0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AT89C5130A-RDRUM

AT89C5130A-RDRUM

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    LQFP-64

  • 描述:

    IC MCU 8BIT 16KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
AT89C5130A-RDRUM 数据手册
Features • 80C52X2 Core (6 Clocks per Instruction) • • • • • • • • • • • • • • • • • • • – Maximum Core Frequency 48 MHz in X1 Mode, 24 MHz in X2 Mode – Dual Data Pointer – Full-duplex Enhanced UART (EUART) – Three 16-bit Timer/Counters: T0, T1 and T2 – 256 Bytes of Scratchpad RAM 16/32-Kbyte On-chip Flash EEPROM In-System Programming through USB – Byte and Page (128 bytes) Erase and Write – 100k Write Cycles 3-KbyteFlash EEPROM for Bootloader – Byte and Page (128 bytes) Erase and Write – 100k Write Cycles 1-Kbyte EEPROM Data ( – Byte and Page (128 bytes) Erase and Write – 100k Write Cycles On-chip Expanded RAM (ERAM): 1024 Bytes Integrated Power Monitor (POR/PFD) to Supervise Internal Power Supply USB 1.1 and 2.0 Full Speed Compliant Module with Interrupt on Transfer Completion – Endpoint 0 for Control Transfers: 32-byte FIFO – 6 Programmable Endpoints with In or Out Directions and with Bulk, Interrupt or Isochronous Transfers • Endpoint 1, 2, 3: 32-byte FIFO • Endpoint 4, 5: 2 x 64-byte FIFO with Double Buffering (Ping-pong Mode) • Endpoint 6: 2 x 512-byte FIFO with Double Buffering (Ping-pong Mode) – Suspend/Resume Interrupts – 48 MHz PLL for Full-speed Bus Operation – Bus Disconnection on Microcontroller Request 5 Channels Programmable Counter Array (PCA) with 16-bit Counter, High-speed Output, Compare/Capture, PWM and Watchdog Timer Capabilities Programmable Hardware Watchdog Timer (One-time Enabled with Reset-out): 100 ms to 3s at 8 MHz Keyboard Interrupt Interface on Port P1 (8 Bits) TWI (Two Wire Interface) 400Kbit/s SPI Interface (Master/Slave Mode) 34 I/O Pins 4 Direct-drive LED Outputs with Programmable Current Sources: 2-6-10 mA Typical 4-level Priority Interrupt System (11 sources) Idle and Power-down Modes 0 to 24 MHz On-chip Oscillator with Analog PLL for 48 MHz Synthesis Industrial Temperature Range Extended Range Power Supply: 2.7V to 5.5V (3.3V to 5.5V required for USB) Packages: PLCC52, VQFP64, QFN32 8-bit Flash Microcontroller with Full Speed USB Device AT89C5130A-M AT89C5131A-M 1. Description AT89C5130A/31A-M is a high-performance Flash version of the 80C51 single-chip 8-bit microcontrollers with full speed USB functions. AT89C5130A/31A-M features a full-speed USB module compatible with the USB specifications Version 1.1 and 2.0. This module integrates the USB transceivers with a 3.3V voltage regulator and the Serial Interface Engine (SIE) with Digital Phase Locked Loop and 48 MHz clock recovery. USB Event detection logic (Reset and Suspend/Resume) and FIFO buffers supporting the mandatory control Endpoint (EP0) and up to 6 versatile Endpoints (EP1/EP2/EP3/EP4/EP5/EP6) with minimum software overhead are also part of the USB module. AT89C5130A/31A-M retains the features of the Atmel 80C52 with extended Flash capacity (16/32-Kbytes), 256 bytes of internal RAM, a 4-level interrupt system, two 16-bit timer/counters (T0/T1), a full duplex enhanced UART (EUART) and an on-chip oscillator. In addition, AT89C5130A/31A-M has an on-chip expanded RAM of 1024 bytes (ERAM), a dual data pointer, a 16-bit up/down Timer (T2), a Programmable Counter Array (PCA), up to 4 programmable LED current sources, a programmable hardware watchdog and a power-on reset. AT89C5130A/31A-M has two software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial ports and the interrupt system are still operating. In the power-down mode the RAM is saved, the peripheral clock is frozen, but the device has full wake-up capability through USB events or external interrupts. 2 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M XTAL1 XTAL2 EUART + BRG ALE RAM 256x8 EEPROM ERAM 4Kx8 1Kx8 16/32Kx8Flash (1) (1) PCA Timer2 SCK MISO MOSI SDA SCL T2 T2EX CEX ECI VDD VSS TxD (1) (1) (2) (2) SS RxD 2. Block Diagram (1) (1) (1) (1) (3) (3) SPI TWI C51 CORE PSEN CPU EA Notes: D+ D- KIN [0..7] P4 P3 P2 P1 P0 INT1 (2) (2) Regulator VREF AVDD Key Watch USB Board Dog AVSS Parallel I/O Ports & Ext. Bus Port 0 Port 1 Port 2 Port 3 Port 4 (2) (2) T1 (2) INT Ctrl INT0 Timer 0 Timer 1 RST WR (2) T0 RD 1. Alternate function of Port 1 2. Alternate function of Port 3 3. Alternate function of Port 4 3 4337K–USB–04/08 3. Pinout Description Pinout 1 52 51 50 49 48 47 4 P1.0/T2/KIN0 P2.0/A8 2 P1.2/ECI/KIN2 P2.1/A9 3 P1.1/T2EX/KIN1/SS P2.2/A10 5 4 P1.3/CEX0/KIN3 P1.6/CEX3/KIN6/SCK P1.5/CEX2/KIN5/MISO 6 P1.4/CEX1/KIN4 P1.7/CEX4/KIN7/MOSI 7 P0.0/AD0 P4.0/SCL AT89C5130A/31A-M 52-pin PLCC Pinout P4.1/SDA 8 46 NC P2.3/A11 9 45 P0.1/AD1 P2.4/A12 10 44 P0.2/AD2 P2.5/A13 11 43 XTAL2 12 42 RST P0.3/AD3 XTAL1 13 P2.6/A14 P2.7/A15 14 VDD AVDD 41 VSS P0.4/AD4 15 40 39 16 38 P0.5/AD5 17 37 P0.6/AD6 UCAP 18 36 P0.7/AD7 AVSS 19 35 P3.6/WR/LED2 P3.0/RxD 20 34 NC PLCC52 P3.7/RD/LED3 P3.5/T1/LED1 P3.4/T0 P3.3/INT1/LED0 P3.2/INT0 PSEN P3.1/TxD ALE EA VREF UVSS D+ 21 22 23 24 25 26 27 28 29 30 31 32 33 PLLF Figure 3-1. D- 3.1 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M NC P1.1/T2EX/KIN1/SS P1.0/T2/KIN0 P1.2/ECI/KIN2 P1.3/CEX0/KIN3 P0.0/AD0 P1.4/CEX1/KIN4 P2.1/A9 P2.0/A8 P2.2/A10 P1.5/CEX2/KIN5/MISO P1.6/CEX3/KIN6/SCK NC AT89C5130A/31A-M 64-pin VQFP Pinout P4.1/SDA P4.0/SCL P1.7/CEX4/KIN7/MOSI Figure 3-2. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 NC P2.3/A11 1 2 48 47 NC P2.4/A12 3 46 P0.1/AD1 P2.5/A13 4 45 P0.2/AD2 XTAL2 XTAL1 5 6 44 43 RST P0.3/AD3 VSS P2.6/A14 7 42 P2.7/A15 VDD AVDD 8 9 41 40 UCAP AVSS NC P3.0/RxD NC NC VQFP64 10 39 11 38 37 12 13 36 35 14 15 16 NC NC P0.4/AD4 P3.7/RD/LED3 P0.5/AD5 P0.6/AD6 P0.7/AD7 P3.6/WR/LED2 34 NC 33 NC P3.4/T0 P3.5/T1/LED1 NC P3.2/INT0 P3.3/INT1/LED0 P3.1/TxD ALE PSEN EA VREF UVSS D- D+ PLLF NC NC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 5 4337K–USB–04/08 P1.2/ECI/KIN2 P1.1/T2EX/KIN1/SS P1.3/CEX0/KIN3 P1.5/CEX2/KIN5/MISO P1.4/CEX1/KIN4 P1.7/CEX4/KIN7/MOSI P1.6/CEX3/KIN6/SCK AT89C5130A/31A-M 32-pin QFN Pinout P4.0/SCL Figure 3-3. 32 31 30 29 28 27 26 25 P4.1/SDA 1 24 P1.0/T2/KIN0 XTAL2 2 23 RST XTAL1 3 22 NC VDD 4 21 VSS UCAP 5 20 NC AVSS 6 19 P3.7/RD/LED3 P3.0/RxD 7 18 P3.6/WR/LED2 PLLF 8 17 P3.5/T1/LED1 QFN32 P3.4/T0 P3.2/INT0 P3.3/INT1/LED0 UVSS P3.1/TxD VREF D- D+ 9 10 11 12 13 14 15 16 Note : The metal plate can be connected to Vss 3.2 Signals All the AT89C5130A/31A-M signals are detailed by functionality on Table 3-1 through Table 312. Table 3-1. Signal Name Type KIN[7:0) I Table 3-2. 6 Keypad Interface Signal Description Description Keypad Input Lines Holding one of these pins high or low for 24 oscillator periods triggers a keypad interrupt if enabled. Held line is reported in the KBCON register. Alternate Function P1[7:0] Programmable Counter Array Signal Description Signal Name Type ECI I Description External Clock Input Alternate Function P1.2 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Signal Name Type Description Capture External Input CEX[4:0] I/O Compare External Output Alternate Function P1.3 P1.4 P1.5 P1.6 P1.7 Table 3-3. Serial I/O Signal Description Signal Name Type RxD I Serial Input Port P3.0 TxD O Serial Output Port P3.1 Table 3-4. Description Alternate Function Timer 0, Timer 1 and Timer 2 Signal Description Signal Name Type Description Alternate Function Timer 0 Gate Input INT0 serves as external run control for timer 0, when selected by GATE0 bit in TCON register. INT0 I External Interrupt 0 INT0 input set IE0 in the TCON register. If bit IT0 in this register is set, bits IE0 are set by a falling edge on INT0. If bit IT0 is cleared, bits IE0 is set by a low level on INT0. P3.2 Timer 1 Gate Input INT1 serves as external run control for Timer 1, when selected by GATE1 bit in TCON register. P3.3 INT1 I T0 I Timer Counter 0 External Clock Input When Timer 0 operates as a counter, a falling edge on the T0 pin increments the count. P3.4 T1 I Timer/Counter 1 External Clock Input When Timer 1 operates as a counter, a falling edge on the T1 pin increments the count. P3.5 T2 T2EX External Interrupt 1 INT1 input set IE1 in the TCON register. If bit IT1 in this register is set, bits IE1 are set by a falling edge on INT1. If bit IT1 is cleared, bits IE1 is set by a low level on INT1. I Timer/Counter 2 External Clock Input O Timer/Counter 2 Clock Output I Timer/Counter 2 Reload/Capture/Direction Control Input P1.0 P1.1 7 4337K–USB–04/08 Table 3-5. LED Signal Description Signal Name LED[3:0] Table 3-6. Type O Alternate Function Description Direct Drive LED Output These pins can be directly connected to the Cathode of standard LEDs without external current limiting resistors. The typical current of each output can be programmed by software to 2, 6 or 10 mA. Several outputs can be connected together to get higher drive capabilities. P3.3 P3.5 P3.6 P3.7 TWI Signal Description Alternate Function Signal Name Type SCL I/O SCL: TWI Serial Clock SCL output the serial clock to slave peripherals. SCL input the serial clock from master. P4.0 SDA I/O SDA: TWI Serial Data SCL is the bidirectional TWI data line. P4.1 Table 3-7. Description SPI Signal Description Signal Name Type SS I/O Alternate Function Description SS: SPI Slave Select P1.1 MISO: SPI Master Input Slave Output line MISO I/O SCK I/O MOSI 8 I/O When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller. SCK: SPI Serial Clock SCK outputs clock to the slave peripheral or receive clock from the master P1.5 P1.6 MOSI: SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller P1.7 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 3-8. Ports Signal Description Signal Name P0[7:0] P1[7:0] Type I/O I/O Description Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any parasitic current consumption, Floating P0 inputs must be pulled to VDD or VSS. Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. Alternate Function AD[7:0] KIN[7:0] T2 T2EX ECI CEX[4:0] P2[7:0] I/O Port 2 P2 is an 8-bit bidirectional I/O port with internal pull-ups. A[15:8] LED[3:0] RxD TxD P3[7:0] I/O Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups. P4[1:0] I/O Port 4 P4 is an 2-bit open drain port. Table 3-9. INT0 INT1 T0 T1 WR RD SCL SDA Clock Signal Description Signal Name Type XTAL1 I Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. - XTAL2 O Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected. - PLLF I PLL Low Pass Filter input Receive the RC network of the PLL low pass filter. - Description Alternate Function 9 4337K–USB–04/08 Table 3-10. USB Signal Description Signal Name Type D+ I/O D- I/O VREF O Table 3-11. Alternate Function Description USB Data + signal - Set to high level under reset. USB Data - signal - Set to low level under reset. USB Reference Voltage Connect this pin to D+ using a 1.5 kΩ resistor to use the Detach function. - System Signal Description Signal Name Type AD[7:0] I/O A[15:8] I/O Address Bus MSB for external access RD I/O Read Signal Read signal asserted during external data memory read operation. Alternate Function Description Multiplexed Address/Data LSB for external access P0[7:0] Data LSB for Slave port access (used for 8-bit and 16-bit modes) P2[7:0] P3.7 Control input for slave port read access cycles. WR I/O Write Signal Write signal asserted during external data memory write operation. P3.6 Control input for slave write access cycles. RST O Reset Input Holding this pin low for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage lower than VIL is applied, whether or not the oscillator is running. This pin has an internal pull-up resistor which allows the device to be reset by connecting a capacitor between this pin and VSS. Asserting RST when the chip is in Idle mode or Power-down mode returns the chip to normal operation. This pin is tied to 0 for at least 12 oscillator periods when an internal reset occurs ( hardware watchdog or power monitor). ALE O Address Latch Enable Output The falling edge of ALE strobes the address into external latch. This signal is active only when reading or writing external memory using MOVX instructions. - PSEN I/O Program Strobe Enable / Hardware conditions Input for ISP Used as input under reset to detect external hardware conditions of ISP mode. - EA I - External Access Enable Table 3-12. 10 This pin must be held low to force the device to fetch code from external program memory starting at address 0000h. - Power Signal Description Signal Name Type Description AVSS GND Analog Ground AVSS is used to supply the on-chip PLL and the USB PAD. Alternate Function - AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 3-12. Power Signal Description (Continued) Signal Name Type Description AVDD PWR Analog Supply Voltage AVDD is used to supply the on-chip PLL and the USB PAD. - VSS GND Digital Ground VSS is used to supply the buffer ring and the digital core. - UVSS GND USB Digital Ground UVSS is used to supply the USB pads. - UCAP PWR USB Pad Power Capacitor UCAP must be connect to an external capacitor for USB pad power supply (for typical application see Figure 4-1 on page 12) - VDD PWR Digital Supply Voltage VDD is used to supply the buffer ring on all versions of the device. It is also used to power the on-chip voltage regulator of the Standard versions or the digital core of the Low Power versions. Alternate Function - USB pull-up Controlled Output VREF O VREF is used to control the USB D+ 1.5 kΩ pull up. The Vref output is in high impedance when the bit DETACH is set in the USBCON register. - 11 4337K–USB–04/08 4. Typical Application 4.1 Recommended External components All the external components described in the figure below must be implemented as close as possible from the microcontroller package. The following figure represents the typical wiring schematic. Figure 4-1. Typical Application VDD 100nF VSS VSS AVDD 1.5K VSS VDD VDD USB 100nF 4.7µF VRef AT89C5130A/31A-M VBUS 27R D+ 27R DGND D+ DUVSS VSS XTAL1 22pF UCAP Q 1µF 22pF +20% VSS 100R 2.2nF VSS AVSS PLLF VSS XTAL2 10nF VSS VSS VSS 12 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 4.2 PCB Recommandations Figure 4-2. USB Pads Components must be close to the microcontroller Wires must be routed in Parallel and must be as short as possible VRef D+ D- USB Connector If possible, isolate D+ and D- signals from other signals with ground wires Figure 4-3. USB PLL AVss PLLF C2 R microcontroller C1 Components must be close to the Isolate filter components with a ground wire 13 4337K–USB–04/08 5. Clock Controller 5.1 Introduction The AT89C5130A/31A-M clock controller is based on an on-chip oscillator feeding an on-chip Phase Lock Loop (PLL). All the internal clocks to the peripherals and CPU core are generated by this controller. The AT89C5130A/31A-M X1 and X2 pins are the input and the output of a single-stage on-chip inverter (see Figure 5-1) that can be configured with off-chip components as a Pierce oscillator (see Figure 5-2). Value of capacitors and crystal characteristics are detailed in the section “DC Characteristics”. The X1 pin can also be used as input for an external 48 MHz clock. The clock controller outputs three different clocks as shown in Figure 5-1: • a clock for the CPU core • a clock for the peripherals which is used to generate the Timers, PCA, WD, and Port sampling clocks • a clock for the USB controller These clocks are enabled or disabled depending on the power reduction mode as detailed in Section “Power Management”, page 155. Figure 5-1. Oscillator Block Diagram ÷2 0 Peripheral Clock 1 CPU Core Clock PLL X1 X2 IDL CKCON.0 PCON.0 0 1 USB Clock X2 5.2 EXT48 PD PLLCON.2 PCON.1 Oscillator Two types of clock sources can be used for CPU: • Crystal oscillator on X1 and X2 pins: Up to 32 MHz (Amplifier Bandwidth) • External clock on X1 pin: Up to 48MHz 14 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M In order to optimize the power consumption, the oscillator inverter is inactive when the PLL output is not selected for the USB device. Figure 5-2. Crystal Connection X1 C1 Q C2 VSS 5.3 5.3.1 X2 PLL PLL Description The AT89C5130A/31A-M PLL is used to generate internal high frequency clock (the USB Clock) synchronized with an external low-frequency (the Peripheral Clock). The PLL clock is used to generate the USB interface clock. Figure 5-3 shows the internal structure of the PLL. The PFLD block is the Phase Frequency Comparator and Lock Detector. This block makes the comparison between the reference clock coming from the N divider and the reverse clock coming from the R divider and generates some pulses on the Up or Down signal depending on the edge position of the reverse clock. The PLLEN bit in PLLCON register is used to enable the clock generation. When the PLL is locked, the bit PLOCK in PLLCON register (see Figure 5-3) is set. The CHP block is the Charge Pump that generates the voltage reference for the VCO by injecting or extracting charges from the external filter connected on PLLF pin (see Figure 5-4). Value of the filter components are detailed in the Section “DC Characteristics”. The VCO block is the Voltage Controlled Oscillator controlled by the voltage VREF produced by the charge pump. It generates a square wave signal: the PLL clock. Figure 5-3. PLL Block Diagram and Symbol PLLF PLLCON.1 PLLEN N divider OSC CLOCK N3:0 Up PFLD CHP Vref VCO USB Clock Down PLOCK PLLCON.0 R divider R3:0 OSCclk × ( R + 1 ) USBclk = ----------------------------------------------N+1 USB CLOCK USB Clock Symbol 15 4337K–USB–04/08 Figure 5-4. PLL Filter Connection PLLF R C2 C1 VSS VSS The typical values are: R = 100 Ω, C1 = 10 nf, C2 = 2.2 nF. 5.3.2 PLL Programming The PLL is programmed using the flow shown in Figure 5-5. As soon as clock generation is enabled user must wait until the lock indicator is set to ensure the clock output is stable. Figure 5-5. PLL Programming Flow PLL Programming Configure Dividers N3:0 = xxxxb R3:0 = xxxxb Enable PLL PLLEN = 1 PLL Locked? LOCK = 1? 