0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA48P-20AU

ATMEGA48P-20AU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP32

  • 描述:

    IC MCU 8BIT 4KB FLASH 32TQFP

  • 数据手册
  • 价格&库存
ATMEGA48P-20AU 数据手册
ATmega48P/V/88P/V/168P/V megaAVR® Data Sheet Introduction The ATmega48P/V/88P/V/168P/V is a low power, CMOS 8-bit microcontrollers based on the AVR® enhanced RISC architecture. By executing instructions in a single clock cycle, the devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed. Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 131 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 20 MIPS Throughput at 20 MHz – On-chip 2-cycle Multiplier • High Endurance Non-volatile Memory Segments – 4/8/16KBytes of In-System Self-Programmable Flash program memory – 256/512/512Bytes EEPROM – 512/1K/1KBytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – Programming Lock for Software Security • QTouch® Library Support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix™ acquisition – Up to 64 sense channels • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 1 ATmega48P/V/88P/V/168P/V – Six PWM Channels – 8-channel 10-bit ADC in TQFP and QFN/MLF package Temperature Measurement – 6-channel 10-bit ADC in PDIP Package Temperature Measurement – Programmable Serial USART – Master/Slave SPI Serial Interface – Byte-oriented 2-wire Serial Interface (Philips I2C compatible) – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby • I/O and Packages – 23 Programmable I/O Lines – 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF • Operating Voltage: – 1.8 - 5.5V for ATmega48PV/88PV/168PV – 2.7 - 5.5V for ATmega48P/88P/168P • Temperature Range: – -40°C to 85°C • Speed Grade: – ATmega48PV/88PV/168PV: 0 - 4MHz @ 1.8 - 5.5V, 0 - 10MHz @ 2.7 - 5.5V – ATmega48P/88P/168P: 0 - 10MHz @ 2.7 - 5.5V, 0 - 20MHz @ 4.5 - 5.5V • Low Power Consumption at 1MHz, 1.8V, 25°C: – Active Mode: 0.3mA – Power-down Mode: 0.1µA – Power-save Mode: 0.8µA (Including 32kHz RTC)  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 2 ATmega48P/V/88P/V/168P/V Table of Contents 1 Pin Configurations ................................................................................. 10 1.1 2 Pin Descriptions............................................................................................... 11 Overview ................................................................................................. 12 2.1 Block Diagram ................................................................................................. 13 2.2 Comparison Between ATmega48P, ATmega88P and ATmega168P ............. 15 3 Resources ............................................................................................... 16 4 Data Retention ........................................................................................ 16 5 About Code Examples ........................................................................... 16 6 Capacitive touch sensing ...................................................................... 16 7 AVR CPU Core ........................................................................................ 17 8 9 7.1 Overview.......................................................................................................... 17 7.2 ALU – Arithmetic Logic Unit............................................................................. 18 7.3 Status Register ................................................................................................ 18 7.4 General Purpose Register File ........................................................................ 20 7.5 Stack Pointer ................................................................................................... 21 7.6 Instruction Execution Timing ........................................................................... 22 7.7 Reset and Interrupt Handling........................................................................... 23 AVR Memories ........................................................................................ 25 8.1 Overview.......................................................................................................... 25 8.2 In-System Reprogrammable Flash Program Memory ..................................... 25 8.3 SRAM Data Memory........................................................................................ 27 8.4 EEPROM Data Memory .................................................................................. 28 8.5 I/O Memory...................................................................................................... 29 8.6 Register Description ........................................................................................ 30 System Clock and Clock Options ......................................................... 35 9.1 Clock Systems and their Distribution ............................................................... 35 9.2 Clock Sources ................................................................................................. 36 9.3 Low Power Crystal Oscillator........................................................................... 37 9.4 Full Swing Crystal Oscillator ............................................................................ 39 9.5 Low Frequency Crystal Oscillator .................................................................... 41 9.6 Calibrated Internal RC Oscillator ..................................................................... 42 9.7 128 kHz Internal Oscillator .............................................................................. 43  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 3 ATmega48P/V/88P/V/168P/V 9.8 External Clock ................................................................................................. 43 9.9 Clock Output Buffer ......................................................................................... 44 9.10 Timer/Counter Oscillator.................................................................................. 44 9.11 System Clock Prescaler .................................................................................. 44 9.12 Register Description ........................................................................................ 46 10 Power Management and Sleep Modes ................................................. 48 10.1 Sleep Modes.................................................................................................... 