this datasheet. 3.6.1 Application Notes • • • 3.6.2 User Guides and Manuals • • 3.6.3 AC278: BSDL Files Format Description AC225: Programming Antifuse Devices AC168: Implementation of Security in Microsemi Antifuse FPGAs Antifuse Macro Library Guide Silicon Sculptor Programmers User Guide Miscellaneous Libero IDE Flow Diagram 3.7 5.0 V Operating Conditions The following tables show 5.0 V operating conditions. Table 12 • Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units VCC DC Supply Voltage –0.5 to +7.0 V VI Input Voltage –0.5 to VCC+0.5 V VO Output Voltage –0.5 to VCC+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 13 • Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCI+0.5 V VO Output Voltage –0.5 to VCCI+0.5 V tSTG Storage Temperature –65 to +150 DS2316 Datasheet Revision 16.0 °C 22 40MX and 42MX FPGAs Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 14 • Recommended Operating Conditions Parameter Commercial Industrial Temperature Range* 0 to +70 Military Units –40 to +85 –55 to +125 °C VCC (40MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCA (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V Note: * Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. 3.7.1 5 V TTL Electrical Specifications The following tables show 5 V TTL electrical specifications. Table 15 • 5V TTL Electrical Specifications Commercial Commercial -F Industrial Military Min. Max. Min. Max. Min. Max. Min. Symbol Parameter VOH1 IOH = –10 mA 2.4 2.4 3.7 IOL = 10 mA 0.5 VIH (42MX)2 V V 0.4 –0.3 0.8 VIH (40MX) 3.7 0.5 IOL = 6 mA VIL Units V IOH = –4 mA VOL1 Max. –0.3 0.8 –0.3 0.8 –0.3 0.4 V 0.8 V 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V 2.0 VCCI + 0.3 VCCI + 0.3 VCCI + 0.3 VCCI + 0.3 V 2.0 2.0 2.0 IIL VIN = 0.5 V –10 –10 –10 –10 µA IIH VIN = 2.7 V –10 –10 –10 –10 µA Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA Low power mode Standby Current 42MX devices only 0.5 ICC – 5.0 ICC – 5.0 ICC – 5.0 mA IIO, I/O source sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) Standby Current, ICC3 DS2316 Datasheet Revision 16.0 23 40MX and 42MX FPGAs 1. 2. 3. 3.8 Only one output tested at a time. VCC/VCCI = Min. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V All outputs unloaded. All inputs = VCC/VCCI or GND 3.3 V Operating Conditions The following table shows 3.3 V operating conditions. Table 16 • Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units VCC DC Supply Voltage –0.5 to +7.0 V VI Input Voltage –0.5 to VCC + 0.5 V VO Output Voltage –0.5 to VCC + 0.5 V tSTG Storage Temperature –65 to + 150 °C Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 17 • Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCI+0.5 V VO Output Voltage –0.5 to VCCI+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 18 • Recommended Operating Conditions Parameter Commercial Industrial Military Units Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C VCC (40MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCA (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCI (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs. DS2316 Datasheet Revision 16.0 24 40MX and 42MX FPGAs 3.8.1 3.3 V LVTTL Electrical Specifications Table 19 • 3.3V LVTTL Electrical Specifications Symbol Parameter Commercial Commercial -F Industrial Military Min. Min. Min. Min. Max. Units 2.4 V 1 IOH = –4 mA 2.15 1 IOL = 6 mA VOH VOL Max. Max. 2.15 0.4 2.4 0.4 0.48 –0.3 0.8 –0.3 0.8 V –0.3 0.8 VIH (40MX) 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V VIH (42MX) 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 V IIL –10 –10 –10 –10 µA IIH –10 –10 –10 –10 µA Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 15 25 25 25 mA Low-Power Mode Standby Current 42MX devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA IIO, I/O source sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) 1. 2. 0.8 0.48 VIL Standby Current, ICC2 –0.3 Max. V Only one output tested at a time. VCC/VCCI = Min. All outputs unloaded. All inputs = VCC/VCCI or GND. 3.9 Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only) Table 20 • Absolute Maximum Ratings* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCA +0.5 V VO Output Voltage –0.5 to VCCI + 0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device DS2316 Datasheet Revision 16.0 25 40MX and 42MX FPGAs reliability. Devices should not be operated outside the recommended operating conditions. Table 21 • Parameter Recommended Operating Conditions Commercial Industrial Military Units Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C VCCA 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI 3.14 to 3.47 3.0 to 3.6 3.0 to 3.6 V Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. DS2316 Datasheet Revision 16.0 26 40MX and 42MX FPGAs 3.9.1 Mixed 5.0V/3.3V Electrical Specifications Table 22 • Mixed 5.0V/3.3V Electrical Specifications Symbol Parameter 1 VOH Commercial Commercial –F Industrial Military Min. Max. Min. Max. Min. Max. Min. Max. IOH = –10 mA 2.4 2.4 V IOH = –4 mA 1 VOL 2.4 IOL = 10 mA Units 0.5 –0.3 0.8 VIH2 2.0 V 0.5 V IOL = 6 mA VIL 2.4 –0.3 0.8 0.4 0.4 V –0.3 0.8 –0.3 0.8 V VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 V IL VIN = 0.5 V –10 –10 –10 –10 µA IH VIN = 2.7 V –10 –10 –10 –10 µA Input Transition Time, TR and TF 500 500 500 500 ns C 10 10 10 10 pF A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA 0.5 ICC – 5.0 ICC – 5.0 ICC – 5.0 mA IO I/O Capacitance Standby Current, ICC3 Low Power Mode Standby Current IIO I/O source sink Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) current 1. 2. 3. Only one output tested at a time. VCCI = min. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V All outputs unloaded. All inputs = VCCI or GND 3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 16, page 30 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification. Table 23 • DC Specification (5.0 V PCI Signaling)1 PCI Symbol Parameter Condition Min. MX Max. Min. Max. Units 4.75 5.252 V VCCI Supply Voltage for I/Os 4.75 5.25 VIH3 Input High Voltage 2.0 VCC + 0.5 2.0 VCCI + 0.3 V VIL Input Low Voltage –0.5 0.8 0.8 V IIH Input High Leakage Current VIN = 2.7 V 70 10 µA IIL Input Low Leakage Current VIN=0.5 V –70 –10 µA VOH Output High Voltage IOUT = –2 mA IOUT = –6 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA –0.3 2.4 V 3.84 0.55 DS2316 Datasheet Revision 16.0 0.33 V 27 40MX and 42MX FPGAs DC Specification (5.0 V PCI Signaling)1 (continued) Table 23 • PCI Symbol Parameter CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN Pin Inductance 1. 2. 3. 4. Condition MX Min. Max. 5 20 Min. Max. Units 10 10 pF 12 10 pF < 8 nH4 nH PCI Local Bus Specification, Version 2.1, Section 4.2.1.1. Maximum rating for VCCI is –0.5 V to 7.0 V VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. Table 24 • AC Specifications (5.0V PCI Signaling)* PCI Symbol Parameter Condition Min. ICL –5 < VIN  –1 –25 + (VIN +1) /0.015 Low Clamp Current MX Max. Min. Max. Units –60 –10 mA Slew (r) Output Rise Slew Rate 0.4 V to 2.4 V load 1 5 1.8 2.8 V/ns Slew (f) Output Fall Slew Rate 1 5 2.8 4.3 V/ns 2.4 V to 0.4 V load Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2. DS2316 Datasheet Revision 16.0 28 40MX and 42MX FPGAs 3.9.3 Output Drive Characteristics for 3.3 V PCI Signaling Table 25 • DC Specification (3.3 V PCI Signaling)1 PCI Symbol Parameter Condition Min. MX Max. Min. Max. VCCI Supply Voltage for I/Os 3.0 3.6 VIH Input High Voltage 0.5 VCC + 0.5 0.5 VIL Input Low Voltage –0.5 0.8 –0.3 0.8 IIH Input High Leakage Current VIN = 2.7 V 70 10 µA IIL Input Leakage Current –70 –10 µA VOH Output High Voltage IOUT = –2 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN 1. 2. 3. 3.0 Units 2 0.9 5 Pin Inductance 3.6 V VCCI + 0.3 V V 3.3 V 0.1 0.1 VCCI V 10 10 pF 12 10 20
A42MX16-1PQG208I
物料型号:DS2316