5.3.3 Divider Values To generate a 48 MHz clock using the PLL, the divider values have to be configured following the oscillator frequency. The typical divider values are shown in Table 5-1. Table 5-1. 16 Typical Divider Values Oscillator Frequency R+1 N+1 PLLDIV 3 MHz 16 1 F0h 6 MHz 8 1 70h 8 MHz 6 1 50h 12 MHz 4 1 30h 16 MHz 3 1 20h 18 MHz 8 3 72h 20 MHz 12 5 B4h 24 MHz 2 1 10h AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 5.4 Oscillator Frequency R+1 N+1 PLLDIV 32 MHz 3 2 21h 40 MHz 12 10 B9h Registers Table 5-2. CKCON0 (S:8Fh) Clock Control Register 0 7 6 5 4 3 2 1 0 TWIX2 WDX2 PCAX2 SIX2 T2X2 T1X2 T0X2 X2 Bit Bit Number Mnemonic Description 7 6 5 4 3 2 1 0 TWIX2 TWI Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. WDX2 Watchdog Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. PCAX2 Programmable Counter Array Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. SIX2 Enhanced UART Clock (Mode 0 and 2) This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. T2X2 Timer2 Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. T1X2 Timer1 Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. T0X2 Timer0 Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. X2 System Clock Control bit Clear to select 12 clock periods per machine cycle (STD mode, FCPU = FPER = FOSC/2). Set to select 6 clock periods per machine cycle (X2 mode, FCPU = FPER = FOSC). 17 4337K–USB–04/08 Reset Value = 0000 0000b Table 5-3. CKCON1 (S:AFh) Clock Control Register 1 7 6 5 4 3 2 1 0 - - - - - - - SPIX2 Bit Bit Number Mnemonic Description 7-1 - 0 SPIX2 Reserved The value read from this bit is always 0. Do not set this bit. SPI Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. Reset Value = 0000 0000b Table 5-4. PLLCON (S:A3h) PLL Control Register 7 6 5 4 3 2 1 0 - - - - - EXT48 PLLEN PLOCK Bit Bit Number Mnemonic Description 7-3 - Reserved The value read from this bit is always 0. Do not set this bit. 2 EXT48 External 48 MHz Enable Bit Set this bit to bypass the PLL and disable the crystal oscillator. Clear this bit to select the PLL output as USB clock and to enable the crystal oscillator. 1 PLLEN PLL Enable Bit Set to enable the PLL. Clear to disable the PLL. 0 PLOCK PLL Lock Indicator Set by hardware when PLL is locked. Clear by hardware when PLL is unlocked. Reset Value = 0000 0000b Table 5-5. 18 PLLDIV (S:A4h) PLL Divider Register 7 6 5 4 3 2 1 0 R3 R2 R1 R0 N3 N2 N1 N0 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Bit Number Mnemonic Description 7-4 R3:0 PLL R Divider Bits 3-0 N3:0 PLL N Divider Bits Reset Value = 0000 0000 19 4337K–USB–04/08 6. SFR Mapping The Special Function Registers (SFRs) of the AT89C5130A/31A-M fall into the following categories: • C51 core registers: ACC, B, DPH, DPL, PSW, SP • I/O port registers: P0, P1, P2, P3, P4 • Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H • Serial I/O port registers: SADDR, SADEN, SBUF, SCON • PCA (Programmable Counter Array) registers: CCON, CMOD, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4) • Power and clock control registers: PCON • Hardware Watchdog Timer registers: WDTRST, WDTPRG • Interrupt system registers: IEN0, IPL0, IPH0, IEN1, IPL1, IPH1 • Keyboard Interface registers: KBE, KBF, KBLS • LED register: LEDCON • Two Wire Interface (TWI) registers: SSCON, SSCS, SSDAT, SSADR • Serial Port Interface (SPI) registers: SPCON, SPSTA, SPDAT • USB registers: Uxxx (17 registers) • PLL registers: PLLCON, PLLDIV • BRG (Baud Rate Generator) registers: BRL, BDRCON • Flash register: FCON (FCON access is reserved for the Flash API and ISP software) • EEPROM register: EECON • Others: AUXR, AUXR1, CKCON0, CKCON1 20 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M The table below shows all SFRs with their address and their reset value. Table 6-1. SFR Descriptions Bit Addressable Non-Bit Addressable 0/8 1/9 F8h UEPINT 0000 0000 CH CCAP0H CCAP1H CCAP2H CCAP3H CCAP4H 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX F0h B 0000 0000 0000 0000 E8h E0h 2/A 3/B 4/C 5/D 6/E 7/F FFh LEDCON F7h CL CCAP0L CCAP1L CCAP2L CCAP3L CCAP4L 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX UBYCTLX 0000 0000 UBYCTHX 0000 0000 ACC 0000 0000 EFh E7h CCON CMOD CCAPM0 CCAPM1 CCAPM2 CCAPM3 CCAPM4 00X0 0000 00XX X000 X000 0000 X000 0000 X000 0000 X000 0000 X000 0000 D0h PSW 0000 0000 FCON (1) XXXX 0000 EECON XXXX XX00 UEPCONX 1000 0000 UEPRST 0000 0000 C8h T2CON 0000 0000 T2MOD XXXX XX00 RCAP2L 0000 0000 RCAP2H 0000 0000 TL2 0000 0000 TH2 0000 0000 UEPSTAX 0000 0000 UEPDATX 0000 0000 CFh UEPIEN 0000 0000 SPCON SPSTA SPDAT 0001 0100 0000 0000 XXXX XXXX USBADDR 1000 0000 UEPNUM 0000 0000 C7h UFNUMH 0000 0000 USBCON 0000 0000 USBINT 0000 0000 USBIEN 0000 0000 D8h C0h B8h B0h A8h A0h 98h 90h 88h 80h Note: P4 XXXX 1111 DFh D7h IPL0 SADEN X000 000 0000 0000 UFNUML 0000 0000 P3 IEN1 X0XX X000 IPL1 IPH1 IPH0 X0XX X000 X0XX X000 X000 0000 1111 1111 BFh IEN0 SADDR CKCON1 0000 0000 0000 0000 0000 0000 P2 AUXR1 1111 1111 XXXX X0X0 PLLCON XXXX XX00 PLLDIV 0000 0000 WDTRST WDTPRG XXXX XXXX XXXX X000 SCON SBUF BRL BDRCON KBLS KBE KBF 0000 0000 XXXX XXXX 0000 0000 XXX0 0000 0000 0000 0000 0000 0000 0000 P1 SSCON SSCS SSDAT SSADR 1111 1111 0000 0000 1111 1000 1111 1111 1111 1110 AUXR XX0X 0000 TCON TMOD TL0 TL1 TH0 TH1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 P0 1111 1111 SP 0000 0111 DPL 0000 0000 DPH 0000 0000 0/8 1/9 2/A 3/B 6/E A7h 97h CKCON0 0000 0000 PCON 5/D AFh 9Fh 00X1 0000 4/C B7h 8Fh 87h 7/F 1. FCON access is reserved for the Flash API and ISP software. Reserved 21 4337K–USB–04/08 The Special Function Registers (SFRs) of the AT89C5131 fall into the following categories: Table 6-2. C51 Core SFRs Mnemonic Add Name ACC E0h Accumulator B F0h B Register PSW D0h Program Status Word SP 81h DPL 82h 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Stack Pointer LSB of SPX Data Pointer Low byte LSB of DPTR DPH 83h Data Pointer High byte MSB of DPTR Table 6-3. Table 6-4. I/O Port SFRs Mnemonic Add Name P0 80h Port 0 P1 90h Port 1 P2 A0h Port 2 P3 B0h Port 3 P4 C0h Port 4 (2bits) Timer SFR’s Mnemonic Add Name TH0 8Ch Timer/Counter 0 High byte TL0 8Ah Timer/Counter 0 Low byte TH1 8Dh Timer/Counter 1 High byte TL1 8Bh Timer/Counter 1 Low byte TH2 CDh Timer/Counter 2 High byte TL2 CCh Timer/Counter 2 Low byte TCON 88h TMOD 22 7 6 5 4 3 2 1 0 Timer/Counter 0 and 1 control TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 89h Timer/Counter 0 and 1 Modes GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00 T2CON C8h Timer/Counter 2 control TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2# T2MOD C9h Timer/Counter 2 Mode T2OE DCEN AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 6-4. Timer SFR’s (Continued) Mnemonic Add Name RCAP2H CBh Timer/Counter 2 Reload/Capture High byte RCAP2L CAh Timer/Counter 2 Reload/Capture Low byte WDTRST A6h WatchDog Timer Reset WDTPRG A7h WatchDog Timer Program Table 6-5. Add Name SCON 98h Serial Control SBUF 99h Serial Data Buffer SADEN B9h Slave Address Mask SADDR A9h Slave Address 5 4 3 2 1 0 S2 S1 S0 7 6 5 4 3 2 1 0 FE/SM0 SM1 SM2 REN TB8 RB8 TI RI 7 6 5 4 3 2 1 0 BRR TBCK RBCK SPD SRC Baud Rate Generator SFR’s Mnemonic Add Name BRL 9Ah Baud Rate Reload BDRCON 9Bh Baud Rate Control Table 6-7. 6 Serial I/O Port SFR’s Mnemonic Table 6-6. 7 PCA SFR’s Mnemonic Add Name CCON D8h PCA Timer/Counter Control CMOD D9h PCA Timer/Counter Mode CL E9h PCA Timer/Counter Low byte CH F9h PCA Timer/Counter High byte CCAPM 1 DAh PCA Timer/Counter Mode 0 ECOM0 CAPP0 CAPN0 CCAPM 2 DBh PCA Timer/Counter Mode 1 ECOM1 CAPP1 CAPN1 DCh PCA Timer/Counter Mode 2 ECOM2 CAPP2 DDh PCA Timer/Counter Mode 3 ECOM3 DEh PCA Timer/Counter Mode 4 ECOM4 7 6 CF CR CIDL WDTE 5 4 3 2 1 0 CCF4 CCF3 CCF2 CCF1 CCF0 CPS1 CPS0 ECF MAT0 TOG0 PWM0 ECCF0 MAT1 TOG1 PWM1 ECCF1 CAPN2 MAT2 TOG2 PWM2 ECCF2 CAPP3 CAPN3 MAT3 TOG3 PWM3 ECCF3 CAPP4 CAPN4 MAT4 TOG4 PWM4 ECCF4 CCAPM 0 CCAPM 3 CCAPM 4 23 4337K–USB–04/08 Table 6-7. PCA SFR’s Mnemonic Add Name CCAP0 H PCA Compare Capture Module 0 H CCAP1 H FAh CCAP2 H FCh CCAP3 H FBh FDh FEh CCAP4 H 7 6 5 4 3 2 1 0 PCA Compare Capture Module 1 H CCAP0H7 CCAP0H6 CCAP0H5 CCAP0H4 CCAP0H3 CCAP0H2 CCAP0H1 CCAP0H0 PCA Compare Capture Module 2 H CCAP2H7 CCAP2H6 CCAP2H5 CCAP2H4 CCAP2H3 CCAP2H2 CCAP2H1 CCAP2H0 PCA Compare Capture Module 3 H CCAP1H7 CCAP1H6 CCAP1H5 CCAP1H4 CCAP1H3 CCAP1H2 CCAP1H1 CCAP1H0 CCAP3H7 CCAP3H6 CCAP3H5 CCAP3H4 CCAP3H3 CCAP3H2 CCAP3H1 CCAP3H0 CCAP4H7 CCAP4H6 CCAP4H5 CCAP4H4 CCAP4H3 CCAP4H2 CCAP4H1 CCAP4H0 PCA Compare Capture Module 4 H PCA Compare Capture Module 0 L CCAP0L EAh CCAP1L EBh CCAP2L ECh CCAP3L EDh CCAP4L EEh PCA Compare Capture Module 1 L CCAP0L7 CCAP0L6 CCAP0L5 CCAP0L4 CCAP0L3 CCAP0L2 CCAP0L1 CCAP0L0 PCA Compare Capture Module 2 L CCAP1L7 CCAP1L6 CCAP1L5 CCAP1L4 CCAP1L3 CCAP1L2 CCAP1L1 CCAP1L0 CCAP2L7 CCAP2L6 CCAP2L5 CCAP2L4 CCAP2L3 CCAP2L2 CCAP2L1 CCAP2L0 CCAP3L7 CCAP3L6 CCAP3L5 CCAP3L4 CCAP3L3 CCAP3L2 CCAP3L1 CCAP3L0 CCAP4L7 CCAP4L6 CCAP4L5 CCAP4L4 CCAP4L3 CCAP4L2 CCAP4L1 CCAP4L0 PCA Compare Capture Module 3 L PCA Compare Capture Module 4 L Table 6-8. Interrupt SFR’s Mnemonic Add Name IEN0 A8h Interrupt Enable Control 0 IEN1 B1h Interrupt Enable Control 1 EUSB IPL0 B8h Interrupt Priority Control Low 0 PPCL PT2L PSL IPH0 B7h Interrupt Priority Control High 0 PPCH PT2H PSH IPL1 B2h Interrupt Priority Control Low 1 IPH1 B3h Interrupt Priority Control High 1 Table 6-9. 24 6 5 4 3 2 1 0 EA EC ET2 ES ET1 EX1 ET0 EX0 ESPI ETWI EKB PT1L PX1L PT0L PX0L PT1H PX1H PT0H PX0H PUSBL PSPIL PTWIL PKBL PUSBH PSPIH PTWIH PKBH PLL SFRs Mnemonic Add Name PLLCON A3h PLL Control PLLDIV A4h PLL Divider Table 6-10. 7 7 6 R3 5 R2 4 R1 3 R0 N3 2 1 0 EXT48 PLLEN PLOCK N2 N1 N0 Keyboard SFRs Mnemonic Add Name 7 6 5 4 3 2 1 0 KBF 9Eh Keyboard Flag Register KBF7 KBF6 KBF5 KBF4 KBF3 KBF2 KBF1 KBF0 KBE 9Dh Keyboard Input Enable Register KBE7 KBE6 KBE5 KBE4 KBE3 KBE2 KBE1 KBE0 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 6-10. Keyboard SFRs Mnemonic Add Name KBLS 9Ch Keyboard Level Selector Register Table 6-11. 7 6 5 4 3 2 1 0 KBLS7 KBLS6 KBLS5 KBLS4 KBLS3 KBLS2 KBLS1 KBLS0 7 6 5 4 3 2 1 0 TWI SFRs Mnemonic Add Name SSCON 93h Synchronous Serial Control CR2 SSIE STA STO SI AA CR1 CR0 SSCS 94h Synchronous Serial Control-Status SC4 SC3 SC2 SC1 SC0 - - - SSDAT 95h Synchronous Serial Data SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 SSADR 96h Synchronous Serial Address A7 A6 A5 A4 A3 A2 A1 A0 7 6 5 4 3 2 1 0 Table 6-12. SPI SFRs Mnemonic Add Name SPCON C3h Serial Peripheral Control SPR2 SPEN SSDIS MSTR CPOL CPHA SPR1 SPR0 SPSTA C4h Serial Peripheral Status-Control SPIF WCOL SSERR MODF - - - - SPDAT C5h Serial Peripheral Data R7 R6 R5 R4 R3 R2 R1 R0 Table 6-13. USB SFR’s Mnemonic Add Name 7 6 5 4 3 2 1 0 USBCON BCh USB Global Control USBE SUSPCLK SDRMWU P DETACH UPRSM RMWUPE CONFG FADDEN USBADDR C6h USB Address FEN UADD6 UADD5 UADD4 UADD3 UADD2 UADD1 UADD0 USBINT BDh USB Global Interrupt - - WUPCPU EORINT SOFINT - - SPINT USBIEN BEh USB Global Interrupt Enable - - EWUPCP U EEORINT ESOFINT - - ESPINT UEPNUM C7h USB Endpoint Number - - - - EPNUM3 EPNUM2 EPNUM1 EPNUM0 UEPCONX D4h USB Endpoint X Control EPEN - - - DTGL EPDIR EPTYPE1 EPTYPE0 UEPSTAX CEh USB Endpoint X Status DIR RXOUTB1 STALLRQ TXRDY STLCRC RXSETUP RXOUTB0 TXCMP UEPRST D5h USB Endpoint Reset - EP6RST EP5RST EP4RST EP3RST EP2RST EP1RST EP0RST UEPINT F8h USB Endpoint Interrupt - EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT UEPIEN C2h USB Endpoint Interrupt Enable - EP6INTE EP5INTE EP4INTE EP3INTE EP2INTE EP1INTE EP0INTE UEPDATX CFh USB Endpoint X FIFO Data FDAT7 FDAT6 FDAT5 FDAT4 FDAT3 FDAT2 FDAT1 FDAT0 25 4337K–USB–04/08 Table 6-13. USB SFR’s Mnemonic Add Name 7 6 5 4 3 2 1 0 UBYCTLX E2h USB Byte Counter Low (EP X) BYCT7 BYCT6 BYCT5 BYCT4 BYCT3 BYCT2 BYCT1 BYCT0 UBYCTHX E3h USB Byte Counter High (EP X) - - - - - BYCT10 BYCT9 BYCT8 UFNUML BAh USB Frame Number Low FNUM7 FNUM6 FNUM5 FNUM4 FNUM3 FNUM2 FNUM1 FNUM0 UFNUMH BBh USB Frame Number High - - CRCOK CRCERR - FNUM10 FNUM9 FNUM8 Table 6-14. 26 Other SFR’s Mnemonic Add Name 7 6 5 4 3 2 1 0 PCON 87h Power Control SMOD1 SMOD0 - POF GF1 GF0 PD IDL AUXR 8Eh Auxiliary Register 0 DPU - M0 - XRS1 XRS2 EXTRAM A0 AUXR1 A2h Auxiliary Register 1 - - ENBOOT - GF3 - - DPS CKCON0 8Fh Clock Control 0 TWIX2 WDX2 PCAX2 SIX2 T2X2 T1X2 T0X2 X2 CKCON1 AFh Clock Control 1 - - - - - - - SPIX2 LEDCON F1h LED Control FCON D1h Flash Control EECON D2h EEPROM Contol LED3 LED2 LED1 LED0 FPL3 FPL2 FPL1 FPL0 FPS FMOD1 FMOD0 FBUSY EEPL3 EEPL2 EEPL1 EEPL0 - - EEE EEBUSY AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 7. Dual Data Pointer Register The additional data pointer can be used to speed up code execution and reduce code size. The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 7-1) that allows the program code to switch between them (see Figure 7-1). Figure 7-1. Use of Dual Pointer External Data Memory 7 0 DPS DPTR1 DPTR0 AUXR1(A2H) DPH(83H) DPL(82H) Table 7-1. AUXR1 Register AUXR1- Auxiliary Register 1(0A2h) 7 6 5 4 3 2 1 0 - - ENBOOT - GF3 0 - DPS Bit Bit Number Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 ENBOOT Description Enable Boot Flash Cleared to disable boot ROM. Set to map the boot ROM between F800h - 0FFFFh. Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - 3 GF3 2 0 Always cleared. 1 - Reserved The value read from this bit is indeterminate. Do not set this bit. 0 DPS This bit is a general-purpose user flag. Data Pointer Selection Cleared to select DPTR0. Set to select DPTR1. Reset Value = XX[BLJB]X X0X0b Not bit addressable a. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3. 27 4337K–USB–04/08 ASSEMBLY LANGUAGE ; Block move using dual data pointers ; Modifies DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added ; 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A,@DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX @DPTR,A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state. 28 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 8. Program/Code Memory The AT89C5130A/31A-M implement 16/ 32 Kbytes of on-chip program/code memory. Figure 81 shows the split of internal and external program/code memory spaces depending on the product. The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the Flash Memory can be programmed using only one voltage and allows In- application Software Programming commonly known as IAP. Hardware programming mode is also available using specific programming tool. Figure 8-1. Program/Code Memory Organization FFFFh FFFFh 32 Kbytes External Code 48 Kbytes External Code 4000h 3FFFh 8000h 7FFFh 32 Kbytes Flash 16 Kbytes Flash 0000h 0000h AT89C5130A Note: 8.1 8.1.1 AT89C5131A If the program executes exclusively from on-chip code memory (not from external memory), beware of executing code from the upper byte of on-chip memory (3FFFh/7FFFh) and thereby disrupting I/O Ports 0 and 2 due to external prefetch. Fetching code constant from this location does not affect Ports 0 and 2. External Code Memory Access Memory Interface The external memory interface comprises the external bus (Port 0 and Port 2) as well as the bus control signals (PSEN, and ALE). Figure 8-2 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 8-1 describes the external memory interface signals. 