48 10.2 BOD Disable.................................................................................................... 49 10.3 Idle Mode......................................................................................................... 49 10.4 ADC Noise Reduction Mode............................................................................ 49 10.5 Power-down Mode........................................................................................... 50 10.6 Power-save Mode............................................................................................ 50 10.7 Standby Mode ................................................................................................. 50 10.8 Extended Standby Mode ................................................................................. 50 10.9 Power Reduction Register ............................................................................... 51 10.10 Minimizing Power Consumption ...................................................................... 51 10.11 Register Description ........................................................................................ 53 11 System Control and Reset .................................................................... 55 11.1 Resetting the AVR ........................................................................................... 55 11.2 Reset Sources ................................................................................................. 55 11.3 Power-on Reset............................................................................................... 56 11.4 External Reset ................................................................................................. 57 11.5 Brown-out Detection ........................................................................................ 57 11.6 Watchdog System Reset ................................................................................. 58 11.7 Internal Voltage Reference.............................................................................. 58 11.8 Watchdog Timer .............................................................................................. 59 11.9 Register Description ........................................................................................ 63 12 Interrupts ................................................................................................ 66 12.1 Interrupt Vectors in ATmega48P ..................................................................... 66 12.2 Interrupt Vectors in ATmega88P ..................................................................... 68 12.3 Interrupt Vectors in ATmega168P ................................................................... 72 12.4 Register Description ........................................................................................ 77 13 External Interrupts ................................................................................. 79 13.1 Pin Change Interrupt Timing............................................................................ 79 13.2 Register Description ........................................................................................ 80  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 4 ATmega48P/V/88P/V/168P/V 14 I/O-Ports .................................................................................................. 85 14.1 Overview.......................................................................................................... 85 14.2 Ports as General Digital I/O ............................................................................. 86 14.3 Alternate Port Functions .................................................................................. 90 14.4 Register Description ...................................................................................... 102 15 8-bit Timer/Counter0 with PWM .......................................................... 104 15.1 Features ........................................................................................................ 104 15.2 Overview........................................................................................................ 104 15.3 Timer/Counter Clock Sources ....................................................................... 106 15.4 Counter Unit .................................................................................................. 106 15.5 Output Compare Unit..................................................................................... 107 15.6 Compare Match Output Unit .......................................................................... 108 15.7 Modes of Operation ....................................................................................... 109 15.8 Timer/Counter Timing Diagrams ................................................................... 114 15.9 Register Description ...................................................................................... 116 16 16-bit Timer/Counter1 with PWM ........................................................ 123 16.1 Features ........................................................................................................ 123 16.2 Overview........................................................................................................ 123 16.3 Accessing 16-bit Registers ............................................................................ 125 16.4 Timer/Counter Clock Sources ....................................................................... 128 16.5 Counter Unit .................................................................................................. 129 16.6 Input Capture Unit ......................................................................................... 130 16.7 Output Compare Units................................................................................... 132 16.8 Compare Match Output Unit .......................................................................... 133 16.9 Modes of Operation ....................................................................................... 135 16.10 Timer/Counter Timing Diagrams ................................................................... 142 16.11 Register Description ...................................................................................... 144 17 Timer/Counter0 and Timer/Counter1 Prescalers .............................. 152 17.1 Internal Clock Source .................................................................................... 