0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPIC33EV256GM103-I/M5

DSPIC33EV256GM103-I/M5

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    UFQFN36

  • 描述:

    IC MCU 16BIT 256KB FLASH 36UQFN

  • 数据手册
  • 价格&库存
DSPIC33EV256GM103-I/M5 数据手册
dsPIC33EVXXXGM00X/10X FAMILY 16-Bit, 5V Digital Signal Controllers with PWM, SENT, Op Amps and Advanced Analog Features Operating Conditions PWM • 4.5V to 5.5V, 0°C to +85°C, DC to 70 MIPS • 4.5V to 5.5V, -40°C to +125°C, DC to 60 MIPS • 4.5V to 5.5V, -40°C to +150°C, DC to 40 MIPS • Up to Six Pulse-Width Modulation (PWM) Outputs (three generators) • Primary Master Time Base Inputs allow Time Base Synchronization from Internal/External Sources • Dead Time for Rising and Falling Edges • 7.14 ns PWM Resolution • PWM Support for: - DC/DC, AC/DC, inverters, Power Factor Correction (PFC) and lighting - Brushless Direct Current (BLDC), Permanent Magnet Synchronous Motor (PMSM), AC Induction Motor (ACIM), Switched Reluctance Motor (SRM) - Programmable Fault inputs - Flexible trigger configurations for Analog-to-Digital conversion - Supports PWM lock, PWM output chopping and dynamic phase shifting Core: 16-Bit dsPIC33E CPU • • • • • • • • • Code-Efficient (C and Assembly) Architecture 16-Bit Wide Data Path Two 40-Bit Wide Accumulators Single-Cycle (MAC/MPY) with Dual Data Fetch Single-Cycle, Mixed-Sign MUL plus Hardware Divide 32-Bit Multiply Support Intermediate Security for Memory: - Provides a Boot Flash Segment in addition to the existing General Flash Segment Error Code Correction (ECC) for Flash Added Two Alternate Register Sets for Fast Context Switching Clock Management Advanced Analog Features • • • • • • • ADC module: - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H - Up to 36 analog inputs • Flexible and Independent ADC Trigger Sources • Up to Four Op Amp/Comparators with Direct Connection to the ADC module: - Additional dedicated comparator and 7-bit Digital-to-Analog Converter (DAC) - Two comparator voltage reference outputs - Programmable references with 128 voltage points - Programmable blanking and filtering • Charge Time Measurement Unit (CTMU): - Supports mTouch® capacitive touch sensing - Provides high-resolution time measurement (1 ns) - On-chip temperature measurement - Temperature sensor diode - Nine sources of edge input triggers (CTED1, CTED2, OCPWM, TMR1, SYSCLK, OSCLK, FRC, BFRC and LPRC) Internal, 15% Low-Power RC (LPRC) – 32 kHz Internal, 1% Fast RC (FRC) – 7.37 MHz Internal, 10% Backup FRC (BFRC) – 7.37 MHz Programmable PLLs and Oscillator Clock Sources Fail-Safe Clock Monitor (FSCM) Additional FSCM Source (BFRC), Intended to Provide a Clock Fail Switch Source for the System Clock • Independent Watchdog Timer (WDT) • System Windowed Watchdog Timer (DMT) • Fast Wake-up and Start-up Power Management • Low-Power Management modes (Sleep, Idle and Doze) • Power Consumption Minimized Executing NOP String • Integrated Power-on Reset (POR) and Brown-out Reset (BOR) • 0.5 mA/MHz Dynamic Current (typical) • 50 µA at +25°C IPD Current (typical)  2013-2019 Microchip Technology Inc. DS70005144H-page 1 dsPIC33EVXXXGM00X/10X FAMILY Timers/Output Compare/Input Capture Input/Output • Nine General Purpose Timers: - Five 16-bit and up to two 32-bit timers/ counters; Timer3 can provide ADC trigger • Four Output Compare modules Configurable as Timers/Counters • Four Input Capture modules • GPIO Registers to Support Selectable Slew Rate I/Os • Peripheral Pin Select (PPS) to allow Function Remap • Sink/Source: 8 mA or 12 mA, Pin-Specific for Standard VOH/VOL • Selectable Open-Drain, Pull-ups and Pull-Downs • Change Notice Interrupts on All I/O Pins Communication Interfaces • Two Enhanced Addressable Universal Asynchronous Receiver/Transmitter (UART) modules (6.25 Mbps): - With support for LIN/J2602 bus and IrDA® - High and low speed (SCI) • Two SPI modules (15 MHz): - 25 MHz data rate without using PPS • One I2C module (up to 1 Mbaud) with SMBus Support • Two SENT J2716 (Single-Edge Nibble Transmission-Transmit/Receive) module for Automotive Applications • One CAN module: - 32 buffers, 16 filters and 3 masks Direct Memory Access (DMA) • Four-Channel DMA with User-Selectable Priority Arbitration • UART, Serial Peripheral Interface (SPI), ADC, Input Capture, Output Compare and Controller Area Network (CAN) DS70005144H-page 2 Qualification and Class B Support • AEC-Q100 REVG (Grade 1: -40°C to +125°C) Compliant • AEC-Q100 REVG (Grade 0: -40°C to +150°C) Compliant • Class B Safety Library, IEC 60730 Class B Fault Handling Support • Backup FRC • Windowed WDT uses LPRC • Windowed Deadman Timer (DMT) uses System Clock (System Windowed Watchdog Timer) • H/W Clock Monitor Circuit • Oscillator Frequency Monitoring through CTMU (OSCI, SYSCLK, FRC, BFRC, LPRC) • Dedicated PWM Fault Pin • Lockable Clock Configuration Debugger Development Support • In-Circuit and In-Application Programming • Three Complex and Five Simple Breakpoints • Trace and Run-Time Watch  2013-2019 Microchip Technology Inc. The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show the devices’ pinout diagrams. dsPIC33EV64GM104 dsPIC33EV128GM004 dsPIC33EV128GM104 dsPIC33EV256GM004 dsPIC33EV256GM104 4K 64K 8K 128K 8K 256K 16K Pins DS70005144H-page 3 dsPIC33EV64GM004 32K External Interrupts dsPIC33EV32GM104 16K General Purpose I/O (GPIO) dsPIC33EV32GM004 256K Peripheral Pin Select (PPS) dsPIC33EV256GM103 8K Security dsPIC33EV256GM003 128K CTMU dsPIC33EV128GM103 8K Op Amp/Comparators dsPIC33EV128GM003 64K ADC Inputs dsPIC33EV64GM103 4K 10/12-Bit ADC dsPIC33EV64GM003 32K SENT dsPIC33EV32GM103 16K I2C dsPIC33EV32GM003 256K SPI dsPIC33EV256GM102 8K UART dsPIC33EV256GM002 128K PWM dsPIC33EV128GM102 8K Output Compare dsPIC33EV128GM002 64K Input Capture dsPIC33EV64GM102 4K 32-Bit Timers dsPIC33EV64GM002 32K 16-Bit Timers (T1) dsPIC33EV32GM102 4 5 2 4 4 3x2 2 2 1 2 1 11 3/4 1 Intermediate Y 21 3 28 4 5 2 4 4 3x2 2 2 1 2 1 13 3/4 1 Intermediate Y 25 3 36 4 5 2 4 4 3x2 2 2 1 2 1 24 4/5 1 Intermediate Y 35 3 44, 48 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 dsPIC33EVXXXGM00X/10X FAMILY dsPIC33EV32GM002 DMA Channels Device CAN dsPIC33EVXXXGM00X/10X FAMILY DEVICES SRAM Bytes TABLE 1: Program Memory Bytes  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X PRODUCT FAMILIES dsPIC33EV128GM106 dsPIC33EV256GM006 dsPIC33EV256GM106 128K 8K 256K 16K UART SPI I2C SENT 10/12-Bit ADC ADC Inputs Op Amp/Comparators CTMU Security Peripheral Pin Select (PPS) General Purpose I/O (GPIO) External Interrupts Pins CAN PWM 8K Output Compare dsPIC33EV128GM006 64K Input Capture dsPIC33EV64GM106 4K 32-Bit Timers dsPIC33EV64GM006 32K 16-Bit Timers (T1) dsPIC33EV32GM106 DMA Channels dsPIC33EV32GM006 SRAM Bytes Device Program Memory Bytes dsPIC33EVXXXGM00X/10X FAMILY DEVICES (CONTINUED) 4 5 2 4 4 3x2 2 2 1 2 1 36 4/5 1 Intermediate Y 53 3 64 0 1 0 1 0 1 0 1 dsPIC33EVXXXGM00X/10X FAMILY DS70005144H-page 4 TABLE 1:  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams 28-Pin SPDIP/SOIC/SSOP(1,2,3) 1 28 AVDD 2 27 AVSS OA2IN+/AN1/C2IN1+/RPI17/RA1 3 26 RPI47/PWM1L/T5CK/RB15 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 4 25 RPI46/PWM1H/T3CK/RB14 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 5 24 RPI45/PWM2L/CTPLS/RB13 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 6 PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RB3 7 VSS 8 OSC1/CLKI/AN32/RPI18/RA2 9 dsPIC33EV32GM002/102 dsPIC33EV64GM002/102 dsPIC33EV128GM002/102 dsPIC33EV256GM002/102 MCLR OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 23 RPI44/PWM2H/RB12 22 RP43/PWM3L/RB11 21 RP42/PWM3H/RB10 20 VCAP 19 VSS 18 OA5IN-/AN27/C5IN1-/ASDA1/SDI1/RP41/RB9 12 17 AN26/CVREF1O/ASCL1/SDO1/RP40/T4CK/RB8 13 16 OA5OUT/AN25/C5IN4-/C4IN1+/SCK1/RP39/INT0/RB7 14 15 PGEC2/SCL1/RP38/RB6 OSC2/CLKO/RPI19/RA3 10 FLT32/RP36/RB4 11 OA5IN+/AN24/C5IN3-/C5IN1+/RP20/T1CK/RA4 VDD PGED2/SDA1/RP37/RB5 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used.  2013-2019 Microchip Technology Inc. DS70005144H-page 5 dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) RPI46/PWM1H/T3CK/RB14 RPI47/PWM1L/T5CK/RB15 AVSS AVDD MCLR OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 28-Pin QFN-S(1,2,3,4) 28 27 26 25 24 23 22 PGED3/OA2IN-/AN2/C21N1-/SS1/RPI32/CTED2/RB0 1 21 RPI45/PWM2L/CTPLS/RB13 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 2 20 RPI44/PWM2H/RB12 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 3 PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RB3 4 VSS 5 dsPIC33EV 32GM002/102 19 dsPIC33EV 64GM002/102 dsPIC33EV 128GM002/102 18 dsPIC33EV256GM002/102 17 OSC1/CLKI/AN32/RPI18/RA2 6 16 VSS OSC2/CLKO/RPI19/RA3 7 15 OA5IN-/AN27/C5IN1-/ASDA1/SDI1/RP41/RB9 VCAP AN26/CVREF1O/ASCL1/SDO1/RP40/T4CK/RB8 OA5OUT/AN25/C5IN4-/C4IN1+/SCK1/RP39/INT0/RB7 PGEC2/SCL1/RP38/RB6 PGED2/SDA1/RP37/RB5 VDD FLT32/RP36/RB4 RP42/PWM3H/RB10 9 10 11 12 13 14 OA 5 IN+/AN24/C5IN3-/C5 IN1+/RP20/T1CK/RA4 8 RP43/PWM3L/RB11 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. 4: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70005144H-page 6  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) RPI46/PWM1H/T3CK/RB14 RPI47/PWM1L/T5CK/RB15 AVSS AVDD MCLR OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 36-Pin UQFN(1,2,3,4) 36 35 34 33 32 31 30 29 28 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 1 27 RPI45/PWM2L/CTPLS/RB13 PGED1/OA1IN-/AN5/C1IN1-/(CTMUC)/RP35/RB3 2 26 RPI44/PWM2H/RB12 AN6/C3IN4-/C4IN4-/C4IN1+/RP48RC0 3 25 RP43/PWM3L/RB11 AN7/C3IN1-/C4IN1-/RP49/RC1 4 24 RP42/PWM3H/RB10 VDD 5 23 VDD VSS 6 22 VCAP OSC1/CLK1/AN32/RPI18/RA2 7 21 VSS OSC2/CLKO/RPI19/RA3 8 20 RP56/RC8 RPI24/RA8 9 19 OA5IN-/AN27/C5IN1-/ASDA1/SDI1/RP41/RB9 dsPIC33EV32GM003/103 dsPIC33EV64GM003/103 dsPIC33EV128GM003/103 dsPIC33EV256GM003/103 AN26/CVREF1O/ASCL1/SDO1/RP40/T4CK/RB8 OA5OUT/AN25/C5IN4-/SCK1/RP39/INT0/RB7 PGEC2/SCL1/RP38/RB6 PGED2/SDA1/RP37/RB5 VDD VSS VDD FLT32/RP36/RB4 OA5IN+/AN24/C5IN3-/C5IN1+/RP20/T1CK/RA4 10 11 12 13 14 15 16 17 18 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. 4: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  2013-2019 Microchip Technology Inc. DS70005144H-page 7 dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) AN26/CVREF1O/ASCL1/RP40/T4CK/RB8 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 PGEC2/SCL1/RP38/RB6 PGED2/SDA1/RP37/RB5 VDD VSS AN31/CVREF2O/RPI53/RC5 AN30/CVREF+/RPI52/RC4 AN29/SCK1/RPI51/RC3 AN28/SDI1/RPI25/RA9 OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 44 43 42 41 40 39 38 37 36 35 34 44-Pin TQFP(1,2,3) OA5IN-/AN27/C5IN1-/ASDA1/RP41/RB9 1 33 FLT32/RP36/RB4 AN53/RP54/RC6 2 32 RPI24/RA8 AN52/RP55/RC7 3 31 OSC2/CLKO/RPI19/RA3 AN51/RP56/RC8 4 30 OSC1/CLKI/AN32/RPI18/RA2 AN54/RP57/RC9 5 29 VSS VSS 6 VCAP 7 RP42/PWM3H/RB10 RP43/PWM3L/RB11 dsPIC33EV32GM004/104 dsPIC33EV64GM004/104 dsPIC33EV128GM004/104 dsPIC33EV256GM004/104 18 19 20 21 22 MCLR OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 17 23 AVDD 11 16 PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RB3 RPI45/PWM2L/CTPLS/RB13 AVSS 24 15 10 RPI47/PWM1L/T5CK/RB15 OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/RC0 RPI44/PWM2H/RB12 14 OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1 25 RPI46/PWM1H/T3CK/RB14 26 9 13 8 12 OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/RC2 AN55/RA7 VDD 27 AN56/RA10 28 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. DS70005144H-page 8  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY AN28/SDI1/RPI25/RA9 AN29/SCK1/RPI51/RC3 AN31/CVREF2O/RPI53/RC5 AN30/CVREF+/RPI52/RC4 VSS VDD PGED2/SDA1/RP37/RB5 PGEC2/SCL1/RP38/RB6 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 AN26/CVREF1O/ASCL1/RP40/T4CK/RB8 44-Pin QFN(1,2,3,4) OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 Pin Diagrams (Continued) 44 43 42 41 40 39 38 37 36 35 34 OA5IN-/AN27/C5IN1-/ASDA1/RP41/RB9 1 33 FLT32/RP36/RB4 AN53/RP54/RC6 2 32 RPI24/RA8 AN52/RP55/RC7 3 31 OSC2/CLKO/RPI19/RA3 AN51/RP56/RC8 4 30 OSC1/CLKI/AN32/RPI18/RA2 AN54/RP57/RC9 5 VSS 6 VCAP 7 dsPIC33EV32GM004/104 dsPIC33EV64GM004/104 dsPIC33EV128GM004/104 dsPIC33EV256GM004/104 29 VSS 28 VDD 27 OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/RC2 OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1 RP42/PWM3H/RB10 8 26 RP43/PWM3L/RB11 9 25 OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/RC0 RPI44/PWM2H/RB12 10 24 PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RB3 RPI45/PWM2L/CTPLS/RB13 11 23 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 MCLR AVDD AVSS RPI47/PWM1L/T5CK/RB15 RPI46/PWM1H/T3CK/RB14 AN55/RA7 AN56/RA10 12 13 14 15 16 17 18 19 20 21 22 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. 