29 4337K–USB–04/08 Figure 8-2. External Code Memory Interface Structure Flash EPROM AT89C5130A AT89C5131 A15:8 P2 A15:8 ALE P0 AD7:0 Latch A7:0 A7:0 D7:0 PSEN Table 8-1. 8.1.2 OE External Data Memory Interface Signals Signal Name Type Alternate Function A15:8 O Address Lines Upper address lines for the external bus. P2.7:0 AD7:0 I/O Address/Data Lines Multiplexed lower address lines and data for the external memory. P0.7:0 ALE O Address Latch Enable ALE signals indicates that valid address information are available on lines AD7:0. - PSEN O Program Store Enable Output This signal is active low during external code fetch or external code read (MOVC instruction). - Description External Bus Cycles This section describes the bus cycles the AT89C5130A/31A-M executes to fetch code (see Figure 8-3) in the external program/code memory. External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock periods in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode (see the clock Section). For simplicity, the accompanying figure depicts the bus cycle waveforms in idealized form and do not provide precise timing information. Figure 8-3. External Code Fetch Waveforms CPU Clock ALE PSEN P0 D7:0 P2 PCH 30 PCL D7:0 PCH PCL D7:0 PCH AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 8.2 Flash Memory Architecture AT89C5130A/31A-M features two on-chip Flash memories: • Flash memory FM0: containing 32 Kbytes of program memory (user space) organized into 128-byte pages, • Flash memory FM1: 3 Kbytes for bootloader and Application Programming Interfaces (API). The FM0 supports both parallel programming and Serial In-System Programming (ISP) whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the “InSystem Programming” section. All Read/Write access operations on Flash memory by user application are managed by a set of API described in the “In-System Programming” section. Figure 8-4. Flash Memory Architecture 3 Kbytes Flash Memory Boot Space Hardware Security (1 Byte) Extra Row (128 Bytes) Column Latches (128 Bytes) FM1 3FFFh for AT89C5130A for 16 KB 16/32 KB FFFFh F400h FM1 mapped between FFFFh and F400h when bit ENBOOT is set in AUXR1 register Flash Memory User Space 7FFFh for AT89C5131A for 32 KB FM0 0000h 8.2.1 FM0 Memory Architecture The Flash memory is made up of 4 blocks (see Figure 8-4): 1. The memory array (user space) 32 Kbytes 2. The Extra Row 3. The Hardware security bits 4. The column latch registers 8.2.1.1 User Space This space is composed of a 16/32 Kbytes Flash memory organized in 128/256 pages of 128 bytes. It contains the user’s application code. 8.2.1.2 Extra Row (XRow) This row is a part of FM0 and has a size of 128 bytes. The extra row contains information for bootloader usage (see 9-3 “Software Registers” on page 41) 8.2.1.3 Hardware Security Space The hardware security space is a part of FM0 and has a size of 1 byte. The 4 MSB can be read/written by software. The 4 LSB can only be read by software and written by hardware in parallel mode. 31 4337K–USB–04/08 8.2.1.4 8.3 Column Latches The column latches, also part of FM0, have a size of full page (128 bytes). The column latches are the entrance buffers of the three previous memory locations (user array, XRow and Hardware security byte). Overview of FM0 Operations The CPU interfaces to the Flash memory through the FCON register and AUXR1 register. These registers are used to: • Map the memory spaces in the adressable space • Launch the programming of the memory spaces • Get the status of the Flash memory (busy/not busy) • Select the Flash memory FM0/FM1. 8.3.1 Mapping of the Memory Space By default, the user space is accessed by MOVC instruction for read only. The column latches space is made accessible by setting the FPS bit in FCON register. Writing is possible from 0000h to 3FFFH/7FFFh, address bits 6 to 0 are used to select an address within a page while bits 14 to 7 are used to select the programming address of the page. Setting this bit takes precedence on the EXTRAM bit in AUXR register. The other memory spaces (user, extra row, hardware security) are made accessible in the code segment by programming bits FMOD0 and FMOD1 in FCON register in accordance with Table 8-2. A MOVC instruction is then used for reading these spaces. Table 8-2. 8.3.2 32 FM0 Blocks Select Bits FMOD1 FMOD0 FM0 Adressable Space 0 0 User (0000h-FFFFh) 0 1 Extra Row(FF80h-FFFFh) 1 0 Hardware Security (0000h) 1 1 reserved Launching Programming FPL3:0 bits in FCON register are used to secure the launch of programming. A specific sequence must be written in these bits to unlock the write protection and to launch the programming. This sequence is 5 followed by A. Table 8-3 summarizes the memory spaces to program according to FMOD1:0 bits. AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 8-3. Programming Spaces Write to FCON FPL3:0 FPS FMOD1 FMOD0 Operation 5 X 0 0 No action A X 0 0 Write the column latches in user space 5 X 0 1 No action A X 0 1 Write the column latches in extra row space 5 X 1 0 No action A X 1 0 Write the fuse bits space 5 X 1 1 No action A X 1 1 No action User Extra Row Security Space Reserved The Flash memory enters a busy state as soon as programming is launched. In this state, the memory is not available for fetching code. Thus to avoid any erratic execution during programming, the CPU enters Idle mode. Exit is automatically performed at the end of programming. Note: 8.3.3 Interrupts that may occur during programming time must be disabled to avoid any spurious exit of the idle mode. Status of the Flash Memory The bit FBUSY in FCON register is used to indicate the status of programming. FBUSY is set when programming is in progress. 8.3.4 Selecting FM0/FM1 The bit ENBOOT in AUXR1 register is used to choose between FM0 and FM1 mapped up to F800h. 8.3.5 Loading the Column Latches Any number of data from 1 byte to 128 bytes can be loaded in the column latches. This provides the capability to program the whole memory by byte, by page or by any number of bytes in a page. When programming is launched, an automatic erase of the locations loaded in the column latches is first performed, then programming is effectively done. Thus, no page or block erase is needed and only the loaded data are programmed in the corresponding page. The following procedure is used to load the column latches and is summarized in Figure 8-5: • Map the column latch space by setting FPS bit. • Load the DPTR with the address to load. • Load Accumulator register with the data to load. • Execute the MOVX @DPTR, A instruction. • If needed loop the three last instructions until the page is completely loaded. 33 4337K–USB–04/08 Figure 8-5. Column Latches Loading Procedure Column Latches Loading Column Latches Mapping FPS = 1 Data Load DPTR = Address ACC = Data Exec: MOVX @DPTR, A Last Byte to load? Data memory Mapping FPS = 0 8.3.6 8.3.6.1 Programming the Flash Spaces User The following procedure is used to program the User space and is summarized in Figure 8-6: • Load data in the column latches from address 0000h to 7FFFh(1). • Disable the interrupts. • Launch the programming by writing the data sequence 50h followed by A0h in FCON register. The end of the programming indicated by the FBUSY flag cleared. • Enable the interrupts. Note: 8.3.6.2 1. The last page address used when loading the column latch is the one used to select the page programming address. Extra Row The following procedure is used to program the Extra Row space and is summarized in Figure 86: • Load data in the column latches from address FF80h to FFFFh. • Disable the interrupts. • Launch the programming by writing the data sequence 52h followed by A2h in FCON register. The end of the programming indicated by the FBUSY flag cleared. • Enable the interrupts. 34 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 8-6. Flash and Extra Row Programming Procedure Flash Spaces Programming Column Latches Loading see Figure 8-5 Disable IT EA = 0 Launch Programming FCON = 5xh FCON = Axh FBusy Cleared? Erase Mode FCON = 00h End Programming Enable IT EA = 1 8.3.6.3 Hardware Security The following procedure is used to program the Hardware Security space and is summarized in Figure 8-7: • Set FPS and map Hardware byte (FCON = 0x0C) • Disable the interrupts. • Load DPTR at address 0000h. • Load Accumulator register with the data to load. • Execute the MOVX @DPTR, A instruction. • Launch the programming by writing the data sequence 54h followed by A4h in FCON register. The end of the programming indicated by the FBusy flag cleared. • Enable the interrupts. 35 4337K–USB–04/08 Figure 8-7. Hardware Programming Procedure Flash Spaces Programming FCON = 0Ch Data Load DPTR = 00h ACC = Data Exec: MOVX @DPTR, A Disable IT EA = 0 Launch Programming FCON = 54h FCON = A4h FBusy Cleared? Erase Mode FCON = 00h End Programming Enable IT EA = 1 8.3.7 8.3.7.1 Reading the Flash Spaces User The following procedure is used to read the User space and is summarized in Figure 8-8: • Map the User space by writing 00h in FCON register. • Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR = 0000h to FFFFh. 8.3.7.2 Extra Row The following procedure is used to read the Extra Row space and is summarized in Figure 8-8: • Map the Extra Row space by writing 02h in FCON register. • Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR = FF80h to FFFFh. 36 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 8.3.7.3 Hardware Security The following procedure is used to read the Hardware Security space and is summarized in Figure 8-8: • Map the Hardware Security space by writing 04h in FCON register. • Read the byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR = 0000h. Figure 8-8. Reading Procedure Flash Spaces Reading Flash Spaces Mapping FCON = 00000xx0b Data Read DPTR = Address ACC = 0 Exec: MOVC A, @A+DPTR Erase Mode FCON = 00h 8.4 Registers Table 8-4. FCON (S:D1h) Flash Control Register 7 6 5 4 3 2 1 0 FPL3 FPL2 FPL1 FPL0 FPS FMOD1 FMOD0 FBUSY Bit Bit Number Mnemonic Description 7-4 FPL3:0 3 FPS 2-1 FMOD1:0 0 FBUSY Programming Launch Command Bits Write 5Xh followed by AXh to launch the programming according to FMOD1:0. (see Table 8-3.) Flash Map Program Space Set to map the column latch space in the data memory space. Clear to re-map the data memory space. Flash Mode See Table 8-2 or Table 8-3. Flash Busy Set by hardware when programming is in progress. Clear by hardware when programming is done. Can not be cleared by software. Reset Value = 0000 0000b 37 4337K–USB–04/08 9. Flash EEPROM Memory 9.1 General Description The Flash memory increases EPROM functionality with in-circuit electrical erasure and programming. It contains 16/32 Kbytes of program memory organized in 128/256 pages of 128 bytes, respectively. This memory is both parallel and serial In-System Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash. The programming does not require 12V external programming voltage. The necessary high programming voltage is generated on-chip using the standard VCC pins of the microcontroller. 9.2 Features • Flash EEPROM internal program memory. • Boot vector allows user-provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user. • Default loader in Boot EEPROM allows programming via the serial port without the need of a user provided loader. • Up to 64K bytes external program memory if the internal program memory is disabled (EA = 0). • Programming and erase voltage with standard power supply. • Read/Program/Erase: • Byte-wise read (without wait state). • Byte or page erase and programming (10 ms). • Typical programming time (32 Kbytes) in 4.5 sec. • Parallel programming with 87C51 compatible hardware interface to programmer. • Programmable security for the code in the Flash. • 100K write cycles for code memory • 1K write cycles for configuration bits (BLJB, X2, OSCON1, OSCON0) • 10 years data retention 9.3 Flash Programming and Erasure The 16/32 Kbytes Flash is programmed by bytes or by pages of 128 bytes. It is not necessary to erase a byte or a page before programming. The programming of a byte or a page includes a self erase before programming. There are three methods of programming the Flash memory: 1. The on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the USB. 2. The Flash may be programmed or erased in the end-user application by calling lowlevel routines through a common entry point in the Boot Flash. 3. The Flash may be programmed using the parallel method. The bootloader and the Application Programming Interface (API) routines are located in the Flash Bootloader. 38 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 9.4 Flash Registers and Memory Map The AT89C5130A/31A-M Flash memory uses several registers: • Hardware register can be accessed with a parallel programmer.Some bits of the hardware register can be changed, also, by API (i.e. X2 and BLJB bits of Hardware security Byte) or ISP. • Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called “Extra Flash Memory”, is not in the internal Flash program memory addressing space. 9.4.1 Hardware Registers The only hardware register of the AT89C5130A/31A-M is called Hardware Security Byte (HSB). Table 9-1. Hardware Security Byte (HSB) 7 6 5 4 3 2 1 0 X2 BLJB OSCON1 OSCON0 - LB2 LB1 LB0 Bit Bit Number Mnemonic 7 X2 Description X2 Mode Cleared to force X2 mode (6 clocks per instruction) Set to force X1 mode, Standard Mode (Default). Bootloader Jump Bit 6 BLJB Set this bit to start the user’s application on next reset at address 0000h. Cleared this bit to start the bootloader at address F400h (default). Oscillator Control Bits These two bits are used to control the oscillator in order to reduce consumption. 5-4 9.4.1.1 OSCON1 OSCON0 Description OSCON1-0 1 1 The oscillator is configured to run from 0 to 32 MHz 1 0 The oscillator is configured to run from 0 to 16 MHz 0 1 The oscillator is configured to run from 0 to 8 MHz 0 0 This configuration shouldn’t be set 3 - 2-0 LB2-0 Reserved User Memory Lock Bits See Table 9-2 Bootloader Jump Bit (BLJB) One bit of the HSB, the BLJB bit, is used to force the boot address: • When this bit is set the boot address is 0000h. • When this bit is reset the boot address is F400h. By default, this bit is cleared and the ISP is enabled. 9.4.1.2 Flash Memory Lock Bits The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 9-2. 39 4337K–USB–04/08 Table 9-2. Program Lock bits Program Lock Bits Notes: Security level LB0 LB1 LB2 Protection Description 1 U U U No program lock features enabled. 2 P U U MOVC instruction executed from external program memory is disabled from fetching code bytes from any internal memory, EA is sampled and latched on reset, and further parallel programming of the Flash and of the EEPROM (boot and Xdata) is disabled. ISP and software programming with API are still allowed. 3 X P U Same as 2, also verify through parallel programming interface is disabled and serial programming ISP is still allowed. 4 X X P Same as 3, also external execution is disabled. 1. U: unprogrammed or “one” level. 2. P: programmed or “zero” level. 3. X: don’t care 4. WARNING: Security level 2 and 3 should only be programmed after verification. These security bits protect the code access through the parallel programming interface. They are set by default to level 4. The code access through the ISP is still possible and is controlled by the “software security bits” which are stored in the extra Flash memory accessed by the ISP firmware. To load a new application with the parallel programmer, a chip erase must be done first. This will set the HSB in its inactive state and will erase the Flash memory. The part reference can always be read using Flash parallel programming modes. 9.4.1.3 Default Values The default value of the HSB provides parts ready to be programmed with ISP: • BLJB: Cleared to force ISP operation. • X2: Set to force X1 mode (Standard Mode) • OSCON1-0: Set to start with 32 MHz oscillator configuration value. • LB2-0: Security level four to protect the code from a parallel access with maximum security. 