152 17.2 Prescaler Reset ............................................................................................. 152 17.3 External Clock Source ................................................................................... 152 17.4 Register Description ...................................................................................... 154 18 8-bit Timer/Counter2 with PWM and Asynchronous Operation ...... 155 18.1 Features ........................................................................................................ 155 18.2 Overview........................................................................................................ 155  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 5 ATmega48P/V/88P/V/168P/V 18.3 Timer/Counter Clock Sources ....................................................................... 156 18.4 Counter Unit .................................................................................................. 156 18.5 Output Compare Unit..................................................................................... 157 18.6 Compare Match Output Unit .......................................................................... 159 18.7 Modes of Operation ....................................................................................... 160 18.8 Timer/Counter Timing Diagrams ................................................................... 164 18.9 Asynchronous Operation of Timer/Counter2 ................................................. 166 18.10 Timer/Counter Prescaler ............................................................................... 167 18.11 Register Description ...................................................................................... 169 19 SPI – Serial Peripheral Interface ......................................................... 177 19.1 Features ........................................................................................................ 177 19.2 Overview........................................................................................................ 177 19.3 SS Pin Functionality ...................................................................................... 182 19.4 Data Modes ................................................................................................... 182 19.5 Register Description ...................................................................................... 184 20 USART0 ................................................................................................. 187 20.1 Features ........................................................................................................ 187 20.2 Overview........................................................................................................ 187 20.3 Clock Generation ........................................................................................... 188 20.4 Frame Formats .............................................................................................. 191 20.5 USART Initialization....................................................................................... 192 20.6 Data Transmission – The USART Transmitter .............................................. 194 20.7 Data Reception – The USART Receiver ....................................................... 196 20.8 Asynchronous Data Reception ...................................................................... 200 20.9 Multi-processor Communication Mode .......................................................... 203 20.10 Register Description ...................................................................................... 205 20.11 Examples of Baud Rate Setting..................................................................... 209 21 USART in SPI Mode ............................................................................. 214 21.1 Features ........................................................................................................ 214 21.2 Overview........................................................................................................ 214 21.3 Clock Generation ........................................................................................... 214 21.4 SPI Data Modes and Timing.......................................................................... 215 21.5 Frame Formats .............................................................................................. 216 21.6 Data Transfer................................................................................................. 218 21.7 AVR USART MSPIM vs. AVR SPI ................................................................ 220  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 6 ATmega48P/V/88P/V/168P/V 21.8 Register Description ...................................................................................... 221 22 2-wire Serial Interface .......................................................................... 224 22.1 Features ........................................................................................................ 224 22.2 2-wire Serial Interface Bus Definition ............................................................ 224 22.3 Data Transfer and Frame Format .................................................................. 226 22.4 Multi-master Bus Systems, Arbitration and Synchronization ......................... 228 22.5 Overview of the TWI Module ......................................................................... 231 22.6 Using the TWI................................................................................................ 233 22.7 Transmission Modes ..................................................................................... 237 22.8 Multi-master Systems and Arbitration............................................................ 251 22.9 Register Description ...................................................................................... 252 23 Analog Comparator .............................................................................. 258 23.1 Overview........................................................................................................ 258 23.2 Analog Comparator Multiplexed Input ........................................................... 258 23.3 Register Description ...................................................................................... 