4: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  2013-2019 Microchip Technology Inc. DS70005144H-page 9 dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) PGED2/SDA1/RP37/RB5 NC VDD VSS AN31/CVREF2O/RPI53/RC5 AN30/CVREF+/RPI52/RC4 AN29/SCK1/RPI51/RC3 AN28/SDI1/RPI25/RA9 OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 43 42 41 40 39 38 37 PGEC2/SCL1/RP38/RB6 46 44 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 47 45 AN26/CVREF1O/ASCL1/RP40/T4CK/RB8 48 48-Pin TQFP(1,2,3) OA5IN-/AN27/C5IN1-/ASDA1/RP41/RB9 1 36 FLT32/RP36/RB4 AN53/RP54/RC6 2 35 RPI24/RA8 AN52/RP55/RC7 3 34 OSC2/CLKO/RPI19/RA3 AN51/RP56/RC8 4 33 OSC1/CLKI/AN32/RPI18/RA2 AN54/RP57/RC9 5 32 VSS 6 NC VSS VCAP 7 30 VDD NC 8 29 OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/RC2 RP42/PWM3H/RB10 9 28 OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1 RP43/PWM3L/RB11 10 27 OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/RC0 RPI44/PWM2H/RB12 11 26 PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RB3 RPI45/PWM2L/CTPLS/RB13 12 25 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 21 22 23 24 OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 20 NC 17 AVSS 19 16 RPI47/PWM1L/T5CK/RB15 18 15 RPI46/PWM1H/T3CK/RB14 AVDD 14 AN55/RA7 31 MCLR 13 AN56/RA10 dsPIC33EV32GM004/104 dsPIC33EV64GM004/104 dsPIC33EV128GM004/104 dsPIC33EV256GM004/104 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. DS70005144H-page 10  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AN56/RA10 RPI45/PWM2L/CTPLS/RB13 RPI44/PWM2H/RB12 RP43/PWM3L/RB11 RP42/PWM3H/RB10 RP97/RF1 RPI96/RF0 VDD VCAP AN54/RP57/RC9 RP70/RD6 RP69/RD5 AN51/RP56/RC8 AN52/RP55/RC7 AN53/RP54/RC6 OA5IN-/AN27/C5IN1-/ASDA1/RP41/RB9 64-Pin TQFP(1,2,3) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33EV32GM006/106 dsPIC33EV64GM006/106 dsPIC33EV128GM006/106 dsPIC33EV256GM006/106 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AN26/CVREF1O/ASCL1/RP40/T4CK/RB8 RPI61/RC13 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 AN48/CVREF2O/RPI58/RC10 PGEC2/SCL1/RP38/RB6 PGED2/SDA1/RP37/RB5 RPI72/RD8 VSS OSC2/CLKO/RPI63/RC15 OSC1/CLKI/AN49/RPI60/RC12 VDD AN31/RPI53/RC5 AN30/CVREF+/RPI52/RC4 AN29/SCK1/RPI51/RC3 AN28/SDI1/RPI25/RA9 OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 PGED1/OA1IN-/AN5/C1IN1-/(CTMUC)/RP35/RB3 AVDD AVSS OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/RC0 OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1 OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/RC2 AN11/C1IN2-/U1CTS/FLT4/RC11 VSS VDD AN12/C2IN2-/C5IN2-/U2RTS/BCLK2/FLT5/RE12 AN13/C3IN2-/U2CTS/FLT6/RE13 AN14/RPI94/FLT7/RE14 AN15/RPI95/FLT8/RE15 RPI24/RA8 FLT32/RP36/RB4 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AN55/RA7 RPI46/PWM1H/T3CK/RB14 RPI47/PWM1L/T5CK/RB15 AN19/RP118/RG6 AN18/RPI119/RG7 AN17/RP120/RG8 MCLR AN16/RPI121/RG9 VSS VDD AN10/RPI28/RA12 AN9/RPI27/RA11 OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used.  2013-2019 Microchip Technology Inc. DS70005144H-page 11 dsPIC33EVXXXGM00X/10X FAMILY Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AN56/RA10 RPI45/PWM2L/CTPLS/RB13 RPI44/PWM2H/RB12 RP43/PWM3L/RB11 RP42/PWM3H/RB10 RP97/RF1 RPI96/RF0 VDD VCAP AN54/ RP57/RC9 RP70/RD6 RP69/RD5 AN51/RP56/RC8 AN52/RP55/RC7 AN53/RP54/RC6 OA5IN-/AN27/C5IN1-/ASDA1/RP41/RB9 64-Pin QFN(1,2,3,4) dsPIC33EV32GM006/106 dsPIC33EV64GM006/106 dsPIC33EV128GM006/106 dsPIC33EV256GM006/106 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AN26/CVREF1O/ASCL1/RP40/T4CK/RB8 RPI61/RC13 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 AN48/CVREF2O/RPI58/RC10 PGEC2/SCL1/RP38/RB6 PGED2/SDA1/RP37/RB5 RPI72/RD8 VSS OSC2/CLKO/RPI63/RC15 OSC1/CLKI/AN49/RPI60/RC12 VDD AN31/RPI53/RC5 AN30/CVREF+/RPI52/RC4 AN29/SCK1/RPI51/RC3 AN28/SDI1/RPI25/RA9 OA5 IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 PGED1/OA1IN-/AN5/C1IN1-/(CTMUC)/RP35/RB3 AVDD AVSS OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/RC0 OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1 OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/RC2 AN11/C1IN2-/U1CTS/FLT4/RC11 VSS VDD AN12/C2IN2-/C5IN2-/U2RTS/BCLK2/FLT5/RE12 AN13/C3IN2-/U2CTS/FLT6/RE13 AN14/RPI94/FLT7/RE14 AN15/RPI95/FLT8/RE15 RPI24/RA8 FLT32/RP36/RB4 AN55/RA7 RPI46/PWM1H/T3CK/RB14 RPI47/PWM1L/T5CK/RB15 AN19/RP118/RG6 AN18/RPI119/RG7 AN17/RP120/RG8 MCLR AN16/RPI121/RG9 VSS VDD AN10/RPI28/RA12 AN9/RPI27/RA11 OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 OA2IN+/AN1/C2IN1+/RPI17/RA1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.5 “Peripheral Pin Select (PPS)” for available peripherals and information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information. 3: If the op amp is selected when OPAEN (CMxCON[10]) = 1, the OAx input is used; otherwise, the ANx input is used. 4: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70005144H-page 12  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY Table of Contents 1.0 Device Overview ........................................................................................................................................................................ 17 2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 21 3.0 CPU............................................................................................................................................................................................ 25 4.0 Memory Organization ................................................................................................................................................................. 35 5.0 Flash Program Memory.............................................................................................................................................................. 87 6.0 Resets ....................................................................................................................................................................................... 95 7.0 Interrupt Controller ..................................................................................................................................................................... 99 8.0 Direct Memory Access (DMA) .................................................................................................................................................. 113 9.0 Oscillator Configuration ............................................................................................................................................................ 127 10.0 Power-Saving Features............................................................................................................................................................ 137 11.0 I/O Ports ................................................................................................................................................................................... 147 12.0 Timer1 ...................................................................................................................................................................................... 177 13.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 179 14.0 Deadman Timer (DMT) ............................................................................................................................................................ 185 15.0 Input Capture............................................................................................................................................................................ 193 16.0 Output Compare....................................................................................................................................................................... 197 17.0 High-Speed PWM Module ....................................................................................................................................................... 203 18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 225 19.0 Inter-Integrated Circuit (I2C) ..................................................................................................................................................... 233 20.0 Single-Edge Nibble Transmission (SENT) ............................................................................................................................... 241 21.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 251 22.0 Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only).................................................................... 257 23.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 283 24.0 10-Bit/12-Bit Analog-to-Digital Converter (ADC) ...................................................................................................................... 289 25.0 Op Amp/Comparator Module ................................................................................................................................................... 305 26.0 Comparator Voltage Reference................................................................................................................................................ 317 27.0 Special Features ...................................................................................................................................................................... 321 28.0 Instruction Set Summary .......................................................................................................................................................... 331 29.0 Development Support............................................................................................................................................................... 341 30.0 Electrical Characteristics .......................................................................................................................................................... 343 31.0 High-Temperature Electrical Characteristics............................................................................................................................ 405 32.0 Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C) ................................................................... 415 33.0 Characteristics for High-Temperature Devices (+150°C) ......................................................................................................... 441 34.0 Packaging Information.............................................................................................................................................................. 463 Appendix A: Revision History............................................................................................................................................................. 493 Index ................................................................................................................................................................................................. 495 The Microchip Website ...................................................................................................................................................................... 501 Customer Change Notification Service .............................................................................................................................................. 501 Customer Support .............................................................................................................................................................................. 501 Product Identification System ............................................................................................................................................................ 503  2013-2019 Microchip Technology Inc. DS70005144H-page 13 dsPIC33EVXXXGM00X/10X FAMILY TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Website; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our website at www.microchip.com to receive the most current information on all of our products. DS70005144H-page 14  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY Referenced Sources This device data sheet is based on the following individual chapters of the “dsPIC33/PIC24 Family Reference Manual”, which are available from the Microchip website (www.microchip.com). The following documents should be considered as the general reference for the operation of a particular module or device feature: • • • • • • • • • • • • • • • • • • • • • • • • • • “Introduction” (www.microchip.com/DS70573) “CPU” (www.microchip.com/DS70359) “Data Memory” (www.microchip.com/DS70595) “dsPIC33/PIC24 Program Memory” (www.microchip.com/DS70000613) “Flash Programming” (www.microchip.com/DS70000609) “Interrupts” (www.microchip.com/DS70000600) “Oscillator” (www.microchip.com/DS70580) “Reset” (www.microchip.com/DS70602) “Watchdog Timer and Power-Saving Modes” (www.microchip.com/DS70615) “I/O Ports” (www.microchip.com/DS70000598) “Timers” (www.microchip.com/DS70362) “CodeGuard™ Intermediate Security” (www.microchip.com/DS70005182) “Deadman Timer” (www.microchip.com/DS70005155) “Input Capture with Dedicated Timer” (www.microchip.com/DS70000352) “Output Compare with Dedicated Timer” (www.microchip.com/DS70005159) “High-Speed PWM” (www.microchip.com/DS70645) “Analog-to-Digital Converter (ADC)” (www.microchip.com/DS70621) “Universal Asynchronous Receiver Transmitter (UART)” (www.microchip.com/DS70000582) “Serial Peripheral Interface (SPI)” (www.microchip.com/DS70005185) “Inter-Integrated Circuit (I2C)” (www.microchip.com/DS70000195) “Enhanced Controller Area Network (ECAN™)” (www.microchip.com/DS70353) “Direct Memory Access (DMA)” (www.microchip.com/DS70348) “Programming and Diagnostics” (www.microchip.com/DS70608) “Op Amp/Comparator” (www.microchip.com/DS70000357) “Device Configuration” (www.microchip.com/DS70000618) “Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect” (www.microchip.com/DS30009743) • “Single-Edge Nibble Transmission (SENT) Module” (www.microchip.com/DS70005145)  2013-2019 Microchip Technology Inc. DS70005144H-page 15 dsPIC33EVXXXGM00X/10X FAMILY NOTES: DS70005144H-page 16  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 1.0 DEVICE OVERVIEW This document contains device-specific information for the dsPIC33EVXXXGM00X/10X family Digital Signal Controller (DSC) devices. Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip website (www.microchip.com). dsPIC33EVXXXGM00X/10X family devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture. Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 1-1: dsPIC33EVXXXGM00X/10X FAMILY BLOCK DIAGRAM PORTA CPU 16 Refer to Figure 3-1 for CPU diagram details. PORTB PORTC Power-up Timer OSC1/CLKI Timing Generation MCLR VDD, VSS AVDD, AVSS SENT1/2 CAN1(1) ADC Oscillator Start-up Timer PORTD POR/BOR PORTE Watchdog Timer/ Deadman Timer Input Capture Output Compare 16 PORTF I2C1 PORTG Remappable Pins CTMU PWM Timers Op Amp/ Comparator SPI1/2 UART1/2 PORTS Peripheral Modules Note 1: This feature or peripheral is only available on dsPIC33EVXXXGM10X devices.  