9.4.2 Software Registers Several registers are used, in factory and by parallel programmers, to make copies of hardware registers contents. These values are used by Atmel ISP (see Section “In-System Programming (ISP)”). These registers are in the “Extra Flash Memory” part of the Flash memory. This block is also called ”XAF” or eXtra Array Flash. They are accessed in the following ways: • Commands issued by the parallel memory programmer. • Commands issued by the ISP software. • Calls of API issued by the application software. Several software registers are described in Table 9-3. 40 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 9-3. Software Registers Address Mnemonic Description Default value 01 SBV Software Boot Vector FFh – 00 BSB Boot Status Byte 0FFh – 05 SSB Software Security Byte FFh – 30 – Copy of the Manufacturer Code 58h Atmel 31 – Copy of the Device ID #1: Family Code D7h C51 X2, Electrically Erasable 60 – Copy of the Device ID #2: Memories F7h AT89C5130A/31A-M 32 Kbyte 61 – Copy of the Device ID #3: Name DFh AT89C5130A/31A-M 32 Kbyte, revision 0 After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h. The content of the Software Security Byte (SSB) is described in Table 9-4 and Table 9-5. To assure code protection from a parallel access, the HSB must also be at the required level. Table 9-4. Software Security Byte (SSB) 7 6 5 4 3 2 1 0 - - - - - - LB1 LB0 Bit Bit Number Mnemonic 7 - Reserved Do not clear this bit. 6 - Reserved Do not clear this bit. 5 - Reserved Do not clear this bit. 4 - Reserved Do not clear this bit. 3 - Reserved Do not clear this bit. 2 - Reserved Do not clear this bit. 1-0 LB1-0 Description User Memory Lock Bits See Table 9-5 The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown to Table 9-5. 41 4337K–USB–04/08 Table 9-5. Program Lock Bits of the SSB Program Lock Bits Notes: Security Level LB0 LB1 1 U U No program lock features enabled. 2 P U ISP programming of the Flash is disabled. 3 P P Same as 2, also verify through ISP programming interface is disabled. Protection Description 1. U: unprogrammed or "one" level. 2. P: programmed or “zero” level. 3. WARNING: Security level 2 and 3 should only be programmed after Flash and code verification. 9.5 Flash Memory Status AT89C5130A/31A-M parts are delivered with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized in Figure 9-1: Figure 9-1. Flash Memory Possible Contents 3FFFh AT89C5130A-M 7FFFh AT89C5131A-M Virgin Application Virgin or Application Application Dedicated ISP Virgin or Application Virgin or Application Dedicated ISP 0000h Default 9.6 After ISP After ISP After parallel programming After parallel programming After parallel programming Memory Organization In the AT89C5130A/31A-M, the lowest 16/32K of the 64 Kbyte program memory address space is filled by internal Flash. When the EA is pin high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16/32K upward is automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory. If all storage is on chip, then byte location 3FFFh (16K) or 7FFFh (32K) should be left vacant to prevent and undesired pre-fetch from external program memory address 4000h (16K) or 8000h (32K). 42 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 10. EEPROM Data Memory 10.1 Description The 1-Kbyte on-chip EEPROM memory block is located at addresses 0000h to 03FFh of the ERAM memory space and is selected by setting control bits in the EECON register. A read in the EEPROM memory is done with a MOVX instruction. A physical write in the EEPROM memory is done in two steps: write data in the column latches and transfer of all data latches into an EEPROM memory row (programming). The number of data written on the page may vary from 1 to 128 bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to obtain this feature. This provides the capability to program the whole memory by bytes, by page or by a number of bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row. 10.2 Write Data in the Column Latches Data is written by byte to the column latches as for an external RAM memory. Out of the 11 address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for byte selection. Between two EEPROM programming sessions, all the addresses in the column latches must stay on the same page, meaning that the 4 MSB must not be changed. The following procedure is used to write to the column latches: • Set bit EEE of EECON register • Load DPTR with the address to write • Store A register with the data to be written • Execute a MOVX @DPTR, A • If needed, loop the three last instructions until the end of a 128 bytes page 10.3 Programming The EEPROM programming consists on the following actions: • Writing one or more bytes of one page in the column latches. Normally, all bytes must belong to the same page; if not, the first page address will be latched and the others discarded. • Launching programming by writing the control sequence (52h followed by A2h) to the EECON register. • EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading. • The end of programming is indicated by a hardware clear of the EEBUSY flag. 10.4 Read Data The following procedure is used to read the data stored in the EEPROM memory: • Set bit EEE of EECON register • Stretch the MOVX to accommodate the slow access time of the column latch (Set bit M0 of AUXR register) • Load DPTR with the address to read • Execute a MOVX A, @DPTR 43 4337K–USB–04/08 10.5 Registers Table 10-1. EECON (S:0D2h) EECON Register 7 6 5 4 3 2 1 0 EEPL3 EEPL2 EEPL1 EEPL0 - - EEE EEBUSY Bit Number Bit Mnemonic 7-4 EEPL3-0 Programming Launch command bits Write 5Xh followed by AXh to EEPL to launch the programming. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 - Reserved The value read from this bit is indeterminate. Do not set this bit. 1 0 EEE EEBUSY Description Enable EEPROM Space bit Set to map the EEPROM space during MOVX instructions (Write in the column latches) Clear to map the ERAM space during MOVX. Programming Busy flag Set by hardware when programming is in progress. Cleared by hardware when programming is done. Cannot be set or cleared by software. Reset Value = XXXX XX00b Not bit addressable 44 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 11. In-System Programming (ISP) With the implementation of the User Space (FM0) and the Boot Space (FM1) in Flash technology the AT89C5130A/31A-M allows the system engineer the development of applications with a very high level of flexibility. This flexibility is based on the possibility to alter the customer program at any stages of a product’s life: • Before mounting the chip on the PCB, FM0 flash can be programmed with the application code. FM1 is always preprogrammed by Atmel with a USB bootloader.(1) • Once the chip is mounted on the PCB, it can be programmed by serial mode via the USB bus. Note: 1. The user can also program his own bootloader in FM1. This ISP allows code modification over the total lifetime of the product. Besides the default Bootloaders Atmel provide customers all the needed Application-Programming-Interfaces (API) which are needed for the ISP. The API are located in the Boot memory. This allow the customer to have a full use of the 32-Kbyte user memory. 11.1 Flash Programming and Erasure There are three methods for programming the Flash memory: • The Atmel bootloader located in FM1 is activated by the application. Low level API routines (located in FM1)will be used to program FM0. The interface used for serial downloading to FM0 is the USB. API can be called also by user’s bootloader located in FM0 at [SBV]00h. • A further method exist in activating the Atmel boot loader by hardware activation. See the Section “Hardware Registers”. • The FM0 can be programmed also by the parallel mode using a programmer. 45 4337K–USB–04/08 Figure 11-1. Flash Memory Mapping FFFFh F400h 3FFFh 7FFFh Custom Bootloader [SBV]00h Custom Bootloader 32K Bytes Flash Memory Flash Memory FM0 0000h FM0 0000h C5130A 11.2.1 FM1 Mapped between F400h and FFFFh when API Called [SBV]00h 16K Bytes 11.2 3K Bytes IAP Bootloader FM1 C5131A Boot Process Software Boot Process Example Many algorithms can be used for the software boot process. Below are descriptions of the different flags and Bytes. Boot Loader Jump bit (BLJB): - This bit indicates if on RESET the user wants to jump to this application at address @0000h on FM0 or execute the boot loader at address @F400h on FM1. - BLJB = 0 (i.e. bootloader FM1 executed after a reset) is the default Atmel factory programming. -To read or modify this bit, the APIs are used. Boot Vector Address (SBV): - This byte contains the MSB of the user boot loader address in FM0. - The default value of SBV is FFh (no user boot loader in FM0). - To read or modify this byte, the APIs are used. Extra Byte (EB) & Boot Status Byte (BSB): - These Bytes are reserved for customer use. - To read or modify these Bytes, the APIs are used. 46 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 11-2. Hardware Boot Process Algorithm bit ENBOOT in AUXR1 Register Is Initialized with BLJB Inverted. RESET Hardware Example, if BLJB=0, ENBOOT is set (=1) during reset, thus the bootloader is executed after the reset. ENBOOT = 0 PC = 0000h BLJB == 0 ? Software ENBOOT = 1 PC = F400h 11.3 Application in FM0 Bootloader in FM1 Application-Programming-Interface Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made by functions. All these APIs are described in detail in the following document on the Atmel web site. – Datasheet Bootloader USB AT89C5131. 11.4 XROW Bytes The EXTRA ROW (XROW) includes 128 bytes. Some of these bytes are used for specific purpose in conjonction with the bootloader. Table 11-1. XROW Mapping Description Default Value Address Copy of the Manufacturer Code 58h 30h Copy of the Device ID#1: Family code D7h 31h Copy of the Device ID#2: Memories size and type BBh 60h 47 4337K–USB–04/08 Description Copy of the Device ID#3: Name and Revision 11.5 Default Value Address FFh 61h Hardware Conditions It is possible to force the controller to execute the bootloader after a Reset with hardware conditions. Depending on the product type (low pin count or high pin count package), there are two methods to apply the hardware conditions. 11.5.1 High Pin Count Hardware Conditions (PLCC52, QFP64) For high pin count packages, the hardware conditons (EA = 1, PSEN = 0) are sampled during the RESET rising edge to force the on-chip bootloader execution (See Figure 27-5 on page 172). In this way the bootloader can be carried out regardless of the user Flash memory content. It is recommended to pull the PSEN pin down to ground though a 1K resistor to prevent the PSEN pin from being damaged (see Figure 11-3 below). Figure 11-3. ISP Hardware conditions VCC VCC VCC EA ALE Unconnected C2 RST XTAL2 Bootloader GND Crystal XTAL1 /PSEN GND C1 1K GND GND VSS GND As PSEN is an output port in normal operating mode (running user application or bootloader code) after reset, it is recommended to release PSEN after rising edge of reset signal. To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on (see Figure 11-4 below). 48 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 11-4. Hardware conditions typical sequence during power-on. VCC PSEN RST 11.5.2 Low Pin Count Hardware Conditions (QFN32) Low pin count products do not have PSEN signal, thus for these products, the bootloader is always executed after reset thanks to the BLJB bit. The Hardware Condition are detected at the begining of the bootloader execution from reset. The default factory Hardware Condition is assigned to port P1. • P1 must be equal to FEh In order to offer the best flexibility, the user can define its own Hardware Condition on one of the following Ports: • Port1 • Port3 • Port4 (only bit0 and bit1) The Hardware Condition configuration are stored in three bytes called P1_CF, P3_CF, P4_CF. These bytes can be modified by the user through a set of API or through an ISP command. Note: 1. The BLJB must be at 0 (programmed) to be able to restart the bootloader. 2. BLJB can always be changed by the means of API, whether it's a low or high pin count package.But for a low pin count version, if BLJB=1, no ISP via the Bootloader is further possible (because the HW conditions are never evaluated, as described in the USB Bootloader Datasheet). To go back to ISP, BLJB needs to be changed by a parallel programmer(or by the APIs). See a detailed description in the applicable Document. – Datasheet Bootloader USB AT89C5131. 49 4337K–USB–04/08 12. On-chip Expanded RAM (ERAM) The AT89C5130A/31A-M provides additional Bytes of random access memory (RAM) space for increased data parameters handling and high level language usage. AT89C5130A/31A-M devices have expanded RAM in external data space; maximum size and location are described in Table 12-1. Table 12-1. Description of Expanded RAM Address Part Number ERAM Size Start End AT89C5130A/31A-M 1024 00h 3FFh The AT89C5130A/31A-M has on-chip data memory which is mapped into the following four separate segments. 1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable. 2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only. 3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly addressable only. 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register (see Table 12-1) The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space. Figure 12-1. Internal and External Data Memory Address 0FFh or 3FFh(*) 0FFh 0FFh Upper 128 bytes Internal RAM indirect accesses ERAM 80h 0FFFFh Special Function Register direct accesses External Data Memory 80h 7Fh Lower 128 bytes Internal RAM direct or indirect accesses 00 00 00FFh up to 03FFh (*) 0000 (*) Depends on XRS1..0 When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. 50 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M • Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0h (which is P2). • Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV atR0, # data where R0 contains 0A0h, accesses the data byte at address 0A0h, rather than P2 (whose address is 0A0h). • The ERAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a part of the available ERAM as explained in Table 12-1. This can be useful if external peripherals are mapped at addresses already used by the internal ERAM. • With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX atR0, # data where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than the accessible size of the ERAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Accesses to ERAM above 0FFH can only be done by the use of DPTR. • With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX at Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the highorder eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX at Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD). The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM. The M0 bit allows to stretch the ERAM timings; if M0 is set, the read and write pulses are extended from 6 to 30 clock periods. This is useful to access external slow peripherals. Table 12-2. AUXR Register AUXR - Auxiliary Register (8Eh) 7 6 5 4 3 2 1 0 DPU - M0 - XRS1 XRS0 EXTRAM AO Bit Bit Number Mnemonic 7 DPU 6 - Description Disable Weak Pull Up Cleared to enabled weak pull up on standard Ports. Set to disable weak pull up on standard Ports. Reserved The value read from this bit is indeterminate. Do not set this bit 51 4337K–USB–04/08 Bit Bit Number Mnemonic Description Pulse length 5 M0 Cleared to stretch MOVX control: the RD and the WR pulse length is 6 clock periods (default). Set to stretch MOVX control: the RD and the WR pulse length is 30 clock periods. 4 - 3 XRS1 2 1 XRS0 EXTRAM Reserved The value read from this bit is indeterminate. Do not set this bit ERAM Size XRS1XRS0 0 0 ERAM size 256 bytes 0 1 512 bytes 1 0 768 bytes 1 1 1024 bytes (default) EXTRAM bit Cleared to access internal ERAM using MOVX at Ri at DPTR. Set to access external memory. 