259 24 Analog-to-Digital Converter ................................................................ 262 24.1 Features ........................................................................................................ 262 24.2 Overview........................................................................................................ 262 24.3 Starting a Conversion .................................................................................... 264 24.4 Prescaling and Conversion Timing ................................................................ 265 24.5 Changing Channel or Reference Selection ................................................... 267 24.6 ADC Noise Canceler ..................................................................................... 268 24.7 ADC Conversion Result................................................................................. 273 24.8 Temperature Measurement ........................................................................... 273 24.9 Register Description ...................................................................................... 274 25 debugWIRE On-chip Debug System .................................................. 279 25.1 Features ........................................................................................................ 279 25.2 Overview........................................................................................................ 279 25.3 Physical Interface .......................................................................................... 279 25.4 Software Break Points ................................................................................... 280 25.5 Limitations of debugWIRE ............................................................................. 280 25.6 Register Description ...................................................................................... 280 26 Self-Programming the Flash, ATmega48P ......................................... 281 26.1 Overview........................................................................................................ 281 26.2 Addressing the Flash During Self-Programming ........................................... 282  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 7 ATmega48P/V/88P/V/168P/V 26.3 Register Description ...................................................................................... 288 27 Boot Loader Support – Read-While-Write Self-Programming, ATmega88P and ATmega168P 290 27.1 Features ........................................................................................................ 290 27.2 Overview........................................................................................................ 290 27.3 Application and Boot Loader Flash Sections ................................................. 290 27.4 Read-While-Write and No Read-While-Write Flash Sections........................ 291 27.5 Boot Loader Lock Bits ................................................................................... 293 27.6 Entering the Boot Loader Program ................................................................ 294 27.7 Addressing the Flash During Self-Programming ........................................... 295 27.8 Self-Programming the Flash .......................................................................... 295 27.9 Register Description ...................................................................................... 304 28 Memory Programming ......................................................................... 306 28.1 Program And Data Memory Lock Bits ........................................................... 306 28.2 Fuse Bits........................................................................................................ 307 28.3 Signature Bytes ............................................................................................. 309 28.4 Calibration Byte ............................................................................................. 309 28.5 Page Size ...................................................................................................... 310 28.6 Parallel Programming Parameters, Pin Mapping, and Commands ............... 310 28.7 Parallel Programming .................................................................................... 312 28.8 Serial Downloading........................................................................................ 319 29 Electrical Characteristics .................................................................... 324 29.1 Absolute Maximum Ratings* ......................................................................... 324 29.2 DC Characteristics......................................................................................... 324 29.3 Speed Grades ............................................................................................... 327 29.4 Clock Characteristics..................................................................................... 329 29.5 System and Reset Characteristics ................................................................ 330 29.6 SPI Timing Characteristics ............................................................................ 331 29.7 2-wire Serial Interface Characteristics ........................................................... 333 29.8 ADC Characteristics – Preliminary Data........................................................ 335 29.9 Parallel Programming Characteristics ........................................................... 336 30 Typical Characteristics ........................................................................ 338 30.1 ATmega48P Typical Characteristics ............................................................. 338 30.2 ATmega88P Typical Characteristics ............................................................. 362 30.3 ATmega168P Typical Characteristics ........................................................... 386  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 8 ATmega48P/V/88P/V/168P/V 31 Register Summary ............................................................................... 411 32 Instruction Set Summary ..................................................................... 415 33 Ordering Information ........................................................................... 