2013-2019 Microchip Technology Inc. DS70005144H-page 17 dsPIC33EVXXXGM00X/10X FAMILY TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Name Pin Buffer PPS Type Type Description AN0-AN19 AN24-AN32 AN48, AN49 AN51-AN56 I Analog No Analog input channels. CLKI I No CLKO O ST/ CMOS — External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. OSC1 I No OSC2 I/O ST/ CMOS — REFCLKO O — Yes Reference clock output. IC1-IC4 I ST Yes Capture Inputs 1 to 4. OCFA OC1-OC4 I O ST — Yes Compare Fault A input (for compare channels). Yes Compare Outputs 1 to 4. INT0 INT1 INT2 I I I ST ST ST No External Interrupt 0. Yes External Interrupt 1. Yes External Interrupt 2. No No Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. RA0-RA4, RA7-RA12 I/O ST Yes PORTA is a bidirectional I/O port. RB0-RB15 I/O ST Yes PORTB is a bidirectional I/O port. RC0-RC13, RC15 I/O ST Yes PORTC is a bidirectional I/O port. RD5-RD6, RD8 I/O ST Yes PORTD is a bidirectional I/O port. RE12-RE15 I/O ST Yes PORTE is a bidirectional I/O port. RF0-RF1 I/O ST No RG6-RG9 PORTF is a bidirectional I/O port. I/O ST Yes PORTG is a bidirectional I/O port. T1CK T2CK T3CK T4CK T5CK I I I I I ST ST ST ST ST No Yes No No No Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. CTPLS CTED1 CTED2 O I I ST ST ST No No No CTMU pulse output. CTMU External Edge Input 1. CTMU External Edge Input 2. U1CTS U1RTS U1RX U1TX I O I O ST — ST — Yes Yes Yes Yes UART1 Clear-to-Send. UART1 Ready-to-Send. UART1 receive. UART1 transmit. U2CTS U2RTS U2RX U2TX I O I O ST — ST — Yes Yes Yes Yes UART2 Clear-to-Send. UART2 Ready-to-Send. UART2 receive. UART2 transmit. SCK1 SDI1 SDO1 SS1 I/O I O I/O ST ST — ST No No No No Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select DS70005144H-page 18 Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Buffer PPS Type Type Description SCK2 SDI2 SDO2 SS2 I/O I O I/O ST ST — ST Yes Yes Yes Yes Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 ASCL1 ASDA1 I/O I/O I/O I/O ST ST ST ST No No No No Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Alternate synchronous serial clock input/output for I2C1. Alternate synchronous serial data input/output for I2C1. C1RX C1TX I O ST — Yes CAN1 bus receive pin. Yes CAN1 bus transmit pin. SENT1TX SENT1RX SENT2TX SENT2RX O I O I — — — — Yes Yes Yes Yes SENT1 transmit pin. SENT1 receive pin. SENT2 transmit pin. SENT2 receive pin. CVREF O Analog No Comparator Voltage Reference output. C1IN1+, C1IN2-, C1IN1-, C1IN3C1OUT I Analog No Comparator 1 inputs. O — I Analog O — I Analog O — I Analog O — C2IN1+, C2IN2-, C2IN1-, C2IN3C2OUT C3IN1+, C3IN2-, C2IN1-, C3IN3C3OUT C4IN1+, C4IN2-, C4IN1-, C4IN3C4OUT Yes Comparator 1 output. No Comparator 2 inputs. Yes Comparator 2 output. No Comparator 3 inputs. Yes Comparator 3 output. No Comparator 4 inputs. Yes Comparator 4 output. C5IN1+, C5IN2-, C5IN1-, C5IN3C5OUT I Analog No Comparator 5 inputs. O — Yes Comparator 5 output. FLT1-FLT2 FLT3-FLT8 FLT32 DTCMP1-DTCMP3 PWM1L-PWM3L PWM1H-PWM3H SYNCI1 SYNCO1 I I I I O O I O ST ST ST ST — — ST — Yes NO NO Yes No No Yes Yes PWM Fault Inputs 1 and 2. PWM Fault Inputs 3 to 8. PWM Fault Input 32. PWM Dead-Time Compensation Inputs 1 to 3. PWM Low Outputs 1 to 3. PWM High Outputs 1 to 3. PWM Synchronization Input 1. PWM Synchronization Output 1. PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3 I/O I I/O I I/O I ST ST ST ST ST ST No No No No No No Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3. MCLR I/P ST No Master Clear (Reset) input. This pin is an active-low Reset to the device. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select  2013-2019 Microchip Technology Inc. Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input DS70005144H-page 19 dsPIC33EVXXXGM00X/10X FAMILY TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Buffer PPS Type Type Description AVDD P P No Positive supply for analog modules. This pin must be connected at all times. AVSS P P No Ground reference for analog modules. VDD P — No Positive supply for peripheral logic and I/O pins. VCAP P — No CPU logic filter capacitor connection. VSS P — No Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select DS70005144H-page 20 Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements Getting started with the dsPIC33EVXXXGM00X/10X family of 16-bit microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins (regardless if ADC module is not used) (see Section 2.2 “Decoupling Capacitors”) • VCAP (see Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 “External Oscillator Pins”) Note: 2.2 Decoupling Capacitors The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: A value of 0.1 µF (100 nF), 10V-20V is recommended. This capacitor should be a Low Equivalent Series Resistance (low-ESR), and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors. • Placement on the Printed Circuit Board (PCB): The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing the PCB track inductance. The AVDD and AVSS pins must be connected, regardless of the ADC voltage reference source.  2013-2019 Microchip Technology Inc. DS70005144H-page 21 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION MCLR dsPIC33EV VSS VDD VSS VDD AVSS VDD AVDD VSS 0.1 µF Ceramic 0.1 µF Ceramic 0.1 µF Ceramic L1(1) Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1 and the inductor capacity greater than 10 mA. Where: F CNV f = -------------2 1 f = ---------------------- 2 LC  provides two specific device For example, as shown in Figure 2-1, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations. Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: TANK CAPACITORS On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF. 2.3 pin During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. (i.e., ADC Conversion Rate/2) 2 1 L =  ----------------------   2f C  2.2.1 Master Clear (MCLR) Pin • Device Reset • Device Programming and Debugging C 0.1 µF Ceramic 2.4 The MCLR functions: VSS VDD R R1 0.1 µF Ceramic VCAP 10 µF Tantalum VDD The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length should not exceed one-quarter inch (6 mm). CPU Logic Filter Capacitor Connection (VCAP) EXAMPLE OF MCLR PIN CONNECTIONS VDD R(1) R1(2) JP MCLR dsPIC33EV C Note 1: R  10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1  470 will limit any current flow into MCLR from the external capacitor, C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. A low-ESR ( VIN- Note 1: 2: Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON[9]. Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON[8].  2013-2019 Microchip Technology Inc. DS70005144H-page 307 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R-0 CON COE CPOL — — OPAEN(2) CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1(3) EVPOL0(3) — CREF(1) — — CCH1(1) CCH0(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CON: Op Amp/Comparator x Enable bit 1 = Op Amp/Comparator x is enabled 0 = Op Amp/Comparator x is disabled bit 14 COE: Comparator x Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator x Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-11 Unimplemented: Read as ‘0’ bit 10 OPAEN: Op Amp x Enable bit(2) 1 = Op Amp x is enabled 0 = Op Amp x is disabled bit 9 CEVT: Comparator x Event bit 1 = Comparator event, according to EVPOL[1:0] settings, occurred; disables future triggers and interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator x Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1 (inverted polarity): 1 = VIN+ < VIN0 = VIN+ > VIN- Note 1: 2: 3: Inputs that are selected and not available will be tied to VSS. See the “Pin Diagrams” section for available inputs for each package. The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional. After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON[9]), and the Comparator Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]). DS70005144H-page 308  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED) bit 7-6 EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits(3) 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output. 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as ‘0’ bit 4 CREF: Comparator x Reference Select bit (VIN+ input)(1) 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the CxIN1+ pin bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 CCH[1:0]: Op Amp/Comparator x Channel Select bits(1) 11 = Inverting input of op amp/comparator connects to the CxIN4- pin 10 = Inverting input of op amp/comparator connects to the CxIN3- pin 01 = Inverting input of op amp/comparator connects to the CxIN2- pin 00 = Inverting input of op amp/comparator connects to the CxIN1- pin Note 1: 2: 3: Inputs that are selected and not available will be tied to VSS. See the “Pin Diagrams” section for available inputs for each package. The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional. After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON[9]), and the Comparator Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).  2013-2019 Microchip Technology Inc. DS70005144H-page 309 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R-0 CON COE CPOL — — — CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1(2) EVPOL0(2) — CREF(1) — — CCH1(1) CCH0(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CON: Op Amp/Comparator 4 Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as ‘0’ bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL[1:0] settings, occurred; disables future triggers and interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1 (inverted polarity): 1 = VIN+ < VIN0 = VIN+ > VIN- Note 1: 2: Inputs that are selected and not available will be tied to VSS. See the “Pin Diagrams” section for available inputs for each package. After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the comparator Event bit, CEVT (CMxCON[9]), and the Comparator Combined Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]). DS70005144H-page 310  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED) bit 7-6 EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits(2) 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output. 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as ‘0’ bit 4 CREF: Comparator 4 Reference Select bit (VIN+ input)(1) 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 CCH[1:0]: Comparator 4 Channel Select bits(1) 11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin Note 1: 2: Inputs that are selected and not available will be tied to VSS. See the “Pin Diagrams” section for available inputs for each package. After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL[1:0] (CMxCON[7:6]) = 10 or 01), the comparator Event bit, CEVT (CMxCON[9]), and the Comparator Combined Interrupt Flag, CMPIF (IFS1[2]), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1[2]).  2013-2019 Microchip Technology Inc. DS70005144H-page 311 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 RW-0 — — — — SELSRCC3 SELSRCC2 SELSRCC1 SELSRCC0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SELSRCB3 SELSRCB2 SELSRCB1 SELSRCB0 SELSRCA3 SELSRCA2 SELSRCA1 SELSRCA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 SELSRCC[3:0]: Mask C Input Select bits 1111 = FLT4 1110 = FLT2 1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L bit 7-4 SELSRCB[3:0]: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L DS70005144H-page 312 x = Bit is unknown  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-4: bit 3-0 CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED) SELSRCA[3:0]: Mask A Input Select bits 1111 = FLT4 1110 = FLT2 1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L  2013-2019 Microchip Technology Inc. DS70005144H-page 313 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 HLMS — OCEN OCNEN OBEN OBNEN OAEN OANEN bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 NAGS PAGS ACEN ACNEN ABEN ABNEN AAEN AANEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 HLMS: High or Low-Level Masking Select bit 1 = The masking (blanking) function will prevent any asserted (‘0’) comparator signal from propagating 0 = The masking (blanking) function will prevent any asserted (‘1’) comparator signal from propagating bit 14 Unimplemented: Read as ‘0’ bit 13 OCEN: OR Gate C Input Enable bit 1 = MCI is connected to OR gate 0 = MCI is not connected to OR gate bit 12 OCNEN: OR Gate C Input Inverted Enable bit 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate bit 11 OBEN: OR Gate B Input Enable bit 1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate bit 10 OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate 0 = Inverted MBI is not connected to OR gate bit 9 OAEN: OR Gate A Input Enable bit 1 = MAI is connected to OR gate 0 = MAI is not connected to OR gate bit 8 OANEN: OR Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to OR gate 0 = Inverted MAI is not connected to OR gate bit 7 NAGS: AND Gate Output Inverted Enable bit 1 = Inverted ANDI is connected to OR gate 0 = Inverted ANDI is not connected to OR gate bit 6 PAGS: AND Gate Output Enable bit 1 = ANDI is connected to OR gate 0 = ANDI is not connected to OR gate bit 5 ACEN: AND Gate C Input Enable bit 1 = MCI is connected to AND gate 0 = MCI is not connected to AND gate bit 4 ACNEN: AND Gate C Input Inverted Enable bit 1 = Inverted MCI is connected to AND gate 0 = Inverted MCI is not connected to AND gate DS70005144H-page 314  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED) bit 3 ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate bit 0 AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate  2013-2019 Microchip Technology Inc. DS70005144H-page 315 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — CFSEL2 CFSEL1 CFSEL0 CFLTREN CFDIV2 CFDIV1 CFDIV0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-7 Unimplemented: Read as ‘0’ bit 6-4 CFSEL[2:0]: Comparator x Filter Input Clock Select bits 111 = T5CLK(1) 110 = T4CLK(2) 101 = T3CLK(1) 100 = T2CLK(2) 011 = Reserved 010 = SYNCO1(3) 001 = FOSC(4) 000 = FP(4) bit 3 CFLTREN: Comparator x Filter Enable bit 1 = Digital filter is enabled 0 = Digital filter is disabled bit 2-0 CFDIV[2:0]: Comparator x Filter Clock Divide Select bits 111 = Clock divide 1:128 110 = Clock divide 1:64 101 = Clock divide 1:32 100 = Clock divide 1:16 011 = Clock divide 1:8 010 = Clock divide 1:4 001 = Clock divide 1:2 000 = Clock divide 1:1 Note 1: 2: 3: 4: x = Bit is unknown See the Type C Timer Block Diagram (Figure 13-2). See the Type B Timer Block Diagram (Figure 13-1). See the High-Speed PWMx Module Register Interconnection Diagram (Figure 17-2). See the Oscillator System Diagram (Figure 9-1). DS70005144H-page 316  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 26.0 COMPARATOR VOLTAGE REFERENCE Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Op Amp/Comparator” (www.microchip.com/DS70000357) in the “dsPIC33/PIC24 Family Reference Manual”. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information.  2013-2019 Microchip Technology Inc. 26.1 Configuring the Comparator Voltage Reference The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and VSS, or the external CVREF+ and AVSS pins. The voltage source is selected by the CVRSS bit (CVRxCON[11]). The settling time of the comparator voltage reference must be considered when changing the CVREF output. DS70005144H-page 317 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 26-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM VREFSEL (CVR1CON[10]) AVDD CVRSS = 1 (CVR1CON[11]) CVRSRC CVRSS = 0 (CVR1CON[11]) 1 CVR1CON[6:0] CVREFIN CVR6 CVR5 CVR4 CVR3 CVR2 CVR1 CVR0 CVREF+ CVREN (CVR1CON[15]) 0 R R R 128 Steps R 128-to-1 MUX R R CVREF1O CVROE (CVR1CON[14]) VREFSEL (CVR2CON[10]) R 0 AVSS AVDD CVRSS = 1 (CVR2CON[11]) CVRSRC CVR2CON[6:0] CVRSS = 0 (CVR2CON[11]) CVREN (CVR2CON[15]) CVR6 CVR5 CVR4 CVR3 CVR2 CVR1 CVR0 CVREF+ 1 R R R 128 Steps R R 128-to-1 MUX R CVREF2O CVROE (CVR2CON[14]) R AVSS Note 1: CVREF2O and CVROE (CVR2CON[14]) are not available on the 28-pin and 36-pin devices. 