0 AO ALE Output bit Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used) (default). Set, ALE is active only when a MOVX or MOVC instruction is used. Reset Value = 0X0X 1100b Not bit addressable 52 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 13. Timer 2 The Timer 2 in the AT89C5130A/31A-M is the standard C52 Timer 2. It is a 16-bit timer/counter: the count is maintained by two cascaded eight-bit timer registers, TH2 and TL2. It is controlled by T2CON (Table 13-1) and T2MOD (Table 13-2) registers. Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects FOSC/12 (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input. Timer 2 has 3 operating modes: capture, auto reload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON). Refer to the Atmel 8-bit microcontroller hardware documentation for the description of Capture and Baud Rate Generator Modes. Timer 2 includes the following enhancements: • Auto-reload mode with up or down counter • Programmable Clock-output 13.1 Auto-reload Mode The Auto-reload mode configures Timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel 8-bit microcontroller hardware description). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 13-1. In this mode the T2EX pin controls the direction of count. When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2. When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers. The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution. 53 4337K–USB–04/08 Figure 13-1. Auto-reload Mode Up/Down Counter (DCEN = 1) FCLK PERIPH :6 0 1 T2 C/T2 TR2 T2CON T2CON (DOWN COUNTING RELOAD VALUE) T2EX: FFh (8-bit) FFh (8-bit) if DCEN = 1, 1 = UP if DCEN = 1, 0 = DOWN if DCEN = 0, up counting TOGGLE T2CON EXF2 TL2 (8-bit) TH2 (8-bit) TF2 T2CON RCAP2L (8-bit) Timer 2 INTERRUPT RCAP2H (8-bit) (UP COUNTING RELOAD VALUE) 13.2 Programmable Clock Output In the Clock-out mode, Timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 13-2). The input clock increments TL2 at frequency FCLK PERIPH/2. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The following formula gives the Clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers F CLKPERIPH Clock – OutFrequency = ---------------------------------------------------------------------------------------4 × ( 65536 – RCAP2H ⁄ RCAP2L ) For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz (FCLK PERIPH/216) to 4 MHz (FCLK PERIPH/4). The generated clock signal is brought out to T2 pin (P1.0). Timer 2 is programmed for the Clock-out mode as follows: • Set T2OE bit in T2MOD register. • Clear C/T2 bit in T2CON register. • Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers. • Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application. • To start the timer, set TR2 run control bit in T2CON register. 54 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers. Figure 13-2. Clock-out Mode C/T2 = 0 FCLK PERIPH TR2 T2CON TL2 (8-bit) TH2 (8-bit) OVERFLOW RCAP2L (8-bit) RCAP2H (8-bit) Toggle T2 Q D T2OE T2MOD T2EX EXF2 EXEN2 T2CON Timer 2 INTERRUPT T2CON 55 4337K–USB–04/08 Table 13-1. T2CON Register T2CON - Timer 2 Control Register (C8h) 7 6 5 4 3 2 1 0 TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2# Bit Bit Number Mnemonic 7 TF2 Description Timer 2 overflow Flag Must be cleared by software. Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0. 6 EXF2 Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2 = 1. When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode (DCEN = 1). 5 RCLK Receive Clock bit Cleared to use Timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3. 4 TCLK Transmit Clock bit Cleared to use Timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3. 3 EXEN2 2 TR2 1 0 Timer 2 External Enable bit Cleared to ignore events on T2EX pin for Timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if Timer 2 is not used to clock the serial port. Timer 2 Run control bit Cleared to turn off Timer 2. Set to turn on Timer 2. C/T2# Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: FCLK PERIPH). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode. CP/RL2# Timer 2 Capture/Reload bit If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to Auto-reload on Timer 2 overflow. Cleared to Auto-reload on Timer 2 overflows or negative transitions on T2EX pin if EXEN2 = 1. Set to capture on negative transitions on T2EX pin if EXEN2 = 1. Reset Value = 0000 0000b Bit addressable 56 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 13-2. T2MOD Register T2MOD - Timer 2 Mode Control Register (C9h) 7 6 5 4 3 2 1 0 - - - - - - T2OE DCEN Bit Bit Number Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 - Reserved The value read from this bit is indeterminate. Do not set this bit. 1 T2OE Timer 2 Output Enable bit Cleared to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output. 0 DCEN Down Counter Enable bit Cleared to disable Timer 2 as up/down counter. Set to enable Timer 2 as up/down counter. Description Reset Value = XXXX XX00b Not bit addressable 57 4337K–USB–04/08 14. Programmable Counter Array (PCA) The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals: ÷6 • Peripheral clock frequency (FCLK PERIPH) ÷ 2 • Peripheral clock frequency (FCLK PERIPH) • Timer 0 overflow • External input on ECI (P1.2) Each compare/capture modules can be programmed in any one of the following modes: • rising and/or falling edge capture, • software timer • high-speed output, or • pulse width modulator Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer", page 68). When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector. The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O. PCA Component External I/O Pin 16-bit Counter P1.2/ECI 16-bit Module 0 P1.3/CEX0 16-bit Module 1 P1.4/CEX1 16-bit Module 2 P1.5/CEX2 16-bit Module 3 P1.6/CEX3 16-bit Module 4 P1.7/CEX4 The PCA timer is a common time base for all five modules (see Figure 14-1). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 14-1) and can be programmed to run at: • 1/6 the peripheral clock frequency (FCLK PERIPH). • 1/2 the peripheral clock frequency (FCLK PERIPH). • The Timer 0 overflow • The input on the ECI pin (P1.2) 58 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 14-1. PCA Timer/Counter To PCA modules FCLK PERIPH/6 overflow FCLK PERIPH/2 CH T0 OVF It CL 16 Bit Up Counter P1.2 CIDL WDTE CF CR CPS1 CPS0 ECF CMOD 0xD9 CCF2 CCF1 CCF0 CCON 0xD8 Idle Table 14-1. CCF4 CCF3 CMOD Register CMOD - PCA Counter Mode Register (D9h) 7 6 5 4 3 2 1 0 CIDL WDTE - - - CPS1 CPS0 ECF Bit Bit Number Mnemonic 7 CIDL Description Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle. Watchdog Timer Enable 6 WDTE Cleared to disable Watchdog Timer function on PCA Module 4. Set to enable Watchdog Timer function on PCA Module 4. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 CPS1 1 CPS0 0 ECF PCA Count Pulse Select CPS1CPS0 0 0 Selected PCA input Internal clock fCLK PERIPH/6 0 1 1 Internal clock fCLK PERIPH/2 Timer 0 Overflow External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/ 4) 1 0 1 PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt. 59 4337K–USB–04/08 Reset Value = 00XX X000b Not bit addressable The CMOD register includes three additional bits associated with the PCA (See Figure 14-1 and Table 14-1). • The CIDL bit allows the PCA to stop during idle mode. • The WDTE bit enables or disables the watchdog function on module 4. • The ECF bit when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows. The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (see Table 14-2). • Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit. • Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software. • Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags can only be cleared by software. Table 14-2. CCON Register CCON - PCA Counter Control Register (D8h) 7 6 5 4 3 2 1 0 CF CR – CCF4 CCF3 CCF2 CCF1 CCF0 Bit Bit Number Mnemonic 7 CF 6 CR 5 – 4 CCF4 3 CCF3 2 CCF2 Description PCA Counter Overflow flag Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software. PCA Counter Run control bit Must be cleared by software to turn the PCA counter off. Set by software to turn the PCA counter on. Reserved The value read from this bit is indeterminate. Do not set this bit. PCA Module 4 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs. PCA Module 3 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs. PCA Module 2 interrupt flag 60 Must be cleared by software. Set by hardware when a match or capture occurs. AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Bit Number Mnemonic 1 CCF1 0 CCF0 Description PCA Module 1 Interrupt Flag Must be cleared by software. Set by hardware when a match or capture occurs. PCA Module 0 Interrupt Flag Must be cleared by software. Set by hardware when a match or capture occurs. Reset Value = 000X 0000b Not bit addressable The watchdog timer function is implemented in module 4 (See Figure 14-4). The PCA interrupt system is shown in Figure 14-2. Figure 14-2. PCA Interrupt System CF CR CCF4 CCF3 CCF2 CCF1 CCF0 CCON 0xD8 PCA Timer/Counter Module 0 Module 1 To Interrupt priority decoder Module 2 Module 3 Module 4 CMOD.0 ECF ECCFn CCAPMn.0 IE.6 EC IE.7 EA PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform: • 16-bit capture, positive-edge triggered • 16-bit capture, negative-edge triggered • 16-bit capture, both positive and negative-edge triggered • 16-bit Software Timer • 16-bit High-speed Output • 8-bit Pulse Width Modulator In addition, module 4 can be used as a Watchdog Timer. Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (see Table 14-3). The registers contain the bits that control the mode that each module will operate in. 61 4337K–USB–04/08 • The ECCF bit (CCAPMn.0 where n = 0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module. • PWM (CCAPMn.1) enables the pulse width modulation mode. • The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register. • The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register. • The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition. • The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function. Table 14-4 shows the CCAPMn settings for the various PCA functions. Table 14-3. CCAPMn Registers (n = 0-4) CCAPM0 - PCA Module 0 Compare/Capture Control Register (0DAh) CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh) CCAPM2 - PCA Module 2 Compare/Capture Control Register (0DCh) CCAPM3 - PCA Module 3 Compare/Capture Control Register (0DDh) CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh) 7 6 5 4 3 2 1 0 - ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn Bit Bit Number Mnemonic 7 - 6 ECOMn Description Reserved The value read from this bit is indeterminate. Do not set this bit. Enable Comparator Cleared to disable the comparator function. Set to enable the comparator function. Capture Positive 5 CAPPn 4 CAPNn Cleared to disable positive edge capture. Set to enable positive edge capture. Capture Negative Cleared to disable negative edge capture. Set to enable negative edge capture. Match 3 MATn When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt. Toggle 2 62 TOGn When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle. AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Bit Number Mnemonic 1 PWMn Description Pulse Width Modulation Mode Cleared to disable the CEXn pin to be used as a pulse width modulated output. Set to enable the CEXn pin to be used as a pulse width modulated output. Enable CCF Interrupt 0 ECCFn Cleared to disable compare/capture flag CCFn in the CCON register to generate an interrupt. Set to enable compare/capture flag CCFn in the CCON register to generate an interrupt. Reset Value = X000 0000b Not bit addressable Table 14-4. PCA Module Modes (CCAPMn Registers) ECOMn CAPPn CAPNn MATn TOGn PWMm ECCFn Module Function 0 0 0 0 0 0 0 No Operation X 1 0 0 0 0 X 16-bit capture by a positive-edge trigger on CEXn X 0 1 0 0 0 X 16-bit capture by a negative trigger on CEXn X 1 1 0 0 0 X 16-bit capture by a transition on CEXn 1 0 0 1 0 0 X 16-bit Software Timer/Compare mode. 1 0 0 1 1 0 X 16-bit High Speed Output 1 0 0 0 0 1 0 8-bit PWM 1 0 0 1 X 0 X Watchdog Timer (module 4 only) There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (see Table 14-5 and Table 14-6) Table 14-5. CCAPnH Registers (n = 0-4) CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh) CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh) CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh) CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh) CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh) 7 6 5 4 3 2 1 0 - - - - - - - - Bit Bit Number Mnemonic 7-0 - Description PCA Module n Compare/Capture Control CCAPnH Value 63 4337K–USB–04/08 Reset Value = XXXX XXXXb Not bit addressable Table 14-6. CCAPnL Registers (n = 0-4) CCAP0L - PCA Module 0 Compare/Capture Control Register Low (0EAh) CCAP1L - PCA Module 1 Compare/Capture Control Register Low (0EBh) CCAP2L - PCA Module 2 Compare/Capture Control Register Low (0ECh) CCAP3L - PCA Module 3 Compare/Capture Control Register Low (0EDh) CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh) 7 6 5 4 3 2 1 0 - - - - - - - - Bit Bit Number Mnemonic 7-0 - Description PCA Module n Compare/Capture Control CCAPnL Value Reset Value = XXXX XXXXb Not bit addressable Table 14-7. CH Register CH - PCA Counter Register High (0F9h) 7 6 5 4 3 2 1 0 - - - - - - - - Bit Bit Number Mnemonic Description 7-0 - PCA counter CH Value Reset Value = 0000 0000b Not bit addressable Table 14-8. CL Register CL - PCA Counter Register Low (0E9h) 7 6 5 4 3 2 1 0 - - - - - - - - Bit Bit Number Mnemonic 7-0 - Description PCA Counter CL Value Reset Value = 0000 0000b Not bit addressable 64 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 14.1 PCA Capture Mode To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (see Figure 14-3). Figure 14-3. PCA Capture Mode CF CR CCF4 CCF3 CCF2 CCF1 CCF0 CCON 0xD8 PCA IT PCA Counter/Timer Cex.n CH CL CCAPnH CCAPnL Capture ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CCAPMn, n = 0 to 4 0xDA to 0xDE 14.2 16-bit Software Timer/Compare Mode The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (see Figure 14-4). 65 4337K–USB–04/08 Figure 14-4. PCA Compare Mode and PCA Watchdog Timer CCON CF Write to CCAPnL CR CCF4 CCF3 CCF2 CCF1 CCF0 0xD8 Reset PCA IT Write to CCAPnH 1 CCAPnH 0 CCAPnL Enable Match 16-bit Comparator CH RESET(1) CL PCA Counter/Timer ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CIDL Note: WDTE CPS1 CPS0 ECF CCAPMn, n = 0 to 4 0xDA to 0xDE CMOD 0xD9 1. Only for Module 4 Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit. Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register. 14.3 High Speed Output Mode In this mode, the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see Figure 14-5). A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit. 66 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 14-5. PCA High-speed Output Mode CCON CF CR CCF4 CCF3 CCF2 CCF1 CCF0 0xD8 Write to CCAPnL Reset PCA IT Write to CCAPnH 1 CCAPnH 0 CCAPnL Enable 16-bit Comparator CH Match CL CEXn PCA counter/timer ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CCAPMn, n = 0 to 4 0xDA to 0xDE Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register. 14.4 Pulse Width Modulator Mode All of the PCA modules can be used as PWM outputs. Figure 14-6 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode. 67 4337K–USB–04/08 Figure 14-6. PCA PWM Mode CCAPnH Overflow CCAPnL “0” Enable 8-bit Comparator CEXn < ≥ “1” CL PCA Counter/Timer ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CCAPMn, n = 0 to 4 0xDA to 0xDE 14.5 PCA Watchdog Timer An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 14-4 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven low. In order to hold off the reset, the user has three options: 1. Periodically change the compare value so it will never match the PCA timer 2. Periodically change the PCA timer value so it will never match the compare values, or 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then reenable it The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option. This watchdog timer won’t generate a reset out on the reset pin. 68 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 15. Serial I/O Port The serial I/O port in the AT89C5130A/31A-M is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates. Serial I/O port includes the following enhancements: • Framing error detection • Automatic address recognition 15.1 Framing Error Detection Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (see Figure 151). Figure 15-1. Framing Error Block Diagram SM0/FE SM1 SM2 REN TB8 RB8 TI RI SCON (98h) Set FE Bit if Stop Bit is 0 (framing error) (SMOD0 = 1) SM0 to UART Mode Control (SMOD0 = 0) SMOD1 SMOD0 - POF GF1 GF0 PD PCON (87h) IDL To UART Framing Error Control When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 15-1) bit is set. Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 15-2 and Figure 15-3). Figure 15-2. UART Timings in Mode 1 RXD D0 Start Bit D1 D2 D3 D4 Data Byte D5 D6 D7 Stop Bit RI SMOD0 = X FE SMOD0 = 1 69 4337K–USB–04/08 Figure 15-3. UART Timings in Modes 2 and 3 RXD D0 Start Bit D1 D2 D3 D4 Data Byte D5 D6 D7 D8 Ninth Stop Bit Bit RI SMOD0 = 0 RI SMOD0 = 1 FE SMOD0 = 1 15.2 Automatic Address Recognition The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set). Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices. If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device’s address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address. Note: 15.2.1 The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e., setting SM2 bit in SCON register in mode 0 has no effect). Given Address Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don’t care bits (defined by zeros) to form the device’s given address. The don’t care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed. To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example: SADDR0101 0110b SADEN1111 1100b Given0101 01XXb The following is an example of how to use given addresses to address different slaves: Slave A:SADDR1111 0001b SADEN1111 1010b Given1111 0X0Xb Slave B:SADDR1111 0011b SADEN1111 1001b Given1111 0XX1b 70 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Slave C:SADDR1111 0011b SADEN1111 1101b Given1111 00X1b The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don’t care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b). To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b). 15.2.2 Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don’t care bits, e.g.: SADDR0101 0110b SADEN1111 1100b Broadcast = SADDR OR SADEN1111 111Xb The use of don’t care bits provides flexibility in defining the broadcast address, in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses: Slave A:SADDR1111 0001b SADEN1111 1010b Broadcast1111 1X11b, Slave B:SADDR1111 0011b SADEN1111 1001b Broadcast1111 1X11B, Slave C:SADDR = 1111 0011b SADEN1111 1101b Broadcast1111 1111b For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh. 15.2.3 Reset Addresses On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXXb (all don’t care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition. 71 4337K–USB–04/08 SADEN - Slave Address Mask Register (B9h) 7 6 5 4 3 2 1 0 4 3 2 1 0 Reset Value = 0000 0000b Not bit addressable SADDR - Slave Address Register (A9h) 7 6 5 Reset Value = 0000 0000b Not bit addressable 15.3 Baud Rate Selection for UART for Mode 1 and 3 The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON registers. Figure 15-4. Baud Rate Selection TIMER1 TIMER2 0 TIMER_BRG_RX 0 1 / 16 Rx Clock 1 RCLK RBCK INT_BRG TIMER1 TIMER2 0 1 TIMER_BRG_TX 0 1 / 16 Tx Clock TCLK INT_BRG 72 TBCK AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 15.3.1 15.3.2 Baud Rate Selection Table for UART TCLK RCLK TBCK RBCK Clock Source Clock Source (T2CON) (T2CON) (BDRCON) (BDRCON) UART Tx UART Rx 0 0 0 0 Timer 1 Timer 1 1 0 0 0 Timer 2 Timer 1 0 1 0 0 Timer 1 Timer 2 1 1 0 0 Timer 2 Timer 2 X 0 1 0 INT_BRG Timer 1 X 1 1 0 INT_BRG Timer 2 0 X 0 1 Timer 1 INT_BRG 1 X 0 1 Timer 2 INT_BRG X X 1 1 INT_BRG INT_BRG Internal Baud Rate Generator (BRG) When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG overflow depending on the BRL reload value, the value of SPD bit (Speed Mode) in BDRCON register and the value of the SMOD1 bit in PCON register. Figure 15-5. Internal Baud Rate Peripheral Clock auto reload counter overflow BRG 0 /6 /2 0 1 INT_BRG 1 BRL SPD SMOD1 BRR • The baud rate for UART is token by formula: 2SMOD1 x FCLK PERIPH Baud_Rate = 2x6 (1-SPD) 2SMOD1 x FCLK PERIPH (BRL) = 256 2x6 Table 15-1. x 16 x [256 - (BRL)] (1-SPD) x 16 x Baud_Rate SCON Register – SCON Serial Control Register (98h) 7 6 5 4 3 2 1 0 FE/SM0 SM1 SM2 REN TB8 RB8 TI RI 73 4337K–USB–04/08 Bit Bit Number Mnemonic FE Description Framing Error bit (SMOD0 = 1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit 7 SM0 Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit 6 SM1 Serial port Mode bit 1 SM0SM1Mode DescriptionBaud Rate 0 0 0 Shift RegisterFCPU PERIPH/6 0 1 1 8-bit UARTVariable 1 0 2 9-bit UARTFCPU PERIPH/32 or/16 1 1 3 9-bit UARTVariable 5 SM2 Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0. 4 REN Reception Enable bit Clear to disable serial reception. Set to enable serial reception. 3 TB8 Transmitter Bit 8/Ninth bit to Transmit in Modes 2 and 3 2 RB8 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit. Receiver Bit 8/Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used. 1 0 TI Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes. RI Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 15-2. and Figure 153. in the other modes. Reset Value = 0000 0000b Bit addressable 74 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Example of computed value when X2 = 1, SMOD1 = 1, SPD = 1 FOSC = 16.384 MHz Baud Rates FOSC = 24 MHz BRL Error (%) BRL Error (%) 115200 247 1.23 243 0.16 57600 238 1.23 230 0.16 38400 229 1.23 217 0.16 28800 220 1.23 204 0.16 19200 203 0.63 178 0.16 9600 149 0.31 100 0.16 4800 43 1.23 - - Example of computed value when X2 = 0, SMOD1 = 0, SPD = 0 FOSC = 16.384 MHz FOSC = 24 MHz Baud Rates BRL Error (%) BRL Error (%) 4800 247 1.23 243 0.16 2400 238 1.23 230 0.16 1200 220 1.23 202 3.55 600 185 0.16 152 0.16 The baud rate generator can be used for mode 1 or 3 (refer to Figure 15-4.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 15-4.) 15.4 UART Registers SADEN - Slave Address Mask Register for UART (B9h) 7 6 5 4 3 2 1 0 – – – – – – – – Reset Value = 0000 0000b SADDR - Slave Address Register for UART (A9h) 7 6 5 4 3 2 1 0 – – – – – – – – Reset Value = 0000 0000b SBUF - Serial Buffer Register for UART (99h) 7 6 5 4 3 2 1 0 – – – – – – – – Reset Value = XXXX XXXXb 75 4337K–USB–04/08 BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah) 7 6 5 4 3 2 1 0 – – – – – – – – Reset Value = 0000 0000b Table 15-2. T2CON Register T2CON - Timer 2 Control Register (C8h) 7 6 5 4 3 2 1 0 TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2# Bit Bit Number Mnemonic 7 TF2 Description Timer 2 overflow Flag Must be cleared by software. Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0. 6 EXF2 Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2 = 1. When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode (DCEN = 1) 5 RCLK Receive Clock bit for UART Cleared to use Timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3. 4 TCLK Transmit Clock bit for UART Cleared to use Timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3. Timer 2 External Enable bit Cleared to ignore events on T2EX pin for Timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if Timer 2 is not used to clock the serial port. 3 EXEN2 2 TR2 1 C/T2# Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: FCLK PERIPH). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode. CP/RL2# Timer 2 Capture/Reload bit If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to Auto-reload on Timer 2 overflow. Cleared to Auto-reload on Timer 2 overflows or negative transitions on T2EX pin if EXEN2 = 1. Set to capture on negative transitions on T2EX pin if EXEN2 = 1. 0 Timer 2 Run control bit Cleared to turn off Timer 2. Set to turn on Timer 2. Reset Value = 0000 0000b Bit addressable 76 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 15-3. PCON Register PCON - Power Control Register (87h) 7 6 5 4 3 2 1 0 SMOD1 SMOD0 - POF GF1 GF0 PD IDL Bit Bit Number Mnemonic 7 SMOD1 6 SMOD0 5 - Description Serial port Mode bit 1 for UART Set to select double baud rate in mode 1, 2 or 3. Serial port Mode bit 0 for UART Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register. Reserved The value read from this bit is indeterminate. Do not set this bit. 4 POF Power-Off Flag Cleared to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. 3 GF1 General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage. 2 GF0 General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage. 1 PD Power-down Mode Bit Cleared by hardware when reset occurs. Set to enter power-down mode. 0 IDL Idle Mode Bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode. Reset Value = 00X1 0000b Not bit addressable Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect the value of this bit. Table 15-4. BDRCON Register BDRCON - Baud Rate Control Register (9Bh) 7 6 5 4 3 2 1 0 - - - BRR TBCK RBCK SPD SRC 77 4337K–USB–04/08 Bit Number Bit Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit 6 - Reserved The value read from this bit is indeterminate. Do not set this bit 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 BRR Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator. 3 TBCK Transmission Baud rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator. 2 RBCK Reception Baud Rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator. 1 SPD 0 SRC Description Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator. Baud Rate Source select bit in Mode 0 for UART Cleared to select FOSC/12 as the Baud Rate Generator (FCLK PERIPH/6 in X2 mode). Set to select the internal Baud Rate Generator for UARTs in mode 0. Reset Value = XXX0 0000b Not bit addressable 78 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 16. Interrupt System 16.1 Overview The AT89C5130A/31A-M has a total of 11 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt, USB interrupt and the PCA global interrupt. These interrupts are shown in Figure 16-1. Figure 16-1. Interrupt Control System High priority interrupt IPH, IPL TCON.0 IT0 3 INT0 IE0 0 3 TF0 TCON.2 0 IT1 3 INT1 IE1 0 3 Interrupt Polling Sequence, Decreasing From High-to-Low Priority TF1 0 3 PCA IT 0 RI TI 3 TF2 EXF2 3 0 0 3 KBD IT 0 3 TWI IT 0 3 SPI IT 0 3 USBINT UEPINT 0 Individual Enable Global Disable Low Priority Interrupt Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 16-2). This register also contains a global disable bit, which must be cleared to disable all interrupts at once. 79 4337K–USB–04/08 Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 16-3.) and in the Interrupt Priority High register (Table 16-4). Table 16-1. shows the bit values and priority levels associated with each combination. 16.2 Registers The PCA interrupt vector is located at address 0033H, the SPI interrupt vector is located at address 004BH and Keyboard interrupt vector is located at address 003BH. All other vectors addresses are the same as standard C52 devices. Table 16-1. Priority Level Bit Values IPH.x IPL.x Interrupt Level Priority 0 0 0 (Lowest) 0 1 1 1 0 2 1 1 3 (Highest) A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can’t be interrupted by any other interrupt source. If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence. Table 16-2. IEN0 Register IEN0 - Interrupt Enable Register (A8h) 80 7 6 5 4 3 2 1 0 EA EC ET2 ES ET1 EX1 ET0 EX0 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Bit Number Mnemonic 7 EA 6 EC Description Enable All interrupt bit Cleared to disable all interrupts. Set to enable all interrupts. PCA interrupt enable bit Cleared to disable. Set to enable. 5 ET2 Timer 2 overflow interrupt Enable bit Cleared to disable Timer 2 overflow interrupt. Set to enable Timer 2 overflow interrupt. 4 ES Serial port Enable bit Cleared to disable serial port interrupt. Set to enable serial port interrupt. 3 ET1 Timer 1 overflow interrupt Enable bit Cleared to disable Timer 1 overflow interrupt. Set to enable Timer 1 overflow interrupt. 2 EX1 External interrupt 1 Enable bit Cleared to disable external interrupt 1. Set to enable external interrupt 1. 1 ET0 Timer 0 overflow interrupt Enable bit Cleared to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt. 0 EX0 External interrupt 0 Enable bit Cleared to disable external interrupt 0. Set to enable external interrupt 0. Reset Value = 0000 0000b Bit addressable Table 16-3. IPL0 Register IPL0 - Interrupt Priority Register (B8h) 7 6 5 4 3 2 1 0 - PPCL PT2L PSL PT1L PX1L PT0L PX0L 81 4337K–USB–04/08 Bit Bit Number Mnemonic 7 - 6 PPCL PCA interrupt Priority bit Refer to PPCH for priority level. 5 PT2L Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level. 4 PSL Serial port Priority bit Refer to PSH for priority level. 3 PT1L Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level. 2 PX1L External interrupt 1 Priority bit Refer to PX1H for priority level. 1 PT0L Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level. 0 PX0L External interrupt 0 Priority bit Refer to PX0H for priority level. Description Reserved The value read from this bit is indeterminate. Do not set this bit. Reset Value = X000 0000b Bit addressable Table 16-4. IPH0 Register IPH0 - Interrupt Priority High Register (B7h) 82 7 6 5 4 3 2 1 0 - PPCH PT2H PSH PT1H PX1H PT0H PX0H AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Bit Number Mnemonic 7 - 6 5 4 3 2 1 0 Description Reserved The value read from this bit is indeterminate. Do not set this bit. PPCH PCA interrupt Priority high bit. PPCH PPCL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PT2H Timer 2 overflow interrupt Priority High bit PT2H PT2L Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PSH Serial port Priority High bit PSH PSL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PT1H Timer 1 overflow interrupt Priority High bit PT1H PT1L Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PX1H External interrupt 1 Priority High bit PX1H PX1L Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PT0H Timer 0 overflow interrupt Priority High bit PT0H PT0L Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PX0H External interrupt 0 Priority High bit PX0H PX0L Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest Reset Value = X000 0000b Not bit addressable Table 16-5. IEN1 Register 83 4337K–USB–04/08 IEN1 - Interrupt Enable Register (B1h) 7 6 5 4 3 2 1 0 - EUSB - - - ESPI ETWI EKB Bit Bit Number Mnemonic 7 - 6 EUSB 5 - Reserved 4 - Reserved 3 - Reserved 2 ESPI SPI interrupt Enable bit Cleared to disable SPI interrupt. Set to enable SPI interrupt. 1 ETWI TWI interrupt Enable bit Cleared to disable TWI interrupt. Set to enable TWI interrupt. 0 EKB Keyboard interrupt Enable bit Cleared to disable keyboard interrupt. Set to enable keyboard interrupt. Description Reserved USB Interrupt Enable bit 84 Cleared to disable USB interrupt. Set to enable USB interrupt. AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Reset Value = X0XX X000b Not bit addressable Table 16-6. IPL1 Register IPL1 - Interrupt Priority Register (B2h) 7 6 5 4 3 2 1 0 - PUSBL - - - PSPIL PTWIL PKBDL Bit Bit Number Mnemonic 7 - 6 PUSBL 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 PSPIL SPI Interrupt Priority bit Refer to PSPIH for priority level. 1 PTWIL TWI Interrupt Priority bit Refer to PTWIH for priority level. 0 PKBL Keyboard Interrupt Priority bit Refer to PKBH for priority level. Description Reserved The value read from this bit is indeterminate. Do not set this bit. USB Interrupt Priority bit Refer to PUSBH for priority level. Reset Value = X0XX X000b Not bit addressable 85 4337K–USB–04/08 Table 16-7. IPH1 Register IPH1 - Interrupt Priority High Register (B3h) 7 6 5 4 3 2 1 0 - PUSBH - - - PSPIH PTWIH PKBH Bit Bit Number Mnemonic 7 - Description Reserved The value read from this bit is indeterminate. Do not set this bit. USB Interrupt Priority High bit PUSBH PUSBL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest 6 PUSBH 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 1 0 PSPIH SPI Interrupt Priority High bit PSPIH PSPIL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PTWIH TWI Interrupt Priority High bit PTWIH PTWIL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PKBH Keyboard Interrupt Priority High bit PKBH PKBL Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest Reset Value = X0XX X000b Not bit addressable 86 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 16.3 Interrupt Sources and Vector Addresses Table 16-8. Vector Table Polling Priority Interrupt Source 0 0 Reset 1 1 INT0 IE0 0003h 2 2 Timer 0 TF0 000Bh 3 3 INT1 IE1 0013h 4 4 Timer 1 IF1 001Bh 5 6 UART RI+TI 0023h 6 7 Timer 2 TF2+EXF2 002Bh 7 5 PCA CF + CCFn (n = 0-4) 0033h 8 8 Keyboard KBDIT 003Bh 9 9 TWI TWIIT 0043h 10 10 SPI SPIIT 004Bh 11 11 0053h 12 12 005Bh 13 13 0063h 14 14 15 15 USB Interrupt Request Vector Number Address 0000h UEPINT + USBINT 006Bh 0073h 87 4337K–USB–04/08 17. Keyboard Interface 17.1 Introduction The AT89C5130A/31A-M implements a keyboard interface allowing the connection of a 8 x n matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as an alternate function of P1 and allow to exit from idle and power down modes. 