418 33.1 ATmega48P................................................................................................... 418 33.2 ATmega88P................................................................................................... 419 33.3 ATmega168P................................................................................................. 420 34 Packaging Information ........................................................................ 421 34.1 32A ................................................................................................................ 421 34.2 28M1.............................................................................................................. 422 34.3 32M1-A .......................................................................................................... 423 34.4 28P3 .............................................................................................................. 424 35 Errata ..................................................................................................... 425 35.1 Errata ATmega48P........................................................................................ 425 35.2 Errata ATmega88P........................................................................................ 426 35.3 Errata ATmega168P...................................................................................... 428 36 Datasheet Revision History ................................................................. 430 36.1 Rev. A-11/2018.............................................................................................. 430 36.2 Rev. 8025M-06/11 ......................................................................................... 430 36.3 Rev. 8025L-07/10 .......................................................................................... 430 36.4 Rev. 8025K-10/09.......................................................................................... 430 36.5 Rev. 8025J-05/09 .......................................................................................... 430 36.6 Rev. 8025I-02/09 ........................................................................................... 430 36.7 Rev. 8025H-02/09 ......................................................................................... 431 36.8 Rev. 8025G-01/09 ......................................................................................... 431 36.9 Rev. 8025F-08/08.......................................................................................... 431 36.10 Rev. 8025E-08/08.......................................................................................... 431 36.11 Rev. 8025D-03/08 ......................................................................................... 432 36.12 Rev. 8025C-01/08 ......................................................................................... 432 36.13 Rev. 8025B-01/08.......................................................................................... 432 36.14 Rev. 8025A-07/07.......................................................................................... 433  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 9 ATmega48P/V/88P/V/168P/V Pin Configurations Figure 1-1. Pinout ATmega48P/88P/168P PDIP 32 31 30 29 28 27 26 25 PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) TQFP Top View 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 9 10 11 12 13 14 15 16 (PCINT14/RESET) PC6 (PCINT16/RXD) PD0 (PCINT17/TXD) PD1 (PCINT18/INT0) PD2 (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 VCC GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0  2018 Microchip Technology Inc. PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 GND VCC GND VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5) 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 NOTE: Bottom pad should be soldered to ground. PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/OC2A/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1) 32 31 30 29 28 27 26 25 PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 28 27 26 25 24 23 22 21 20 19 18 17 16 15 32 MLF Top View 28 MLF Top View (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 VCC GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT21/OC0B/T1) PD5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NOTE: Bottom pad should be soldered to ground. Data Sheet Complete (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 GND VCC GND VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 1. DS40002065A-page 10 ATmega48P/V/88P/V/168P/V 1.1 Pin Descriptions 1.1.1 VCC Digital supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2 Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit. Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier. If the Internal Calibrated RC Oscillator is used as chip clock source, PB7:6 is used as TOSC2:1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set. The various special features of Port B are elaborated in “Alternate Functions of Port B” on page 92 and “System Clock and Clock Options” on page 35. 1.1.4 Port C (PC5:0) Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5:0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. 1.1.5 PC6/RESET If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C. If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-3 on page 330. Shorter pulses are not ensured to generate a Reset. The various special features of Port C are elaborated in “Alternate Functions of Port C” on page 95. 1.1.6 Port D (PD7:0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 11 ATmega48P/V/88P/V/168P/V The various special features of Port D are elaborated in “Alternate Functions of Port D” on page 98. 1.1.7 AVCC AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that PC6:4 use digital supply voltage, VCC. 1.1.8 AREF AREF is the analog reference pin for the A/D Converter. 