2: Set the respective TRISx bit to ‘1’ to get the CVREF1O/CVREF2O output voltage on the pins. 3: CVREF+ is not available on the 28-pin or 36-pin package devices. DS70005144H-page 318  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 26.2 Comparator Voltage Reference Registers REGISTER 26-1: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 CVREN CVROE — — CVRSS VREFSEL — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — CVR6 CVR5 CVR4 CVR3 CVR2 CVR1 CVR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CVREN: Comparator Voltage Reference Enable bit 1 = Comparator voltage reference circuit is powered on 0 = Comparator voltage reference circuit is powered down bit 14 CVROE: Comparator Voltage Reference Output Enable (CVREF1O Pin) bit 1 = Voltage level is output on the CVREF1O pin 0 = Voltage level is disconnected from the CVREF1O pin bit 13-12 Unimplemented: Read as ‘0’ bit 11 CVRSS: Comparator Voltage Reference Source Selection bit 1 = Comparator reference source, CVRSRC = CVREF+ – AVSS 0 = Comparator reference source, CVRSRC = AVDD – AVSS bit 10 VREFSEL: Voltage Reference Select bit 1 = CVREFIN = CVREF+ 0 = CVREFIN is generated by the resistor network bit 9-7 Unimplemented: Read as ‘0’ bit 6-0 CVR[6:0]: Comparator Voltage Reference Value Selection bits 1111111 = 127/128 x VREF input voltage • • • 0000000 = 0.0 volts  2013-2019 Microchip Technology Inc. DS70005144H-page 319 dsPIC33EVXXXGM00X/10X FAMILY REGISTER 26-2: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 CVREN CVROE(1) — — CVRSS VREFSEL — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — CVR6 CVR5 CVR4 CVR3 CVR2 CVR1 CVR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CVREN: Comparator Voltage Reference Enable bit 1 = Comparator voltage reference circuit is powered on 0 = Comparator voltage reference circuit is powered down bit 14 CVROE: Comparator Voltage Reference Output Enable (CVREF2O Pin) bit(1) 1 = Voltage level is output on the CVREF2O pin 0 = Voltage level is disconnected from the CVREF2O pin bit 13-12 Unimplemented: Read as ‘0’ bit 11 CVRSS: Comparator Voltage Reference Source Selection bit 1 = Comparator reference source, CVRSRC = CVREF+ – AVSS 0 = Comparator reference source, CVRSRC = AVDD – AVSS bit 10 VREFSEL: Voltage Reference Select bit 1 = Comparator Reference Source 2 (CVR2) provides inverting input voltage when VREFSEL (CVR1CON[10]) = 0 0 = Comparator Reference Source 1 (CVR1) provides inverting input voltage when VREFSEL (CVR1CON[10]) = 0 bit 9-7 Unimplemented: Read as ‘0’ bit 6-0 CVR[6:0]: Comparator Voltage Reference Value Selection bits 1111111 = 127/128 x VREF input voltage • • • 0000000 = 0.0 volts Note 1: CVROE (CVR2CON[14]) is not available on the 28-pin and 36-pin devices. DS70005144H-page 320  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 27.0 Note: SPECIAL FEATURES This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip website (www.microchip.com). The dsPIC33EVXXXGM00X/10X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: • • • • • Flexible Configuration Watchdog Timer (WDT) Code Protection and CodeGuard™ Security In-Circuit Serial Programming™ (ICSP™) In-Circuit Emulation 27.1 Configuration Bits In dsPIC33EVXXXGM00X/10X family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data are automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets. Note: Configuration data are reloaded on all types of device Resets. When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to ensure that program code is not stored in this address when the code is compiled. The upper two bytes of all Flash Configuration Words in program memory should always be ‘1111 1111 1111 1111’. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing ‘1’s to these locations has no effect on device operation. Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory. The Configuration Flash bytes map is shown in Table 27-1.  2013-2019 Microchip Technology Inc. DS70005144H-page 321 File Name FSEC FBSLIM Reserved FOSCSEL FOSC FWDT  2013-2019 Microchip Technology Inc. FPOR FICD CONFIGURATION WORD REGISTER MAP Address 005780 Device Memory Bits Size 23-16 (Kbytes) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CSS0 CWRP GSS1 GSS0 GWRP — BSEN BSS1 BSS0 BWRP 32 00AB80 64 015780 128 02AB80 256 005790 32 00AB90 64 015790 128 02AB90 256 005794 32 00AB94 64 015794 128 02AB94 256 005798 32 00AB98 64 015798 128 02AB98 256 00579C 32 00AB9C 64 01579C 128 02AB9C 256 0057A0 32 00ABA0 64 0157A0 128 02ABA0 256 0057A4 32 00ABA4 64 0157A4 128 02ABA4 256 0057A8 32 00ABA8 64 0157A8 128 02ABA8 256 — AIVTDIS — — — — — — — Reserved(1) — — — — — — — — — — — — — — — — — — — — — — — — IESO — — — — FNOSC2 FNOSC1 FNOSC0 — — — — — — — — PLLKEN FCKSM1 FCKSM0 IOL1WAY — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Reserved(2) — — — Legend: — = unimplemented, read as ‘1’. Note 1: This bit is reserved and must be programmed as ‘0’. 2: This bit is reserved and must be programmed as ‘1’. — CSS2 CSS1 BSLIM[12:0] WDTWIN1 WDTWIN0 WINDIS FWDTEN1 FWDTEN0 WDTPRE WDTPS3 OSCIOFNC POSCMD1 POSCMD0 WDTPS2 WDTPS1 WDTPS0 — — — BOREN — — ICS1 ICS0 dsPIC33EVXXXGM00X/10X FAMILY DS70005144H-page 322 TABLE 27-1:  2013-2019 Microchip Technology Inc. TABLE 27-1: File Name FDMTINTVL FDMTINTVH FDMTCNTL FDMT FDEVOPT FALTREG Address 0057AC Device Memory Bits Size 23-16 (Kbytes) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — — DMTEN — PWMLOCK 32 00ABAC 64 0157AC 128 02ABAC 256 0057B0 32 00ABB0 64 0157B0 128 02ABB0 256 0057B4 32 00ABB4 64 0157B4 128 02ABB4 256 0057B8 32 00AB8 64 0157B8 128 02ABB8 256 0057BC 32 00ABBC 64 0157BC 128 02ABBC 256 0057C0 32 00ABC0 64 0157C0 128 02ABC0 256 0057C4 32 DS70005144H-page 323 00ABC4 64 0157C4 128 02ABC4 256 — DMTIVT[15:0] — DMTIVT[31:16] — DMTCNT[15:0] — DMTCNT[31:16] — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Legend: — = unimplemented, read as ‘1’. Note 1: This bit is reserved and must be programmed as ‘0’. 2: This bit is reserved and must be programmed as ‘1’. CTXT2[2:0] ALTI2C1 Reserved(2) — CTXT1[2:0] dsPIC33EVXXXGM00X/10X FAMILY FDMTCNTH CONFIGURATION WORD REGISTER MAP (CONTINUED) dsPIC33EVXXXGM00X/10X FAMILY TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION Bit Field Register Description BWRP FSEC Boot Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected BSS[1:0] FSEC Boot Segment Code Flash Protection Level bits 11 = No protection (other than BWRP write protection) 10 = Standard security 0x = High security BSEN FSEC Boot Segment Control bit 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM[12:0] GWRP FSEC General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected GSS[1:0] FSEC General Segment Code Flash Protection Level bits 11 = No protection (other than GWRP write protection) 10 = Standard security 0x = High security CWRP FSEC Configuration Segment Write-Protect bit 1 = Configuration Segment is not write-protected 0 = Configuration Segment is write-protected CSS[2:0] FSEC Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection) 110 = Standard security 10x = Enhanced security 0xx = High security AIVTDIS FSEC Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT 0 = Enables AIVT BSLIM[12:0] FBSLIM FNOSC[2:0] FOSCSEL Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Reserved 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator IESO FOSCSEL Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source POSCMD[1:0] DS70005144H-page 324 FOSC Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional ‘0’s can only increase the Boot Segment size. For example, 0x1FFD = 2 pages or 1024 instruction words. Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 27-2: Bit Field dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED) Register Description OSCIOFNC FOSC OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin IOL1WAY FOSC Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations FCKSM[1:0] FOSC Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled PLLKEN FOSC PLL Lock Wait Enable bit 1 = Clock switches to the PLL source; will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock WDTPS[3:0] FWDT Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1 WDTPRE FWDT Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32 FWDTEN[1:0] FWDT Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled through the SWDTEN bit 01 = WDT is enabled only while device is active and disabled in Sleep; the SWDTEN bit is disabled 00 = WDT and the SWDTEN bit are disabled WINDIS FWDT Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode WDTWIN[1:0] FWDT Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period BOREN FPOR Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled ICS[1:0] FICD ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use DMTIVT[15:0] FDMTINTVL DMTIVT[31:16] FDMTINTVH Upper 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits DMTCNT[15:0] FDMTCNTL Lower 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits  2013-2019 Microchip Technology Inc. Lower 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits DS70005144H-page 325 dsPIC33EVXXXGM00X/10X FAMILY TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field DMTCNT[31:16] DMTEN Register FDMCNTH Description Upper 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits FDMT Deadman Timer Enable bit 1 = Deadman Timer is enabled and cannot be disabled by software 0 = Deadman Timer is disabled and can be enabled by software PWMLOCK FDEVOPT PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence ALTI2C1 FDEVOPT Alternate I2C Pins for I2C1 bit 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins CTXT1[2:0] FALTREG Specifies the Alternate Working Register Set 1 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 1 is assigned to IPL Level 7 101 = Alternate Register Set 1 is assigned to IPL Level 6 100 = Alternate Register Set 1 is assigned to IPL Level 5 011 = Alternate Register Set 1 is assigned to IPL Level 4 010 = Alternate Register Set 1 is assigned to IPL Level 3 001 = Alternate Register Set 1 is assigned to IPL Level 2 000 = Alternate Register Set 1 is assigned to IPL Level 1 CTXT2[2:0] FALTREG Specifies the Alternate Working Register Set 2 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 2 is assigned to IPL Level 7 101 = Alternate Register Set 2 is assigned to IPL Level 6 100 = Alternate Register Set 2 is assigned to IPL Level 5 011 = Alternate Register Set 2 is assigned to IPL Level 4 010 = Alternate Register Set 2 is assigned to IPL Level 3 001 = Alternate Register Set 2 is assigned to IPL Level 2 000 = Alternate Register Set 2 is assigned to IPL Level 1 DS70005144H-page 326  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY REGISTER 27-1: R DEVID: DEVICE ID REGISTER R R R R R R R DEVID[23:16](1) bit 23 bit 16 R R R R R R R R DEVID[15:8](1) bit 15 bit 8 R R R R R R R R DEVID[7:0](1) bit 7 bit 0 Legend: R = Read-Only bit bit 23-0 Note 1: DEVID[23:0]: Device Identifier bits(1) Refer to “dsPIC33EVXXXGM00X/10X Families Flash Programming Specification” (DS70005137) for the list of Device ID values. REGISTER 27-2: R U = Unimplemented bit DEVREV: DEVICE REVISION REGISTER R R R R R R R DEVREV[23:16](1) bit 23 bit 16 R R R R R R R R DEVREV[15:8](1) bit 15 bit 8 R R R R R R R R DEVREV[7:0](1) bit 7 bit 0 Legend: R = Read-only bit bit 23-0 Note 1: U = Unimplemented bit DEVREV[23:0]: Device Revision bits(1) Refer to “dsPIC33EVXXXGM00X/10X Families Flash Programming Specification” (DS70005137) for the list of device revision values.  2013-2019 Microchip Technology Inc. DS70005144H-page 327 dsPIC33EVXXXGM00X/10X FAMILY 27.2 User OTP Memory Locations, 800F80h-800FFEh, are a One-TimeProgrammable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information. 27.3 On-Chip Voltage Regulator All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in Section 30.0 “Electrical Characteristics”. Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR(1,2,3) 27.4 Brown-out Reset (BOR) The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on). A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC[2:0] and POSCMD[1:0]). If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON[5]) is ‘1’. Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of Section 30.0 “Electrical Characteristics” for specific TFSCM values. The BOR status bit (RCON[1]) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage. 5.0V dsPIC33EV VDD AVDD CEFC VCAP VSS AVSS Note 1: 2: 3: These are typical operating voltages. Refer to Table 30-4 located in Section 30.1 “DC Characteristics” for the full operating ranges of VDD and VCAP. It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN. DS70005144H-page 328  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 27.5 Watchdog Timer (WDT) 27.5.2 For dsPIC33EVXXXGM00X/10X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled. 27.5.1 PRESCALER/POSTSCALER The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 30-22. A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST[3:0] Configuration bits (FWDT[3:0]), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset: • On any device Reset • On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor) • When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered) • When the device exits Sleep or Idle mode to resume normal operation • By a CLRWDT instruction during normal execution Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed. FIGURE 27-2: SLEEP AND IDLE MODES If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON[3:2]) needs to be cleared in software after the device wakes up. 27.5.3 ENABLING WDT The WDT is enabled or disabled by the FWDTEN[1:0] Configuration bits in the FWDT Configuration register. When the FWDTEN[1:0] Configuration bits are set, the WDT is always enabled. The WDT can be optionally controlled in software when the FWDTENx Configuration bits have been programmed to ‘00’. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings. The WDT flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software. 27.5.4 WDT WINDOW The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT[7]). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window (WDTWIN[1:0]) select bits. WDT BLOCK DIAGRAM All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPOST[3:0] WDTPRE SWDTEN FWDTEN[1:0] WDT Wake-up RS Prescaler (Divide-by-N1) LPRC Clock WINDIS WDTWIN[1:0] 1 RS Postscaler (Divide-by-N2) 0 WDT Reset WDT Window Select CLRWDT Instruction  2013-2019 Microchip Technology Inc. DS70005144H-page 329 dsPIC33EVXXXGM00X/10X FAMILY 27.6 In-Circuit Serial Programming The dsPIC33EVXXXGM00X/10X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to “dsPIC33EVXXXGM00X/10X Families Flash Programming Specification” (DS70005137) for details about In-Circuit Serial Programming™ (ICSP™). Any of the following three pairs of programming clock/ data pins can be used: • PGEC1 and PGED1 • PGEC2 and PGED2 • PGEC3 and PGED3 27.7 In-Circuit Debugger When MPLAB® ICD 3 or REAL ICE™ is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions. DS70005144H-page 330 Any of the following three pairs of debugging clock/data pins can be used: • PGEC1 and PGED1 • PGEC2 and PGED2 • PGEC3 and PGED3 To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx). 27.8 Code Protection and CodeGuard™ Security The dsPIC33EVXXXGM00X/10X family devices offer Intermediate CodeGuard Security that supports General Segment (GS) security, Boot Segment (BS) security and Configuration Segment (CS) security. This feature helps protect individual Intellectual Properties. Note: Refer to “CodeGuard™ Intermediate Security” (www.microchip.com/ DS70005182) in the “dsPIC33/PIC24 Family Reference Manual” for further information on usage, configuration and operation of CodeGuard Security.  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 28.0 Note: INSTRUCTION SET SUMMARY This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The dsPIC33EV instruction set is almost identical to that of the dsPIC30F and dsPIC33F. Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations. Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into following five basic categories: • • • • • Word or byte-oriented operations Bit-oriented operations Literal operations DSP operations Control operations Table 28-1 lists the general symbols used in describing the instructions. The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the Status Flags affected by each instruction. Most word or byte-oriented W register instructions (including barrel shift instructions) have the following three operands: • The first source operand, which is typically a register ‘Wb’ without any address modifier • The second source operand, which is typically a register ‘Ws’ with or without an address modifier • The destination of the result, which is typically a register ‘Wd’ with or without an address modifier However, word or byte-oriented file register instructions have two operands: • The file register specified by the value ‘f’ • The destination, which could be either the file register ‘f’ or the W0 register, which is denoted as ‘WREG’  2013-2019 Microchip Technology Inc. Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands: • The W register (with or without an address modifier) or file register (specified by the value of ‘Ws’ or ‘f’) • The bit in the W register or file register (specified by a literal value or indirectly by the contents of register ‘Wb’) The literal instructions that involve data movement can use some of the following operands: • A literal value to be loaded into a W register or file register (specified by ‘k’) • The W register or file register where the literal value is to be loaded (specified by ‘Wb’ or ‘f’) However, literal instructions that involve arithmetic or logical operations use some of the following operands: • The first source operand, which is a register ‘Wb’ without any address modifier • The second source operand, which is a literal value • The destination of the result (only if not the same as the first source operand), which is typically a register ‘Wd’ with or without an address modifier The MAC class of DSP instructions can use some of the following operands: • The accumulator (A or B) to be used (required operand) • The W registers to be used as the two operands • The X and Y address space prefetch operations • The X and Y address space prefetch destinations • The accumulator write-back destination The other DSP instructions do not involve any multiplication and can include: • The accumulator to be used (required) • The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier • The amount of shift specified by a W register ‘Wn’ or a literal value The control instructions can use some of the following operands: • A program memory address • The mode of the Table Read and Table Write instructions DS70005144H-page 331 dsPIC33EVXXXGM00X/10X FAMILY Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the eight MSbs are ‘0’s. If this second word is executed as an instruction (by itself), it executes as a NOP. The double-word instructions execute in two instruction cycles. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In TABLE 28-1: these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles. Note: For more details on the instruction set, refer to the “16-Bit MCU and DSC Programmer’s Reference Manual” (DS70000157). SYMBOLS USED IN OPCODE DESCRIPTIONS Field #text Description Means literal defined by “text” (text) Means “content of text” [text] Means “the location addressed by text” {} Optional field or operation a  {b, c, d} a is selected from the set of values b, c, d [n:m] Register bit field .b Byte mode selection .d Double-Word mode selection .S Shadow register select .w Word mode selection (default) Acc One of two accumulators {A, B} AWB Accumulator Write-Back Destination Address register {W13, [W13]+ = 2} bit4 4-bit bit selection field (used in word-addressed instructions) {0...15} C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Expr Absolute address, label or expression (resolved by the linker) f File register address {0x0000...0x1FFF} lit1 1-bit unsigned literal {0,1} lit4 4-bit unsigned literal {0...15} lit5 5-bit unsigned literal {0...31} lit8 8-bit unsigned literal {0...255} lit10 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode lit14 14-bit unsigned literal {0...16384} lit16 16-bit unsigned literal {0...65535} lit23 23-bit unsigned literal {0...8388608}; LSb must be ‘0’ None Field does not require an entry, can be blank OA, OB, SA, SB DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate PC Program Counter Slit10 10-bit signed literal {-512...511} Slit16 16-bit signed literal {-32768...32767} Slit6 6-bit signed literal {-16...16} Wb Base W register {W0...W15} Wd Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Wdo Destination W register  { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Wm,Wn Dividend, Divisor Working register pair (Direct Addressing) DS70005144H-page 332  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED) Field Description Wm*Wm Multiplicand and Multiplier Working register pair for Square instructions  {W4 * W4,W5 * W5,W6 * W6,W7 * W7} Wm*Wn Multiplicand and Multiplier Working register pair for DSP instructions  {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7} Wn One of 16 Working registers {W0...W15} Wnd One of 16 Destination Working registers {W0...W15} Wns One of 16 Source Working registers {W0...W15} WREG W0 (Working register used in file register instructions) Ws Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] } Wso Source W register  { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] } Wx X Data Space Prefetch Address register for DSP instructions  {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none} Wxd X Data Space Prefetch Destination register for DSP instructions {W4...W7} Wy Y Data Space Prefetch Address register for DSP instructions  {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none} Wyd Y Data Space Prefetch Destination register for DSP instructions {W4...W7}  2013-2019 Microchip Technology Inc. DS70005144H-page 333 dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 1 2 3 4 5 6 7 INSTRUCTION SET OVERVIEW Assembly Mnemonic ADD ADDC AND ASR BCLR BRA BSET Note 1: Assembly Syntax Description # of Words # of Cycles(1) Status Flags Affected 1 1 OA,OB,SA, SB ADD Acc Add Accumulators ADD f f = f + WREG 1 1 C,DC,N,OV,Z ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z ADD Wso,#Slit4,Acc 16-bit Signed Add to Accumulator 1 1 OA,OB,SA, SB ADDC f f = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC f,WREG WREG = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C,DC,N,OV,Z ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C,DC,N,OV,Z ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 C,DC,N,OV,Z AND f f = f .AND. WREG 1 1 N,Z AND f,WREG WREG = f .AND. WREG 1 1 N,Z AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N,Z AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N,Z AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N,Z ASR f f = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C,N,OV,Z ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N,Z ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N,Z BCLR f,#bit4 Bit Clear f 1 1 None BCLR Ws,#bit4 Bit Clear Ws 1 1 None BRA C,Expr Branch if Carry 1 1 (4) None BRA GE,Expr Branch if Greater Than or Equal 1 1 (4) None BRA GEU,Expr Branch if Unsigned Greater Than or Equal 1 1 (4) None BRA GT,Expr Branch if Greater Than 1 1 (4) None BRA GTU,Expr Branch if Unsigned Greater Than 1 1 (4) None BRA LE,Expr Branch if Less Than or Equal 1 1 (4) None BRA LEU,Expr Branch if Unsigned Less Than or Equal 1 1 (4) None BRA LT,Expr Branch if Less Than 1 1 (4) None BRA LTU,Expr Branch if Unsigned Less Than 1 1 (4) None BRA N,Expr Branch if Negative 1 1 (4) None BRA NC,Expr Branch if Not Carry 1 1 (4) None BRA NN,Expr Branch if Not Negative 1 1 (4) None BRA NOV,Expr Branch if Not Overflow 1 1 (4) None BRA NZ,Expr Branch if Not Zero 1 1 (4) None BRA OA,Expr Branch if Accumulator A Overflow 1 1 (4) None BRA OB,Expr Branch if Accumulator B Overflow 1 1 (4) None BRA OV,Expr Branch if Overflow 1 1 (4) None BRA SA,Expr Branch if Accumulator A Saturated 1 1 (4) None BRA SB,Expr Branch if Accumulator B Saturated 1 1 (4) None BRA Expr Branch Unconditionally 1 4 None BRA Z,Expr Branch if Zero 1 1 (4) None BRA Wn Computed Branch 1 4 None BSET f,#bit4 Bit Set f 1 1 None BSET Ws,#bit4 Bit Set Ws 1 1 None Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005144H-page 334  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 8 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic BSW Assembly Syntax Description # of Words # of Cycles(1) Status Flags Affected None BSW.C Ws,Wb Write C bit to Ws[Wb] 1 1 BSW.Z Ws,Wb Write Z bit to Ws[Wb] 1 1 None f,#bit4 Bit Toggle f 1 1 None 9 BTG BTG BTG Ws,#bit4 Bit Toggle Ws 1 1 None 10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 (2 or 3) None BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1 (2 or 3) None BTSS f,#bit4 Bit Test f, Skip if Set 1 1 (2 or 3) None BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 (2 or 3) None BTST f,#bit4 Bit Test f 1 1 Z BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z BTST.C Ws,Wb Bit Test Ws[Wb] to C 1 1 C 11 12 13 14 15 BTSS BTST BTSTS CALL CLR BTST.Z Ws,Wb Bit Test Ws[Wb] to Z 1 1 Z BTSTS f,#bit4 Bit Test then Set f 1 1 Z BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z CALL lit23 Call Subroutine 2 4 SFA CALL Wn Call Indirect Subroutine 1 4 SFA CALL.L Wn Call Indirect Subroutine (long address) 1 4 SFA CLR f f = 0x0000 1 1 None CLR WREG WREG = 0x0000 1 1 None CLR Ws Ws = 0x0000 1 1 None CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA, SB 16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep 17 COM COM f f=f 1 1 N,Z COM f,WREG WREG = f 1 1 N,Z COM Ws,Wd Wd = Ws 1 1 N,Z CP f Compare f with WREG 1 1 C,DC,N,OV,Z CP Wb,#lit8 Compare Wb with lit8 1 1 C,DC,N,OV,Z CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C,DC,N,OV,Z f Compare f with 0x0000 1 1 C,DC,N,OV,Z 18 CP 19 CP0 CP0 CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z 20 CPB CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,#lit8 Compare Wb with lit8, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,Ws Compare Wb with Ws, with Borrow (Wb – Ws – C) 1 1 C,DC,N,OV,Z CPSEQ CPSEQ Wb,Wn Compare Wb with Wn, Skip if = 1 1 (2 or 3) None CPBEQ CPBEQ Wb,Wn,Expr Compare Wb with Wn, Branch if = 1 1 (5) None CPSGT CPSGT Wb,Wn Compare Wb with Wn, Skip if > 1 1 (2 or 3) None CPBGT CPBGT Wb,Wn,Expr Compare Wb with Wn, Branch if > 1 1 (5) None CPSLT CPSLT Wb,Wn Compare Wb with Wn, Skip if < 1 1 (2 or 3) None CPBLT CPBLT Wb,Wn,Expr Compare Wb with Wn, Branch if < 1 1 (5) None CPSNE CPSNE Wb,Wn Compare Wb with Wn, Skip if  1 1 (2 or 3) None CPBNE CPBNE Wb,Wn,Expr Compare Wb with Wn, Branch if  1 1 (5) None 21 22 23 24 Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2013-2019 Microchip Technology Inc. DS70005144H-page 335 dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 25 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic CTXTSWP Assembly Syntax Description # of Words # of Cycles(1) Status Flags Affected CTXTSWP #lit3 Switch CPU Register Context to Context Defined by lit3 1 2 None CTXTSWP Wn Switch CPU Register Context to Context Defined by Wn 1 2 None 26 DAW DAW Wn Wn = Decimal Adjust Wn 1 1 C 27 DEC DEC f f=f–1 1 1 C,DC,N,OV,Z DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z DEC2 f f=f–2 1 1 C,DC,N,OV,Z DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z C,DC,N,OV,Z 28 DEC2 DEC2 Ws,Wd Wd = Ws – 2 1 1 29 DISI DISI #lit14 Disable Interrupts for k Instruction Cycles 1 1 None 30 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 31 DIVF DIVF 32 DO DO #lit15,Expr Do Code to PC + Expr, lit15 + 1 Times 2 2 None DO Wn,Expr Do Code to PC + Expr, (Wn) + 1 Times 2 2 None 33 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 34 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB, SA,SB,SAB 35 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None 36 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C 37 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C 38 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C 39 GOTO GOTO Expr Go to Address 2 4 None GOTO Wn Go to Indirect 1 4 None GOTO.L Wn Go to Indirect (long address) 1 4 None INC f f=f+1 1 1 C,DC,N,OV,Z INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z INC2 f f=f+2 1 1 C,DC,N,OV,Z INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z C,DC,N,OV,Z 40 41 42 INC INC2 IOR INC2 Ws,Wd Wd = Ws + 2 1 1 IOR