17.2 Description The keyboard interface communicates with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 17-3), KBE, The Keyboard interrupt Enable register (Table 17-2), and KBF, the Keyboard Flag register (Table 17-1). 17.2.1 Interrupt The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard interrupt (see Figure 17-1). As detailed in Figure 17-2 each keyboard input has the capability to detect a programmable level according to KBLS.x bit value. Level detection is then reported in interrupt flags KBF.x that can be masked by software using KBE.x bits. This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allow usage of P1 inputs for other purpose. Figure 17-1. Keyboard Interface Block Diagram P1.0 Input Circuitry P1.1 Input Circuitry P1.2 Input Circuitry P1.3 Input Circuitry P1.4 Input Circuitry P1.5 Input Circuitry P1.6 Input Circuitry P1.7 Input Circuitry KBDIT Keyboard Interface Interrupt Request KBD IE1.0 Figure 17-2. Keyboard Input Circuitry Vcc 0 P1:x KBF.x 1 Internal Pull-up 88 KBE.x KBLS.x AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 17.2.2 17.3 Power Reduction Mode P1 inputs allow exit from idle and power down modes as detailed in section “Power-down Mode”. Registers Table 17-1. KBF Register KBF - Keyboard Flag Register (9Eh) 7 6 5 4 3 2 1 0 KBF7 KBF6 KBF5 KBF4 KBF3 KBF2 KBF1 KBF0 Bit Number Bit Mnemonic Description 7 6 5 4 3 2 1 0 KBF7 Keyboard line 7 flag Set by hardware when the Port line 7 detects a programmed level. It generates a Keyboard interrupt request if the KBKBIE.7 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF6 Keyboard line 6 flag Set by hardware when the Port line 6 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.6 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF5 Keyboard line 5 flag Set by hardware when the Port line 5 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.5 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF4 Keyboard line 4 flag Set by hardware when the Port line 4 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.4 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF3 Keyboard line 3 flag Set by hardware when the Port line 3 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.3 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF2 Keyboard line 2 flag Set by hardware when the Port line 2 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.2 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF1 Keyboard line 1 flag Set by hardware when the Port line 1 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.1 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. KBF0 Keyboard line 0 flag Set by hardware when the Port line 0 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.0 bit in KBIE register is set. Cleared by hardware when reading KBF SFR by software. Reset Value = 0000 0000b 89 4337K–USB–04/08 Table 17-2. KBE Register KBE - Keyboard Input Enable Register (9Dh) 7 6 5 4 3 2 1 0 KBE7 KBE6 KBE5 KBE4 KBE3 KBE2 KBE1 KBE0 Bit Number Bit Mnemonic Description 7 KBE7 Keyboard line 7 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.7 bit in KBF register to generate an interrupt request. 6 KBE6 Keyboard line 6 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.6 bit in KBF register to generate an interrupt request. 5 KBE5 Keyboard line 5 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.5 bit in KBF register to generate an interrupt request. 4 KBE4 Keyboard line 4 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.4 bit in KBF register to generate an interrupt request. 3 KBE3 Keyboard line 3 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.3 bit in KBF register to generate an interrupt request. 2 KBE2 Keyboard line 2 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.2 bit in KBF register to generate an interrupt request. 1 KBE1 Keyboard line 1 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.1 bit in KBF register to generate an interrupt request. 0 KBE0 Keyboard line 0 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.0 bit in KBF register to generate an interrupt request. Reset Value = 0000 0000b 90 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Table 17-3. KBLS Register KBLS-Keyboard Level Selector Register (9Ch) 7 6 5 4 3 2 1 0 KBLS7 KBLS6 KBLS5 KBLS4 KBLS3 KBLS2 KBLS1 KBLS0 Bit Number Bit Mnemonic Description 7 KBLS7 Keyboard line 7 Level Selection bit Cleared to enable a low level detection on Port line 7. Set to enable a high level detection on Port line 7. 6 KBLS6 Keyboard line 6 Level Selection bit Cleared to enable a low level detection on Port line 6. Set to enable a high level detection on Port line 6. 5 KBLS5 Keyboard line 5 Level Selection bit Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5. 4 KBLS4 Keyboard line 4 Level Selection bit Cleared to enable a low level detection on Port line 4. Set to enable a high level detection on Port line 4. 3 KBLS3 Keyboard line 3 Level Selection bit Cleared to enable a low level detection on Port line 3. Set to enable a high level detection on Port line 3. 2 KBLS2 Keyboard line 2 Level Selection bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2. 1 KBLS1 Keyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1. 0 KBLS0 Keyboard line 0 Level Selection bit Cleared to enable a low level detection on Port line 0. Set to enable a high level detection on Port line 0. Reset Value = 0000 0000b 91 4337K–USB–04/08 18. Programmable LED AT89C5130A/31A-M have up to 4 programmable LED current sources, configured by the register LEDCON. Table 18-1. LEDCON Register LEDCON (S:F1h) LED Control Register 7 6 5 LED3 Bit Number 7:6 5:4 3:2 1:0 4 LED2 Bit Mnemonic 3 2 LED1 1 0 LED0 Description LED3 Port 0 0 1 1 LED3 0 1 0 1 Configuration Standard C51 Port 2 mA current source when P3.7 is low 4 mA current source when P3.7 is low 10 mA current source when P3.7 is low LED2 Port 0 0 1 1 /LED2 0 1 0 1 Configuration Standard C51 Port 2 mA current source when P3.6 is low 4 mA current source when P3.6 is low 10 mA current source when P3.6 is low LED1 Port/ 0 0 1 1 LED1 0 1 0 1 Configuration Standard C51 Port 2 mA current source when P3.5 is low 4 mA current source when P3.5 is low 10 mA current source when P3.5 is low LED0 Port/ 0 0 1 1 LED0 0 1 0 1 Configuration Standard C51 Port 2 mA current source when P3.3 is low 4 mA current source when P3.3 is low 10 mA current source when P3.3 is low Reset Value = 00h 92 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 19. Serial Peripheral Interface (SPI) The Serial Peripheral Interface module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs. 19.1 Features Features of the SPI module include the following: • Full-duplex, three-wire synchronous transfers • Master or Slave operation • Eight programmable Master clock rates • Serial clock with programmable polarity and phase • Master mode fault error flag with MCU interrupt capability • Write collision flag protection 19.2 Signal Description Figure 19-1 shows a typical SPI bus configuration using one Master controller and many Slave peripherals. The bus is made of three wires connecting all the devices: Figure 19-1. SPI Master/Slaves Interconnection Slave 1 MISO MOSI SCK SS MISO MOSI SCK SS VDD Slave 4 Slave 3 MISO MOSI SCK SS 0 1 2 3 MISO MOSI SCK SS MISO MOSI SCK SS PORT Master Slave 2 The Master device selects the individual Slave devices by using four pins of a parallel port to control the four SS pins of the Slave devices. 19.2.1 Master Output Slave Input (MOSI) This 1-bit signal is directly connected between the Master Device and a Slave Device. The MOSI line is used to transfer data in series from the Master to the Slave. Therefore, it is an output signal from the Master, and an input signal to a Slave. A byte (8-bit word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last. 19.2.2 Master Input Slave Output (MISO) This 1-bit signal is directly connected between the Slave Device and a Master Device. The MISO line is used to transfer data in series from the Slave to the Master. Therefore, it is an output signal from the Slave, and an input signal to the Master. A byte (8-bit word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last. 93 4337K–USB–04/08 19.2.3 SPI Serial Clock (SCK) This signal is used to synchronize the data movement both in and out the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one byte on the serial lines. 19.2.4 Slave Select (SS) Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay low for any message for a Slave. It is obvious that only one Master (SS high level) can drive the network. The Master may select each Slave device by software through port pins (Figure 19-1). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission. In a Master configuration, the SS line can be used in conjunction with the MODF flag in the SPI Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see Section “Error Conditions”, page 98). A high level on the SS pin puts the MISO line of a Slave SPI in a high-impedance state. The SS pin could be used as a general-purpose if the following conditions are met: • The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can be found when only one Master is driving the network and there is no way that the SS pin could be pulled low. Therefore, the MODF flag in the SPSTA will never be set(1). • The Device is configured as a Slave with CPHA and SSDIS control bits set(2) This kind of configuration can happen when the system comprises one Master and one Slave only. Therefore, the device should always be selected and there is no reason that the Master uses the SS pin to select the communicating Slave device. Notes: 1. Clearing SSDIS control bit does not clear MODF. 2. Special care should be taken not to set SSDIS control bit when CPHA =’0’ because in this mode, the SS is used to start the transmission. 19.2.5 Baud Rate In Master mode, the baud rate can be selected from a baud rate generator which is controlled by three bits in the SPCON register: SPR2, SPR1 and SPR0. The Master clock is chosen from one of seven clock rates resulting from the division of the internal clock by 4, 8, 16, 32, 64 or 128. Table 19-1 gives the different clock rates selected by SPR2:SPR1:SPR0: Table 19-1. 94 SPI Master Baud Rate Selection SPR2 SPR1 SPR0 Clock Rate Baud Rate Divisor (BD) 0 0 0 Don’t Use No BRG 0 0 1 FCLK PERIPH/4 4 0 1 0 FCLK PERIPH/8 8 0 1 1 FCLK PERIPH/16 16 1 0 0 FCLK PERIPH/32 32 1 0 1 FCLK PERIPH/64 64 1 1 0 FCLK PERIPH/128 128 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 19.3 SPR2 SPR1 SPR0 Clock Rate Baud Rate Divisor (BD) 1 1 1 Don’t Use No BRG Functional Description Figure 19-2 shows a detailed structure of the SPI module. Figure 19-2. SPI Module Block Diagram Internal Bus SPDAT Shift Register FCLK PERIPH Clock Divider /4 /8 /16 /32 /64 /128 7 6 5 4 3 2 1 0 Receive Data Register Pin Control Logic Clock Logic MOSI MISO M S Clock Select SCK SS SPR2 SPEN SSDIS MSTR CPOL CPHA SPR1 SPR0 SPCON SPI Control SPI Interrupt Request 8-bit bus 1-bit signal SPSTA SPIF 19.3.1 WCOL SSERR MODF - - - - Operating Modes The Serial Peripheral Interface can be configured as one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI module is made through one register: • The Serial Peripheral CONtrol register (SPCON) Once the SPI is configured, the data exchange is made using: • SPCON • The Serial Peripheral STAtus register (SPSTA) • The Serial Peripheral DATa register (SPDAT) During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (SS) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities. 95 4337K–USB–04/08 When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 19-3). Figure 19-3. Full-duplex Master/Slave Interconnection 8-bit Shift Register SPI Clock Generator MISO MISO MOSI MOSI SCK SS Master MCU 8-bit Shift Register SCK VDD SS VSS Slave MCU 19.3.1.1 Master Mode The SPI operates in Master mode when the Master bit, MSTR (1), in the SPCON register is set. Only one Master SPI device can initiate transmissions. Software begins the transmission from a Master SPI module by writing to the Serial Peripheral Data Register (SPDAT). If the shift register is empty, the byte is immediately transferred to the shift register. The byte begins shifting out on MOSI pin under the control of the serial clock, SCK. Simultaneously, another byte shifts in from the Slave on the Master’s MISO pin. The transmission ends when the Serial Peripheral transfer data flag, SPIF, in SPSTA becomes set. At the same time that SPIF becomes set, the received byte from the Slave is transferred to the receive data register in SPDAT. Software clears SPIF by reading the Serial Peripheral Status register (SPSTA) with the SPIF bit set, and then reading the SPDAT. 19.3.1.2 Slave Mode The SPI operates in Slave mode when the Master bit, MSTR (2) , in the SPCON register is cleared. Before a data transmission occurs, the Slave Select pin, SS, of the Slave device must be set to’0’. SS must remain low until the transmission is complete. In a Slave SPI module, data enters the shift register under the control of the SCK from the Master SPI module. After a byte enters the shift register, it is immediately transferred to the receive data register in SPDAT, and the SPIF bit is set. To prevent an overflow condition, Slave software must then read the SPDAT before another byte enters the shift register (3). A Slave SPI must complete the write to the SPDAT (shift register) at least one bus cycle before the Master SPI starts a transmission. If the write to the data register is late, the SPI transmits the data already in the shift register from the previous transmission. 19.3.2 96 Transmission Formats Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in the SPCON: the Clock POLarity (CPOL (4)) and the Clock PHAse (CPHA4). CPOL defines the default SCK line level in idle state. It has no significant effect on the transmission format. CPHA defines the edges on which the input data are sampled and the edges on which the 1. The SPI module should be configured as a Master before it is enabled (SPEN set). Also the Master SPI should be configured before the Slave SPI. 2. The SPI module should be configured as a Slave before it is enabled (SPEN set). 3. The maximum frequency of the SCK for an SPI configured as a Slave is FCLK PERIPH/2. 4. Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN =’0’). AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M output data are shifted (Figure 19-4 and Figure 19-5). The clock phase and polarity should be identical for the Master SPI device and the communicating Slave device. Figure 19-4. Data Transmission Format (CPHA = 0) SCK cycle number 1 2 3 4 5 6 7 8 MSB bit6 bit5 bit4 bit3 bit2 bit1 LSB bit6 bit5 bit4 bit3 bit2 bit1 LSB SPEN (internal) SCK (CPOL = 0) SCK (CPOL = 1) MOSI (from Master) MISO (from Slave) MSB SS (to Slave) Capture point Figure 19-5. Data Transmission Format (CPHA = 1) 1 2 3 4 5 6 7 8 MOSI (from Master) MSB bit6 bit5 bit4 bit3 bit2 bit1 LSB MISO (from Slave) MSB bit6 bit5 bit4 bit3 bit2 bit1 SCK cycle number SPEN (internal) SCK (CPOL = 0) SCK (CPOL = 1) LSB SS (to Slave) Capture point Figure 19-6. CPHA/SS Timing MISO/MOSI Byte 1 Byte 2 Byte 3 Master SS Slave SS (CPHA = 0) Slave SS (CPHA = 1) As shown in Figure 19-5, the first SCK edge is the MSB capture strobe. Therefore the Slave must begin driving its data before the first SCK edge, and a falling edge on the SS pin is used to start the transmission. The SS pin must be toggled high and then low between each byte transmitted (Figure 19-2). Figure 19-6 shows an SPI transmission in which CPHA is’1’. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 19-1). This format may be preferable in systems having only one Master and only one Slave driving the MISO data line. 97 4337K–USB–04/08 19.3.3 19.3.3.1 Error Conditions The following flags in the SPSTA signal SPI error conditions: Mode Fault (MODF) Mode Fault error in Master mode SPI indicates that the level on the Slave Select (SS) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may have a multi-master conflict for system control. In this case, the SPI system is affected in the following ways: • An SPI receiver/error CPU interrupt request is generated, • The SPEN bit in SPCON is cleared. This disable the SPI, • The MSTR bit in SPCON is cleared When SS DISable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the SS signal becomes “0”. However, as stated before, for a system with one Master, if the SS pin of the Master device is pulled low, there is no way that another Master attempt to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the SS pin as a general-purpose I/O pin. Clearing the MODF bit is accomplished by a read of SPSTA register with MODF bit set, followed by a write to the SPCON register. SPEN Control bit may be restored to its original set state after the MODF bit has been cleared. 19.3.3.2 Write Collision (WCOL) A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence. WCOL does not cause an interruption, and the transfer continues uninterrupted. Clearing the WCOL bit is done through a software sequence of an access to SPSTA and an access to SPDAT. 19.3.3.3 Overrun Condition An overrun condition occurs when the Master device tries to send several data bytes and the Slave devise has not cleared the SPIF bit issuing from the previous data byte transmitted. In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read of the SPDAT returns this byte. All others bytes are lost. This condition is not detected by the SPI peripheral. 19.3.4 Interrupts Two SPI status flags can generate a CPU interrupt requests: Table 19-2. SPI Interrupts Flag Request SPIF (SP Data Transfer) SPI Transmitter Interrupt request MODF (Mode Fault) SPI Receiver/Error Interrupt Request (if SSDIS = “0”) Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been completed. SPIF bit generates transmitter CPU interrupt requests. 98 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS is inconsistent with the mode of the SPI. MODF with SSDIS reset, generates receiver/error CPU interrupt requests. Figure 19-7 gives a logical view of the above statements. Figure 19-7. SPI Interrupt Requests Generation SPIF SPI Transmitter CPU Interrupt Request SPI CPU Interrupt Request MODF SPI Receiver/Error CPU Interrupt Request SSDIS 19.3.5 Registers There are three registers in the module that provide control, status and data storage functions. These registers are describes in the following paragraphs. 19.3.5.1 Serial Peripheral Control Register (SPCON) • The Serial Peripheral Control Register does the following: – Selects one of the Master clock rates – Configure the SPI module as Master or Slave – Selects serial clock polarity and phase – Enables the SPI module – Frees the SS pin for a general-purpose Table 19-3 describes this register and explains the use of each bit. Table 19-3. SPCON Register 7 6 5 4 3 2 1 0 SPR2 SPEN SSDIS MSTR CPOL CPHA SPR1 SPR0 Bit Number Bit Mnemonic 7 SPR2 6 SPEN Description Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate. Serial Peripheral Enable Cleared to disable the SPI interface. Set to enable the SPI interface. SS Disable 5 SSDIS 4 MSTR Cleared to enable SS in both Master and Slave modes. Set to disable SS in both Master and Slave modes. In Slave mode, this bit has no effect if CPHA = “0”. Serial Peripheral Master Cleared to configure the SPI as a Slave. Set to configure the SPI as a Master. Clock Polarity 3 CPOL Cleared to have the SCK set to “0” in idle state. Set to have the SCK set to “1” in idle state. 99 4337K–USB–04/08 Bit Number Bit Mnemonic 2 CPHA Description Clock Phase Cleared to have the data sampled when the SCK leaves the idle state (see CPOL). Set to have the data sampled when the SCK returns to idle state (see CPOL). SPR2 SPR1 SPR0 Serial Peripheral Rate 1 000Reserved SPR1 00 1FCLK PERIPH/4 010 FCLK PERIPH/8 011FCLK PERIPH/16 100FCLK PERIPH/32 0 10 1FCLK PERIPH/64 SPR0 110FCLK PERIPH/128 1 11Reserved Reset Value = 0001 0100b Not bit addressable 19.3.5.2 Serial Peripheral Status Register (SPSTA) The Serial Peripheral Status Register contains flags to signal the following conditions: • Data transfer complete • Write collision • Inconsistent logic level on SS pin (mode fault error) Table 19-4 describes the SPSTA register and explains the use of every bit in the register. Table 19-4. SPSTA Register SPSTA - Serial Peripheral Status and Control register (0C4H) 7 6 5 4 3 2 1 0 SPIF WCOL SSERR MODF - - - - Bit Number Bit Mnemonic Description Serial Peripheral data transfer flag 7 SPIF Cleared by hardware to indicate data transfer is in progress or has been approved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed. Write Collision flag 6 WCOL Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected. Synchronous Serial Slave Error flag 5 SSERR Set by hardware when SS is deasserted before the end of a received data. Cleared by disabling the SPI (clearing SPEN bit in SPCON). 100 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Bit Number Bit Mnemonic Description Mode Fault 4 MODF Cleared by hardware to indicate that the SS pin is at appropriate logic level, or has been approved by a clearing sequence. Set by hardware to indicate that the SS pin is at inappropriate logic level. 3 - 2 - 1 - 0 - Reserved The value read from this bit is indeterminate. Do not set this bit Reserved The value read from this bit is indeterminate. Do not set this bit Reserved The value read from this bit is indeterminate. Do not set this bit. Reserved The value read from this bit is indeterminate. Do not set this bit. Reset Value = 00X0 XXXXb Not Bit addressable 19.3.5.3 Serial Peripheral Data Register (SPDAT) The Serial Peripheral Data Register (Table 19-5) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model. A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register. Table 19-5. SPDAT Register SPDAT - Serial Peripheral Data Register (0C5H) 7 6 5 4 3 2 1 0 R7 R6 R5 R4 R3 R2 R1 R0 Reset Value = Indeterminate R7:R0: Receive data bits SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no ongoing exchange. However, special care should be taken when writing to them while a transmission is on-going: • Do not change SPR2, SPR1 and SPR0 • Do not change CPHA and CPOL • Do not change MSTR • Clearing SPEN would immediately disable the peripheral • Writing to the SPDAT will cause an overflow 101 4337K–USB–04/08 20. Two Wire Interface (TWI) This section describes the 2-wire interface. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 400 Kbit/s in standard mode. Various communication configuration can be designed using this bus. Figure 20-1 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave. Figure 20-1. 2-wire Bus Configuration device1 device2 device3 ... deviceN SCL SDA 102 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M Figure 20-2. Block Diagram 8 Address Register SSADR Comparator Input Filter SDA Output Stage SSDAT ACK Shift Register Arbitration & Sink Logic Input Filter SCL Output Stage Timing & Control logic FCLK PERIPH/4 Internal Bus 8 Interrupt Serial clock generator Timer 1 overflow SSCON Control Register 7 Status Bits SSCS Status Decoder Status Register 8 103 4337K–USB–04/08 20.1 Description The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the Synchronous Serial Control register (SSCON; Table 20-10), the Synchronous Serial Data register (SSDAT; Table 20-11), the Synchronous Serial Control and Status register (SSCS; Table 2012) and the Synchronous Serial Address register (SSADR Table 20-13). SSCON is used to enable the TWI interface, to program the bit rate (see Table 20-3), to enable slave modes, to acknowledge or not a received data, to send a START or a STOP condition on the 2-wire bus, and to acknowledge a serial interrupt. A hardware reset disables the TWI module. SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. to Table 20-9. give the status for the master modes and miscellaneous states. SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when 2-wire logic is in a defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as SI is set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always contains the last byte present on the bus. SSADR may be loaded with the 7-bit slave address (7 most significant bits) to which the TWI module will respond when programmed as a slave transmitter or receiver. The LSB is used to enable general call address (00h) recognition. Figure 20-3 shows how a data transfer is accomplished on the 2-wire bus. Figure 20-3. Complete Data Transfer on 2-wire Bus MSB SDA acknowledgement signal from receiver acknowledgement signal from receiver SCL 1 2 S start condition 7 8 9 ACK 1 2 3-8 9 ACK clock line held low while interrupts are serviced P stop condition The four operating modes are: • Master Transmitter • Master Receiver • Slave transmitter • Slave receiver Data transfer in each mode of operation is shown in Table to Table 20-9 and Figure 20-4. to Figure 20-7.. These figures contain the following abbreviations: S 104 : START condition AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M R : Read bit (high level at SDA) W : Write bit (low level at SDA) A: Acknowledge bit (low level at SDA) A: Not acknowledge bit (high level at SDA) Data: 8-bit data byte P : STOP condition In Figure 20-4 to Figure 20-7, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in SSCS. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software. When the serial interrupt routine is entered, the status code in SSCS is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in Table to Table 20-9. 20.1.1 Master Transmitter Mode In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (Figure 20-4). Before the master transmitter mode can be entered, SSCON must be initialised as follows: Table 20-1. SSCON Initialization CR2 SSIE STA STO SI AA CR1 CR0 bit rate 1 0 0 0 X bit rate bit rate CR0, CR1 and CR2 define the internal serial bit rate if external bit rate generator is not used. SSIE must be set to enable TWI. STA, STO and SI must be cleared. The master transmitter mode may now be entered by setting the STA bit. The 2-wire logic will now test the 2-wire bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI bit in SSCON) is set, and the status code in SSCS will be 08h. This status must be used to vector to an interrupt routine that loads SSDAT with the slave address and the data direction bit (SLA+W). When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, SI is set again and a number of status code in SSCS are possible. There are 18h, 20h or 38h for the master mode and also 68h, 78h or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table . This scheme is repeated until a STOP condition is transmitted. SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master receiver mode by loading SSDAT with SLA+R. 20.1.2 Master Receiver Mode In the master receiver mode, a number of data bytes are received from a slave transmitter (Figure 20-5). The transfer is initialized as in the master transmitter mode. When the START condition has been transmitted, the interrupt routine must load SSDAT with the 7-bit slave 105 4337K–USB–04/08 address and the data direction bit (SLA+R). The serial interrupt flag SI must then be cleared before the serial transfer can continue. When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, the serial interrupt flag is set again and a number of status code in SSCS are possible. There are 40h, 48h or 38h for the master mode and also 68h, 78h or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table . This scheme is repeated until a STOP condition is transmitted. SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master transmitter mode by loading SSDAT with SLA+W. 20.1.3 Slave Receiver Mode In the slave receiver mode, a number of data bytes are received from a master transmitter (Figure 20-6). To initiate the slave receiver mode, SSADR and SSCON must be loaded as follows: Table 20-2. A6 SSADR: Slave Receiver Mode Initialization A5 A4 A3 A2 A1 A0 GC own slave address The upper 7 bits are the address to which the TWI module will respond when addressed by a master. If the LSB (GC) is set the TWI module will respond to the general call address (00h); otherwise it ignores the general call address. Table 20-3. SSCON: Slave Receiver Mode Initialization CR2 SSIE STA STO SI AA CR1 CR0 bit rate 1 0 0 0 1 bit rate bit rate CR0, CR1 and CR2 have no effect in the slave mode. SSIE must be set to enable the TWI. The AA bit must be set to enable the own slave address or the general call address acknowledgement. STA, STO and SI must be cleared. When SSADR and SSCON have been initialised, the TWI module waits until it is addressed by its own slave address followed by the data direction bit which must be at logic 0 (W) for the TWI to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine.The appropriate action to be taken for each of these status code is detailed in Table . The slave receiver mode may also be entered if arbitration is lost while TWI is in the master mode (states 68h and 78h). If the AA bit is reset during a transfer, TWI module will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the TWI module does not respond to its own slave address. However, the 2-wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate the module from the 2-wire bus. 106 AT89C5130A/31A-M 4337K–USB–04/08 AT89C5130A/31A-M 20.1.4 Slave Transmitter Mode In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (Figure 20-7). Data transfer is initialized as in the slave receiver mode. When SSADR and SSCON have been initialized, the TWI module waits until it is addressed by its own slave address followed by the data direction bit which must be at logic 1 (R) for TWI to operate in the slave transmitter mode. After its own slave address and the R bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine. The appropriate action to be taken for each of these status code is detailed in Table . The slave transmitter mode may also be entered if arbitration is lost while the TWI module is in the master mode. If the AA bit is reset during a transfer, the TWI module will transmit the last byte of the transfer and enter state C0h or C8h. the TWI module is switched to the not addressed slave mode and will ignore the master receiver if it continues the transfer. Thus the master receiver receives all 1’s as serial data. While AA is reset, the TWI module does not respond to its own slave address. However, the 2-wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate the TWI module from the 2-wire bus. 20.1.5 Miscellaneous States There are two SSCS codes that do not correspond to a define TWI hardware state (Table 20-9 ). These codes are discuss hereafter. Status F8h indicates that no relevant information is available because the serial interrupt flag is not set yet. This occurs between other states and when the TWI module is not involved in a serial transfer. Status 00h indicates that a bus error has occurred during a TWI serial transfer. A bus error is caused when a START or a STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions happen during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, SI is set. To recover from a bus error, the STO flag must be set and SI must be cleared. This causes the TWI module to enter the not addressed slave mode and to clear the STO flag (no other bits in SSCON are affected). The SDA and SCL lines are released and no STOP condition is transmitted. 20.2 Notes The TWI module interfaces to the external 2-wire bus via two port pins: SCL (serial clock line) and SDA (serial data line). To avoid low level asserting on these lines when the TWI module is enabled, the output latches of SDA and SLC must be set to logic 1. Table 20-4. Bit Frequency Configuration Bit Frequency ( kHz) CR2 CR1 CR0 FOSCA= 12 MHz FOSCA = 16 MHz FOSCA divided by 0 0 0 47 62.5 256 0 0 1 53.5 71.5 224 0 1 0 62.5 83 192 0 1 1 75 100 160 107 4337K–USB–04/08 Bit Frequency ( kHz) CR2 CR1 CR0 FOSCA= 12 MHz FOSCA = 16 MHz FOSCA divided by 1 0 0 - - Unused 1 0 1 100 133.3 120 1 1 0 200 266.6 60 1 1 1 0.5
AT89C5130A-RDRUM 价格&库存

很抱歉,暂时无法提供与“AT89C5130A-RDRUM”相匹配的价格&库存,您可以联系我们找货

免费人工找货