1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only) In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels. 2. Overview The ATmega48P/88P/168P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48P/88P/168P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 12 ATmega48P/V/88P/V/168P/V Block Diagram Block Diagram GND Figure 2-1. VCC 2.1 Watchdog Timer Watchdog Oscillator Oscillator Circuits / Clock Generation Power Supervision POR / BOD & RESET debugWIRE Flash SRAM PROGRAM LOGIC CPU EEPROM AVCC AREF DATABUS GND 8bit T/C 0 16bit T/C 1 A/D Conv. 8bit T/C 2 Analog Comp. Internal Bandgap USART 0 SPI TWI PORT D (8) PORT B (8) PORT C (7) 2 6 RESET XTAL[1..2] PD[0..7]  2018 Microchip Technology Inc. PB[0..7] PC[0..6] Data Sheet Complete ADC[6..7] DS40002065A-page 13 ATmega48P/V/88P/V/168P/V The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega48P/88P/168P provides the following features: 4K/8K/16Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512bytes EEPROM, 512/1K/1Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented, 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. Microchip offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression™ (AKS™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using Microchip’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega48P/88P/168P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega48P/88P/168P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 14 ATmega48P/V/88P/V/168P/V 2.2 Comparison Between ATmega48P, ATmega88P and ATmega168P The ATmega48P, ATmega88P and ATmega168P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices. Table 2-1. Memory Size Summary Device Flash EEPROM RAM Interrupt Vector Size ATmega48P 4KBytes 256Bytes 512Bytes 1 instruction word/vector ATmega88P 8KBytes 512Bytes 1KBytes 1 instruction word/vector ATmega168P 16KBytes 512Bytes 1KBytes 2 instruction words/vector ATmega88P and ATmega168P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48P, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 15 ATmega48P/V/88P/V/168P/V 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.microchip.com Note: 4. 1. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 5. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details. For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. 6. Capacitive touch sensing The QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most AVR® microcontrollers. The QTouch Library includes support for the QTouch and QMatrix™ acquisition methods. Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states. The QTouch Library is FREE and downloadable from the Microchip website at the following location http://www.microchip.com. For implementation details and other information, refer to the QTouch Library User Guide - also available for download from the Microchip website.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 16 ATmega48P/V/88P/V/168P/V 7. AVR CPU Core 7.1 Overview This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. Figure 7-1. Block Diagram of the AVR Architecture Data Bus 8-bit Flash Program Memory Program Counter Status and Control 32 x 8 General Purpose Registrers Control Lines Direct Addressing Instruction Decoder Indirect Addressing Instruction Register Interrupt Unit SPI Unit Watchdog Timer ALU Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 17 ATmega48P/V/88P/V/168P/V The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega48P/88P/168P has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 7.2 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description. 7.3 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 18 ATmega48P/V/88P/V/168P/V conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 7.3.1 SREG – AVR Status Register The AVR Status Register – SREG – is defined as: Bit 7 6 5 4 3 2 1 0 0x3F (0x5F) I T H S V N Z C Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 SREG • Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference. • Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. • Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the “Instruction Set Description” for detailed information. • Bit 4 – S: Sign Bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See the “Instruction Set Description” for detailed information. • Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Description” for detailed information. • Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information. • Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 19 ATmega48P/V/88P/V/168P/V • Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information. 7.4 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: • One 8-bit output operand and one 8-bit result input • Two 8-bit output operands and one 8-bit result input • Two 8-bit output operands and one 16-bit result input • One 16-bit output operand and one 16-bit result input Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU. Figure 7-2. AVR CPU General Purpose Working Registers 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 … R13 0x0D General R14 0x0E Purpose R15 0x0F Working R16 0x10 Registers R17 0x11 … R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 20 ATmega48P/V/88P/V/168P/V 7.4.1 The X-register, Y-register, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 7-3. Figure 7-3. The X-, Y-, and Z-registers 15 X-register XH 7 XL 0 R27 (0x1B) 15 Y-register 0 R26 (0x1A) YH 7 YL 0 R29 (0x1D) Z-register 0 7 0 7 0 R28 (0x1C) 15 ZH 7 0 R31 (0x1F) ZL 7 0 0 R30 (0x1E) In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). 7.5 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure 8-3 on page 27. See Table 7-1 for Stack Pointer details. Table 7-1. Stack Pointer instructions Instruction Stack pointer Description PUSH Decremented by 1 Data is pushed onto the stack CALL ICALL RCALL Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt POP Incremented by 1 Data is popped from the stack RET RETI Incremented by 2 Return address is popped from the stack with return from subroutine or return from interrupt The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 21 ATmega48P/V/88P/V/168P/V 7.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register Bit 15 14 13 12 11 10 9 8 0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH 0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND Read/Write Initial Value 7.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 7-4. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 7-5. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 22 ATmega48P/V/88P/V/168P/V 7.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory Programming” on page 306 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 66. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 66 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-Programming, ATmega88P and ATmega168P” on page 290. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.  2018 Microchip Technology Inc. Data Sheet Complete DS40002065A-page 23 ATmega48P/V/88P/V/168P/V Assembly Code Example in r16, SREG ; store SREG value cli ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C Code Example char cSREG; cSREG = SREG; SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1
ATMEGA48P-20AU 价格&库存

很抱歉,暂时无法提供与“ATMEGA48P-20AU”相匹配的价格&库存,您可以联系我们找货

免费人工找货