f f = f .IOR. WREG 1 1 N,Z IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z OA,OB,OAB, SA,SB,SAB 43 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 44 LNK LNK #lit14 Link Frame Pointer 1 1 SFA 45 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005144H-page 336  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 46 47 48 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic MAC MOV MOVPAG Assembly Syntax Description # of Words # of Cycles(1) Status Flags Affected MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB Multiply and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MOV f,Wn Move f to Wn 1 1 None MOV f Move f to f 1 1 None MOV f,WREG Move f to WREG 1 1 None MOV #lit16,Wn Move 16-bit Literal to Wn 1 1 None MOV.b #lit8,Wn Move 8-bit Literal to Wn 1 1 None MOV Wn,f Move Wn to f 1 1 None MOV Wso,Wdo Move Ws to Wd 1 1 None MOV WREG,f Move WREG to f 1 1 None MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None MOVPAG #lit10,DSRPAG Move 10-bit Literal to DSRPAG 1 1 None MOVPAG #lit9,DSWPAG Move 9-bit Literal to DSWPAG 1 1 None MOVPAG #lit8,TBLPAG Move 8-bit Literal to TBLPAG 1 1 None MOVPAGW Ws, DSRPAG Move Ws[9:0] to DSRPAG 1 1 None MOVPAGW Ws, DSWPAG Move Ws[8:0] to DSWPAG 1 1 None MOVPAGW Ws, TBLPAG Move Ws[7:0] to TBLPAG 1 1 None 49 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and Store Accumulator 1 1 None 50 MPY MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 51 MPY.N MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wm by Wn) to Accumulator 1 1 None 52 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB Multiply and Subtract from Accumulator 1 1 OA,OB,OAB, SA,SB,SAB Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2013-2019 Microchip Technology Inc. DS70005144H-page 337 dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 53 54 55 56 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic MUL NEG NOP POP Assembly Syntax PUSH # of Cycles(1) Status Flags Affected MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws) 1 1 None MUL.SS Wb,Ws,Acc Accumulator = signed(Wb) * signed(Ws) 1 1 None MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,Ws,Acc Accumulator = signed(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Acc Accumulator = signed(Wb) * unsigned(lit5) 1 1 None MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1 None MUL.US Wb,Ws,Acc Accumulator = unsigned(Wb) * signed(Ws) 1 1 None MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.UU Wb,#lit5,Acc Accumulator = unsigned(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,Ws,Acc Accumulator = unsigned(Wb) * unsigned(Ws) 1 1 None MULW.SS Wb,Ws,Wnd Wnd = signed(Wb) * signed(Ws) 1 1 None MULW.SU Wb,Ws,Wnd Wnd = signed(Wb) * unsigned(Ws) 1 1 None MULW.US Wb,Ws,Wnd Wnd = unsigned(Wb) * signed(Ws) 1 1 None MULW.UU Wb,Ws,Wnd Wnd = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None MUL.SU Wb,#lit5,Wnd Wnd = signed(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd Wnd = unsigned(Wb) * unsigned(lit5) 1 1 None MUL f W3:W2 = f * WREG 1 1 None NEG Acc Negate Accumulator 1 1 OA,OB,OAB, SA,SB,SAB NEG f f=f+1 1 1 C,DC,N,OV,Z NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z NOP No Operation 1 1 None NOPR No Operation 1 1 None POP f Pop f from Top-of-Stack (TOS) 1 1 None POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) 1 2 None Pop Shadow Registers 1 1 All PUSH f Push f to Top-of-Stack (TOS) 1 1 None PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None Push Shadow Registers 1 1 None Go into Sleep or Idle mode 1 1 WDTO,Sleep POP.S 57 # of Words Description PUSH.S 58 PWRSAV PWRSAV 59 RCALL RCALL Expr Relative Call 1 4 SFA RCALL Wn Computed Call 1 4 SFA REPEAT #lit15 Repeat Next Instruction lit15 + 1 Times 1 1 None REPEAT Wn Repeat Next Instruction (Wn) + 1 Times 1 1 None 60 REPEAT #lit1 61 RESET RESET Software Device Reset 1 1 None 62 RETFIE RETFIE Return from Interrupt 1 6 (5) SFA Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005144H-page 338  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic Assembly Syntax 63 RETLW RETLW 64 RETURN RETURN 65 RLC RLC 66 67 68 69 RLNC RRC RRNC SAC Description # of Words # of Cycles(1) Status Flags Affected SFA Return with Literal in Wn 1 6 (5) Return from Subroutine 1 6 (5) SFA f f = Rotate Left through Carry f 1 1 C,N,Z RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z RLNC f f = Rotate Left (No Carry) f 1 1 N,Z RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z RRC f f = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z RRNC f f = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None #lit10,Wn 70 SE SE Ws,Wnd Wnd = Sign-Extended Ws 1 1 C,N,Z 71 SETM SETM f f = 0xFFFF 1 1 None SETM WREG WREG = 0xFFFF 1 1 None SETM Ws Ws = 0xFFFF 1 1 None SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB, SA,SB,SAB SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB, SA,SB,SAB SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z SUB Acc Subtract Accumulators 1 1 OA,OB,OAB, SA,SB,SAB SUB f f = f – WREG 1 1 C,DC,N,OV,Z SUB f,WREG WREG = f – WREG 1 1 C,DC,N,OV,Z SUB #lit10,Wn Wn = Wn – lit10 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C,DC,N,OV,Z SUBB f f = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB f,WREG WREG = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C,DC,N,OV,Z SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C,DC,N,OV,Z SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C,DC,N,OV,Z SUBR f f = WREG – f 1 1 C,DC,N,OV,Z SUBR f,WREG WREG = WREG – f 1 1 C,DC,N,OV,Z SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C,DC,N,OV,Z SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C,DC,N,OV,Z SUBBR f f = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR f,WREG WREG = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C,DC,N,OV,Z 72 73 74 75 76 77 SFTAC SL SUB SUBB SUBR SUBBR Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2013-2019 Microchip Technology Inc. DS70005144H-page 339 dsPIC33EVXXXGM00X/10X FAMILY TABLE 28-2: Base Instr # 78 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic SWAP Assembly Syntax Description # of Words # of Cycles(1) Status Flags Affected SWAP.b Wn Wn = Nibble Swap Wn 1 1 None SWAP Wn Wn = Byte Swap Wn 1 1 None 79 TBLRDH TBLRDH Ws,Wd Read Prog[23:16] to Wd[7:0] 1 5 None 80 TBLRDL TBLRDL Ws,Wd Read Prog[15:0] to Wd 1 5 None 81 TBLWTH TBLWTH Ws,Wd Write Ws[7:0] to Prog[23:16] 1 2 None 82 TBLWTL TBLWTL Ws,Wd Write Ws to Prog[15:0] 1 2 None 83 ULNK ULNK Unlink Frame Pointer 1 1 SFA 84 XOR XOR f f = f .XOR. WREG 1 1 N,Z XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z ZE Ws,Wnd Wnd = Zero-Extend Ws 1 1 C,Z,N 85 ZE Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005144H-page 340  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 29.0 DEVELOPMENT SUPPORT Move a design from concept to production in record time with Microchip’s award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB® X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip’s line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions. Microchip’s MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as PIC® MCUs, AVR® MCUs, SAM MCUs and dsPIC® DSCs. MPLAB X tools are compatible with Windows®, Linux® and Mac® operating systems while Atmel Studio tools are compatible with Windows. Go to the following website for more information and details: https://www.microchip.com/development-tools/  2013-2019 Microchip Technology Inc. DS70005144H-page 341 dsPIC33EVXXXGM00X/10X FAMILY NOTES: DS70005144H-page 342  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 30.0 ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied. Absolute Maximum Ratings(1) Ambient temperature under bias.............................................................................................................-40°C to +125°C Storage temperature .............................................................................................................................. -65°C to +160°C Voltage on VDD with respect to VSS .......................................................................................................... -0.3V to +6.0V Voltage on VCAP with respect to VSS ........................................................................................................ 1.62V to 1.98V Maximum current out of VSS pin ...........................................................................................................................350 mA Maximum current into VDD pin(2) ...........................................................................................................................350 mA Maximum current sunk by any I/O pin.....................................................................................................................20 mA Maximum current sourced by I/O pin ......................................................................................................................18 mA Maximum current sourced/sunk by all ports(2) ......................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).  2013-2019 Microchip Technology Inc. DS70005144H-page 343 dsPIC33EVXXXGM00X/10X FAMILY 30.1 DC Characteristics TABLE 30-1: OPERATING MIPS vs. VOLTAGE VDD Range (in Volts) Characteristic 2: -40°C to 0°C 60 0°C to +85°C 70 -40°C to +125°C 60 (1,2) E-Temp Note 1: dsPIC33EVXXXGM00X/10X Family 4.5V to 5.5V(1,2) I-Temp Maximum MIPS Temperature Range (in °C) 4.5V to 5.5V < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and Device is functional at comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values. When BOR is enabled, the device will work from 4.7V to 5.5V. VBORMIN Note 1: Customer operating voltage range is specified as: 4.5V to 5.5V. TABLE 30-2: THERMAL OPERATING CONDITIONS Rating Symbol Min. Typ. Max. Unit Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C Operating Junction Temperature Range TJ -40 — +140 °C Operating Ambient Temperature Range TA -40 — +125 °C Industrial Temperature Devices: Extended Temperature Devices: Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD –  IOH) PD PINT + PI/O W PDMAX (TJ – TA)/JA W I/O Pin Power Dissipation: I/O =  ({VDD – VOH} x IOH) +  (VOL x IOL) Maximum Allowed Power Dissipation TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS Characteristic Symbol Typ. Max. Unit Package Thermal Resistance, 64-Pin QFN, 9x9x0.9 mm JA 28.0 — °C/W 1 Package Thermal Resistance, 64-Pin TQFP, 10x10x1 mm JA 48.3 — °C/W 1 Package Thermal Resistance, 44-Pin QFN, 8x8 mm JA 29.0 — °C/W 1 Package Thermal Resistance, 44-Pin TQFP, 10x10x1 mm JA 49.8 — °C/W 1 Package Thermal Resistance, 48-pin TQFP, 7x7x1 mm JA 62.76 — °C/W 1 Package Thermal Resistance, 36-Pin UQFN, 5x5 mm JA 29.2 — °C/W 1 Package Thermal Resistance, 28-Pin QFN-S, 6x6x0.9 mm JA 30.0 — °C/W 1 Package Thermal Resistance, 28-Pin SOIC, 7.50 mm JA 69.7 — °C/W 1 Package Thermal Resistance, 28-Pin SSOP, 5.30 mm JA 71.0 — °C/W 1 Package Thermal Resistance, 28-Pin SPDIP, 300 mil JA 60.0 — °C/W 1 Note 1: Notes Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations. DS70005144H-page 344  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions (see Note 3): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ.(1) Max. Units VBOR — 5.5 V Conditions Operating Voltage DC10 VDD Supply Voltage(3) (2) DC12 VDR RAM Data Retention Voltage 1.8 — — V DC16 VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal — — VSS V DC17 SVDD VDD Rise Rate to Ensure Internal Power-on Reset Signal 1.0 — — DC18 VCORE VDD Core Internal Regulator Voltage 1.62 1.8 1.98 Note 1: 2: 3: V/ms 0V-5.0V in 5 ms V Voltage is dependent on load, temperature and VDD Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. This is the limit to which VDD may be lowered without losing RAM data. VDD voltage must remain at VSS for a minimum of 200 µs to ensure POR. TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS Standard Operating Conditions (unless otherwise stated): Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Param No. Symbol CEFC Note 1: Characteristics External Filter Capacitor Value(1) Min. Typ. Max. Units Comments 4.7 10 — µF Capacitor must have a low series resistance (< 1) Typical VCAP Voltage = 1.8 volts when VDD  VDDMIN.  2013-2019 Microchip Technology Inc. DS70005144H-page 345 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param. Typ.(2) Operating Current (IDD) Max. Units Conditions (1) DC20d 4.5 5.5 mA -40°C DC20a 4.65 5.6 mA +25°C DC20b 4.85 6.0 mA +85°C DC20c 5.6 7.2 mA +125°C DC22d 8.6 10.6 mA -40°C DC22a 8.8 10.8 mA +25°C DC22b 9.1 11.1 mA +85°C DC22c 9.8 12.6 mA +125°C DC23d 16.8 18.5 mA -40°C DC23a 17.2 19.0 mA +25°C DC23b 17.55 19.2 mA +85°C DC23c 18.3 21.0 mA +125°C DC24d 25.15 28.0 mA -40°C DC24a 25.5 28.0 mA +25°C DC24b 25.5 28.0 mA +85°C DC24c 25.55 28.5 mA +125°C DC25d 29.0 31.0 mA -40°C DC25a 28.5 31.0 mA +25°C DC25b 28.3 31.0 mA +85°C Note 1: 2: 5.0V 10 MIPS 5.0V 20 MIPS 5.0V 40 MIPS 5.0V 60 MIPS 5.0V 70 MIPS IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: • Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration Word • All I/O pins are configured as outputs and driving low • MCLR = VDD, WDT and FSCM are disabled • CPU, SRAM, program memory and data memory are operational • No peripheral modules are operating or being clocked (defined PMDx bits are all ones) • CPU executing while(1) { NOP(); } Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. DS70005144H-page 346  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Parameter No. Typ.(2) Max. Units Conditions 2 mA -40°C Idle Current (IIDLE)(1) DC40d 1.25 DC40a 1.25 2 mA +25°C DC40b 1.5 2.6 mA +85°C DC40c 1.5 2.6 mA +125°C DC42d 2.3 3 mA -40°C DC42a 2.3 3 mA +25°C DC42b 2.6 3.45 mA +85°C DC42c 2.6 3.85 mA +125°C DC44d 6.9 8 mA -40°C DC44a 6.9 8 mA +25°C DC44b 7.25 8.6 mA +85°C Note 1: 2: 5.0V 10 MIPS 5.0V 20 MIPS 5.0V 70 MIPS Base Idle current (IIDLE) is measured as follows: • CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration Word • All I/O pins are configured as outputs and driving low • MCLR = VDD, WDT and FSCM are disabled • No peripheral modules are operating or being clocked (defined PMDx bits are all ones) • The NVMSIDL bit (NVMCON[12]) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode) • The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode) Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated.  2013-2019 Microchip Technology Inc. DS70005144H-page 347 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Parameter No. Typ. Max. Units Conditions Power-Down Current (IPD) – dsPIC33EVXXXGM00X/10X 9.25 35 µA 9.25 60 µA 15.75 40 µA 15.75 75 µA 67.75 300 µA 67.75 425 µA DC60c 270 820 DC61d 1 7 DC61a 1.25 8 µA +25°C DC61b 3.5 12 µA +85°C DC61c 5 15 µA +125°C DC60d DC60a DC60b DS70005144H-page 348 Grade 3 Mission Profile -40°C 5.0V +25°C 5.0V +85°C 5.0V µA +125°C 5.0V Grade 1 Mission Profile µA -40°C 5.0V Watchdog Timer Current: IWDT Grade 1 Mission Profile Grade 3 Mission Profile Grade 1 Mission Profile Grade 3 Mission Profile Base Power-Down Current Grade 1 Mission Profile  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Doze Ratio Units 18.25 1:2 mA 8.0 1:128 mA 18.5 1:2 mA 8.2 1:128 mA 19.0 1:2 mA 8.9 1:128 mA Typ.