器件简介:文档中没有提供具体的器件简介,但从上下文可以推断,这是一种FPGA(现场可编程门阵列)设备,由Microsemi公司生产。

引脚分配:文档详细列出了不同封装类型(如PL44, PL68, PL84, PQ100, PQ144, PQ160, PQ208, PQ240, VQ80, VQ100, TQ176, CQ208, CQ256, BG272, PG132, CQ172)的FPGA的引脚分配。每个引脚的分配可能因FPGA型号(如40MX系列和42MX系列)而异。

参数特性:文档提供了一些时序参数,例如: - tGHL:G-to-Pad LOW时间,不同操作条件下的值不同。 - tLSU:I/O Latch Set-Up时间,定义了输入缓冲器的数据建立时间。 - LH:I/O Latch Hold时间,定义了输入缓冲器的数据保持时间。 - tLCO:1/O Latch Clock-to-Out时间,定义了输出缓冲器的时钟到输出的时间。

功能详解:文档中提到了多种功能,例如: - CLK/A/B:全局时钟输入,用于时钟分配网络。 - DCLK:用于诊断探针和设备编程的时钟输入。 - GND:接地。 - I/O:输入/输出,兼容标准TTL和CMOS规范。 - LP:低功耗模式控制。 - MODE:控制多功能引脚的使用。 - NC:无连接,不影响设备操作。

应用信息:文档中没有提供具体的应用案例,但通常FPGA用于各种需要可编程逻辑的场合,如数字信号处理、通信系统、视频处理等。

封装信息:文档列出了多种封装类型,每种封装类型都有其特定的引脚分配。封装类型包括PLCC、PQFP、VQFP、CQFP、BGA、CPGA等。
A42MX16-1PQG208I 价格&库存

很抱歉,暂时无法提供与“A42MX16-1PQG208I”相匹配的价格&库存,您可以联系我们找货

免费人工找货