(2) Max. DC73a 16.0 DC73g 7.1 DC70a 16.25 DC70g 7.3 DC71a 17.0 DC71g 7.5 DC72a 17.75 19.95 1:2 mA DC72g 8.25 9.32 1:128 mA Parameter No. Conditions Doze Current (IDOZE)(1) Note 1: 2: -40°C 5.0V 70 MIPS +25°C 5.0V 70 MIPS +85°C 5.0V 70 MIPS +125°C 5.0V 60 MIPS IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows: • Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration Word • All I/O pins are configured as outputs and driving low • MCLR = VDD, WDT and FSCM are disabled • CPU, SRAM, program memory and data memory are operational • No peripheral modules are operating or being clocked (defined PMDx bits are all ones) • CPU executing while(1) { NOP(); } Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated.  2013-2019 Microchip Technology Inc. DS70005144H-page 349 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. VIL DI10 Characteristic VIH Typ.(1) Max. Units VSS — 0.2 VDD V 0.75 VDD — 5.5 V Conditions Input Low Voltage I/O Pins DI20 Min. Input High Voltage I/O Pins DI30 ICNPU Change Notification Pull-up Current 200 375 600 µA VDD = 5.0V, VPIN = VSS DI31 ICNPD Change Notification Pull-Down Current(7) 175 400 625 µA VDD = 5.0V, VPIN = VDD IIL Input Leakage Current(2,3) DI50 I/O Pins -100 — 100 nA VSS  VPIN  VDD, pin at high-impedance DI55 MCLR -700 — 700 nA VSS VPIN VDD DI56 OSC1 -200 — 200 nA VSS VPIN VDD, XT and HS modes DI60a IICL Input Low Injection Current 0 — -5(4,6) mA All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7 DI60b IICH Input High Injection Current 0 — +5(5,6) mA All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins(5) DI60c IICT Total Input Injection Current (sum of all I/O and control pins) -20(7) — +20(7) mA Absolute instantaneous sum of all ± input injection currents from all I/O pins ( | IICL |+ | IICH | )  IICT Note 1: 2: 3: 4: 5: 6: 7: Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages. Negative current is defined as current sourced by the pin. VIL source < (VSS – 0.3). Characterized but not tested. Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V. Non-zero injection currents can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. DS70005144H-page 350  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param. Symbol Characteristic Min.(1) Typ. Max. Units Conditions DO16 VOL Output Low Voltage 4x Sink Driver Pins(2) — — 0.4 V IOL = 8.8 mA, VDD = 5.0V DO10 VOL Output Low Voltage 8x Sink Driver Pins(3) — — 0.4 V IOL = 10.8 mA, VDD = 5.0V Output High Voltage 4x Sink Driver Pins(2) VDD – 0.6 — — V IOH = -8.3 mA, VDD = 5.0V Output High Voltage 8x Sink Driver Pins VDD – 0.6 — — V IOH = -12.3 mA, VDD = 5.0V DO26 VOH DO20 VOH Note 1: 2: 3: Parameters are characterized, but not tested. Includes all I/O pins that are not 8x sink driver pins (see below). Includes pins, such as RA3, RA4 and RB[15:10] for 28-pin and 36-pin devices, RA3, RA4, RA9 and RB[15:10] for 44-pin and 48-pin devices, RA4, RA7, RA9, RB[15:10] and RC15 for 64-pin devices. TABLE 30-12: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. Symbol Characteristic Min.(1) Typ. Max. Units BOR Event on VDD Transition High-to-Low 4.15 4.285 4.4 V Conditions VDD (see Note 2, Note 3 and Note 4) BO10 VBOR Note 1: 2: 3: Parameters are for design guidance only and are not tested in manufacturing. The VBOR specification is relative to the VDD. The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. The start-up VDD must rise above 4.6V. 4:  2013-2019 Microchip Technology Inc. DS70005144H-page 351 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ.(1) Max. 10,000 — — Units Conditions Program Flash Memory EP Cell Endurance D131 VPR VDD for Read 4.5 — 5.5 V D132b VPEW VDD for Self-Timed Write 4.5 — 5.5 V D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated, -40C to +125C D135 IDDP Supply Current During Programming — 10 — mA D136a TRW Row Write Cycle Time 0.657 — 0.691 ms TRW = 4965 FRC cycles, TA = +85°C (see Note 2) D136b TRW Row Write Cycle Time 0.651 — 0.698 ms TRW = 4965 FRC cycles, TA = +125°C (see Note 2) D137a TPE Page Erase Time 19.44 — 20.44 ms TPE = 146893 FRC cycles, TA = +85°C (see Note 2) D137b TPE Page Erase Time 19.24 — 20.65 ms TPE = 146893 FRC cycles, TA = +125°C (see Note 2) D138a TWW Word Write Cycle Time 45.78 — 48.15 µs TWW = 346 FRC cycles, TA = +85°C (see Note 2) D138b TWW Word Write Cycle Time 45.33 — 48.64 µs TWW = 346 FRC cycles, TA = +125°C (see Note 2) D130 Note 1: 2: E/W -40C to +125C Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Other conditions: FRC = 7.3728 MHz, TUN[5:0] = b'011111 (for Min), TUN[5:0] = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register. TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. DVR10 Symbol VBG DS70005144H-page 352 Characteristic Min. Typ. Max. Units Internal Band Gap Reference Voltage 1.14 1.2 1.26 V Conditions  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY 30.2 AC Characteristics and Timing Parameters This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters. TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Operating voltage VDD range as described in Section 30.1 “DC Characteristics”. AC CHARACTERISTICS FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for All Pins except OSC2 Load Condition 2 – for OSC2 VDD/2 CL Pin RL VSS CL Pin RL = 464 CL = 50 pF for all pins except OSC2 15 pF for OSC2 output VSS TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS Param Symbol No. Characteristic Min. Typ. Max. Units Conditions 15 pF In XT and HS modes, when external clock is used to drive OSC1 DO50 COSCO OSC2 Pin — — DO56 CIO All I/O Pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C mode  2013-2019 Microchip Technology Inc. DS70005144H-page 353 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 OS20 OS30 OS25 OS30 OS31 OS31 CLKO OS40 OS41 TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. OS10 FIN OS20 Min. Typ.(1) Max. Units External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) DC — 40 MHz EC Oscillator Crystal Frequency 3.5 10 — — 10 25 MHz MHz XT HS TOSC = 1/FOSC 12.5 — DC ns Sym TOSC Characteristic Time(2) Conditions TA = +125°C OS25 TCY Instruction Cycle 25 — DC ns TA = +125°C OS30 TosL, TosH External Clock in (OSC1) High or Low Time 0.375 x TOSC — 0.625 x TOSC ns EC OS31 TosR, TosF External Clock in (OSC1) Rise or Fall Time — — 20 ns EC OS40 TckR CLKO Rise Time(3) — 5.2 — ns OS41 TckF CLKO Fall Time(3) — 5.2 — ns OS42 GM External Oscillator Transconductance(4) — 12 — mA/V HS, VDD = 5.0V, TA = +25°C — 6 — mA/V XT, VDD = 5.0V, TA = +25°C Note 1: 2: 3: 4: Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “Minimum” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “Maximum” cycle time limit is “DC” (no clock) for all devices. Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. This parameter is characterized but not tested in manufacturing. DS70005144H-page 354  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ.(1) Max. Units OS50 FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 0.8 — 8.0 MHz OS51 FSYS On-Chip VCO System Frequency 120 — 340 MHz OS52 TLOCK PLL Start-up Time (Lock Time) 0.9 1.5 3.1 ms OS53 DCLK CLKO Stability (Jitter)(2) -3 0.5 3 % Note 1: 2: Conditions ECPLL, XTPLL modes Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula: D CLK Effective Jitter = ------------------------------------------------------------------------------------------F OSC --------------------------------------------------------------------------------------Time Base or Communication Clock For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows: D CLK D CLK D CLK Effective Jitter = -------------- = -------------- = -------------3.464 120 12 --------10 TABLE 30-19: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units Conditions Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1) F20a FRC -1 0.5 +1 % -40°C  TA +85°C VDD = 4.5-5.5V F20b FRC -2 1 +2 % -40°C  TA  +125°C VDD = 4.5-5.5V Note 1: Frequency calibrated at +25°C and 5.0V. TUN[5:0] bits can be used to compensate for temperature drift. TABLE 30-20: INTERNAL LPRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units Conditions LPRC @ 32.768 kHz(1) F21a LPRC -15 5 +15 % -40°C  TA  +85°C VDD = 4.5-5.5V F21b LPRC -30 10 +30 % -40°C  TA  +125°C VDD = 4.5-5.5V Note 1: Change of LPRC frequency as VDD changes.  2013-2019 Microchip Technology Inc. DS70005144H-page 355 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) New Value Old Value DO31 DO32 Note: Refer to Figure 30-1 for load conditions. TABLE 30-21: I/O TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Typ.(1) Max. Units — 5 10 ns DO31 TIOR DO32 TIOF Port Output Fall Time — 5 10 ns DI35 TINP INTx Pin High or Low Time (input) 20 — — ns DI40 TRBP CNx High or Low Time (input) 2 — — TCY Note 1: Port Output Rise Time Min. Conditions Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS MCLR TMCLR (SY20) BOR TBOR (SY30) Various Delays (depending on configuration) Reset Sequence CPU Starts Fetching Code DS70005144H-page 356  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-5: POWER-ON RESET TIMING CHARACTERISTICS Power-up Timer – Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) VDD VPOR Power-up Sequence CPU Starts Fetching Code SY00 SY11 (TPU) (TPWRT) (Notes 1,2) Power-up Timer – Clock Sources = (HS, HSPLL, XT and XTPLL) VDD VPOR Power-up Sequence CPU Starts Fetching Code Greater of SY00 (TPU) SY10 (TOST) (Notes 1,2) or SY11 (TPWRT) Note 1: 2: The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VBOR). The power-up period includes internal voltage regulator stabilization delay.  2013-2019 Microchip Technology Inc. DS70005144H-page 357 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Param No. Min. Characteristic(1) Symbol Typ.(2) Max. Units Conditions SY00 TPU Power-up Period — 400 600 µs SY10 TOST Oscillator Start-up Time — 1024 TOSC — — TOSC = OSC1 period SY11 TPWRT Power-up Timer Period — 1 — ms Using LPRC parameters indicated in F21a/F21b (see Table 30-20) SY12 TWDT Watchdog Timer Time-out Period 0.8 — 1.2 ms WDTPRE = 0, WDTPS[3:0] = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C 3.2 — 4.8 ms WDTPRE = 1, WDTPS[3:0] = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C 0.68 0.72 1.2 µs SY13 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset SY20 TMCLR MCLR Pulse Width (low) 2 — — µs SY30 TBOR BOR Pulse Width (low) 1 — — µs SY35 TFSCM Fail-Safe Clock Monitor Delay — 500 900 µs SY36 TVREG Voltage Regulator Standby-to-Active mode Transition Time — — 30 µs SY37 TOSCDFRC FRC Oscillator Start-up Delay 46 48 54 µs SY38 TOSCDLPRC LPRC Oscillator Start-up Delay — — 70 µs Note 1: 2: -40°C to +85°C These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. DS70005144H-page 358  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-6: TIMER1-TIMER5 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx10 Tx11 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 30-1 for load conditions. TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. TA10 TA11 Symbol TTXH TTXL Characteristic(2) Min. Typ. Max. Units Conditions Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256) Asynchronous mode 35 — — ns Synchronous mode Greater of: 20 or (TCY + 20)/N — — ns Asynchronous mode 10 — — ns T1CK High Synchronous Time mode T1CK Low Time TA15 TTXP T1CK Input Synchronous Period mode Greater of: 40 or (2 TCY + 40)/N — — ns OS60 Ft1 T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS (T1CON[1]) bit) DC — 50 kHz TA20 TCKEXTMRL Delay from External T1CK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: 2: Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256) N = Prescaler Value (1, 8, 64, 256) Timer1 is a Type A. These parameters are characterized but not tested in manufacturing.  2013-2019 Microchip Technology Inc. DS70005144H-page 359 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units Conditions TB10 TTXH TxCK High Synchronous Time mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256) TB11 TTXL TxCK Low Synchronous Time mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256) TB15 TTXP TxCK Input Synchronous Period mode Greater of: 40 or (2 TCY + 40)/N — — ns N = Prescaler Value (1, 8, 64, 256) TB20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: These parameters are characterized but not tested in manufacturing. TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Characteristic(1) Symbol Min. Typ. Max. Units Conditions TC10 TTXH TxCK High Synchronous Time TCY + 20 — — ns Must also meet Parameter TC15 TC11 TTXL TxCK Low Time TCY + 20 — — ns Must also meet Parameter TC15 TC15 TTXP TxCK Input Synchronous, Period with Prescaler 2 TCY + 40 — — ns N = Prescaler Value (1, 8, 64, 256) TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: Synchronous These parameters are characterized but not tested in manufacturing. DS70005144H-page 360  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note 1: Refer to Figure 30-1 for load conditions. TABLE 30-26: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Max. Units Conditions IC10 TCCL ICx Input Low Time Greater of: 12.5 + 25 or (0.5 TCY/N) + 25 — ns Must also meet Parameter IC15 IC11 TCCH ICx Input High Time Greater of: 12.5 + 25 or (0.5 TCY/N) + 25 — ns Must also meet Parameter IC15 IC15 TCCP ICx Input Period Greater of: 25 + 50 or (1 TCY/N) + 50 — ns Note 1: N = Prescaler Value (1, 4, 16) These parameters are characterized but not tested in manufacturing.  2013-2019 Microchip Technology Inc. DS70005144H-page 361 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM Mode) OC11 OC10 Note: Refer to Figure 30-1 for load conditions. TABLE 30-27: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. Characteristic(1) Min. Typ. Max. Units Conditions OC10 TCCF OCx Output Fall Time — — — ns See Parameter DO32 OC11 TCCR OCx Output Rise Time — — — ns See Parameter DO31 Note 1: These parameters are characterized but not tested in manufacturing. FIGURE 30-9: OCx/PWMx MODULE TIMING CHARACTERISTICS OC20 OCFA OC15 OCx TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units OC15 TFD Fault Input to PWMx I/O Change — — TCY + 20 ns OC20 TFLT Fault Input Pulse Width TCY + 20 — — ns Note 1: These parameters are characterized but not tested in manufacturing. DS70005144H-page 362 Conditions  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-10: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS MP30 Fault Input (active-low) MP20 PWMx FIGURE 30-11: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS MP11 MP10 PWMx Note: Refer to Figure 30-1 for load conditions. TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units — ns See Parameter DO32 See Parameter DO31 MP10 TFPWM PWMx Output Fall Time — — MP11 TRPWM PWMx Output Rise Time — — — ns MP20 TFD Fault Input  to PWMx I/O Change — — 15 ns MP30 TFH Fault Input Pulse Width 15 — — ns Note 1: Conditions These parameters are characterized but not tested in manufacturing.  2013-2019 Microchip Technology Inc. DS70005144H-page 363 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-30: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Maximum Data Rate Master Transmit Only (Half-Duplex) Master Transmit/Receive (Full-Duplex) Slave Transmit/Receive (Full-Duplex) CKE CKP SMP 15 MHz Table 30-31 — — 0,1 0,1 0,1 9 MHz — Table 30-32 — 1 0,1 1 9 MHz — Table 30-33 — 0 0,1 1 15 MHz — — Table 30-34 1 0 0 11 MHz — — Table 30-35 1 1 0 15 MHz — — Table 30-36 0 1 0 11 MHz — — Table 30-37 0 0 0 FIGURE 30-12: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS SCK2 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK2 (CKP = 1) SP35 SDO2 MSb SP30, SP31 Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 364  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-13: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS SP36 SCK2 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK2 (CKP = 1) SP35 MSb SDO2 Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 30-1 for load conditions. TABLE 30-31: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK2 Frequency — — 15 MHz SP20 TscF SCK2 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK2 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, TscL2doV SDO2 Data Output Valid after SCK2 Edge — 6 20 ns SP36 TdiV2scH, TdiV2scL SDO2 Data Output Setup to First SCK2 Edge 30 — — ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 365 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-14: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS SP36 SCK2 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK2 (CKP = 1) SP35 SDO2 MSb LSb SP30, SP31 SP40 SDI2 Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 30-1 for load conditions. TABLE 30-32: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK2 Frequency — — 9 MHz SP20 TscF SCK2 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK2 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2sc, TdoV2scL SDO2 Data Output Setup to First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI2 pins. DS70005144H-page 366  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS SCK2 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK2 (CKP = 1) SP35 SP36 SDO2 MSb Bit 14 - - - - - -1 SP30, SP31 SDI2 MSb In LSb SP30, SP31 Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure 30-1 for load conditions. TABLE 30-33: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK2 Frequency — — 9 MHz -40ºC to +125ºC and see Note 3 SP20 TscF SCK2 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK2 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2scH, SDO2 Data Output Setup to TdoV2scL First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns Note 1: 2: 3: 4: These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 367 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-16: SS2 SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SP52 SP50 SCK2 (CKP = 0) SP70 SP73 SCK2 (CKP = 1) SP36 SP35 MSb SDO2 Bit 14 - - - - - -1 SP72 MSb In Bit 14 - - - -1 SP73 LSb SP30, SP31 SDI2 SP72 SP51 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 368  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-34: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK2 Input Frequency — — 15 MHz SP72 TscF SCK2 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK2 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2scH, SDO2 Data Output Setup to TdoV2scL First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS2  to SCK2  or SCK2  Input 120 — — ns SP51 TssH2doZ SS2  to SDO2 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH TscL2ssH SS2 after SCK2 Edge 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDO2 Data Output Valid after SS2 Edge — — 50 ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 369 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SS2 SP52 SP50 SCK2 (CKP = 0) SP70 SP73 SCK2 (CKP = 1) SP36 SP35 MSb SDO2 Bit 14 - - - - - -1 SP72 MSb In Bit 14 - - - -1 SP73 LSb SP30, SP31 SDI2 SP72 SP51 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 370  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-35: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK2 Input Frequency — — 11 MHz SP72 TscF SCK2 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK2 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2scH, SDO2 Data Output Setup to TdoV2scL First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS2  to SCK2  or SCK2  Input 120 — — ns SP51 TssH2doZ SS2  to SDO2 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH TscL2ssH SS2 after SCK2 Edge 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDO2 Data Output Valid after SS2 Edge — — 50 ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 371 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SS2 SP52 SP50 SCK2 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK2 (CKP = 1) SP35 SP36 SDO2 MSb Bit 14 - - - - - -1 LSb SP51 SP30, SP31 SDI2 MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 372  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-36: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK2 Input Frequency — — 15 MHz SP72 TscF SCK2 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK2 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2scH, SDO2 Data Output Setup to TdoV2scL First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS2  to SCK2  or SCK2  Input 120 — — ns SP51 TssH2doZ SS2  to SDO2 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH TscL2ssH SS2 after SCK2 Edge 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 373 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SS2 SP52 SP50 SCK2 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK2 (CKP = 1) SP35 SP36 SDO2 MSb Bit 14 - - - - - -1 LSb SP30, SP31 SDI2 MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 374  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-37: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK2 Input Frequency — — 11 MHz SP72 TscF SCK2 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK2 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO2 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO2 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO2 Data Output Valid after TscL2doV SCK2 Edge — 6 20 ns SP36 TdoV2scH, SDO2 Data Output Setup to TdoV2scL First SCK2 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI2 Data Input to SCK2 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS2  to SCK2  or SCK2  Input 120 — — ns SP51 TssH2doZ SS2  to SDO2 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH TscL2ssH SS2 after SCK2 Edge 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI2 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 375 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Maximum Data Rate Master Transmit Only (Half-Duplex) Master Transmit/Receive (Full-Duplex) Slave Transmit/Receive (Full-Duplex) CKE CKP SMP 25 MHz Table 30-39 — — 0,1 0,1 0,1 25 MHz — Table 30-40 — 1 0,1 1 25 MHz — Table 30-41 — 0 0,1 1 25 MHz — — Table 30-42 1 0 0 25 MHz — — Table 30-43 1 1 0 25 MHz — — Table 30-44 0 1 0 25 MHz — — Table 30-45 0 0 0 FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 SDO1 MSb SP30, SP31 Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 30-1 for load conditions. DS70005144H-page 376  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-21: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS SP36 SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 SDO1 MSb Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 30-1 for load conditions. TABLE 30-39: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK1 Frequency — — 25 MHz SP20 TscF SCK1 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK1 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, TscL2doV SDO1 Data Output Valid after SCK1 Edge — 6 20 ns SP36 TdiV2scH, TdiV2scL SDO1 Data Output Setup to First SCK1 Edge 20 — — ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2013-2019 Microchip Technology Inc. DS70005144H-page 377 dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-22: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS SP36 SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 MSb SDO1 LSb SP30, SP31 SP40 SDI1 Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 30-1 for load conditions. TABLE 30-40: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK1 Frequency — — 25 MHz SP20 TscF SCK1 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK1 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2sc, TdoV2scL SDO1 Data Output Setup to First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 15 — — ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 378  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 SP36 SDO1 MSb Bit 14 - - - - - -1 SP30, SP31 SD1 MSb In LSb SP30, SP31 Bit 14 - - - -1 LSb In SP40 SP41 Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 379 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-41: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK1 Frequency — — 25 MHz -40°C to +125°C and see Note 3 SP20 TscF SCK1 Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCK1 Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 20 — — ns Note 1: 2: 3: 4: These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 380  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SS1 SP50 SP52 SCK1 (CKP = 0) SP70 SP73 SCK1 (CKP = 1) SP36 SP35 SDO1 MSb Bit 14 - - - - - -1 SP72 MSb In Bit 14 - - - -1 SP73 LSb SP30, SP31 SDI1 SP72 SP51 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 381 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-42: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 25 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 15 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH TscL2ssH SS1 after SCK1 Edge 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDO1 Data Output Valid after SS1 Edge — — 50 ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 382  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-25: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SS1 SP52 SP50 SCK1 (CKP = 0) SP73 SP70 SCK1 (CKP = 1) SP36 SP35 MSb SDO1 Bit 14 - - - - - -1 SP72 MSb In Bit 14 - - - -1 SP73 LSb SP30, SP31 SDI1 SP72 SP51 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 383 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-43: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 25 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 15 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH, SS1 after SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV — — 50 ns Note 1: 2: 3: 4: SDO1 Data Output Valid after SS1 Edge See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 384  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SS1 SP52 SP50 SCK1 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK1 (CKP = 1) SP35 SP36 SDO1 MSb Bit 14 - - - - - -1 LSb SP51 SP30, SP31 SDI1 MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 385 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-44: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 25 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 15 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH, SS1 after SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 386  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SS1 SP52 SP50 SCK1 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK1 (CKP = 1) SP35 SP36 SDO1 MSb Bit 14 - - - - - -1 LSb SP51 SP30, SP31 SDI1 MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 387 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-45: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 25 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDO1 Data Output Valid after TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 20 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 20 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 15 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH, SS1 after SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005144H-page 388  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-28: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM34 IM31 IM30 IM33 SDAx Stop Condition Start Condition Note: Refer to Figure 30-1 for load conditions. FIGURE 30-29: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM26 IM11 IM25 IM10 SDAx In IM40 IM40 IM33 IM45 SDAx Out Note: Refer to Figure 30-1 for load conditions.  2013-2019 Microchip Technology Inc. DS70005144H-page 389 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-46: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. IM10 IM11 IM20 IM21 IM25 IM26 IM30 IM31 IM33 IM34 IM40 IM45 IM50 IM51 Note 1: 2: 3: 4: Characteristic(4) Min.(1) Max. Units Conditions — µs TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 2) 400 kHz mode TCY/2 (BRG + 2) — µs 1 MHz mode(2) TCY/2 (BRG + 2) — µs THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 2) — µs 400 kHz mode TCY/2 (BRG + 2) — µs 1 MHz mode(2) TCY/2 (BRG + 2) — µs TF:SCL SDAx and SCLx 100 kHz mode — 300 ns CB is specified to be Fall Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns (2) 1 MHz mode — 100 ns TR:SCL SDAx and SCLx 100 kHz mode — 1000 ns CB is specified to be Rise Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns (2) 1 MHz mode — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns 1 MHz mode(2) 40 — ns THD:DAT Data Input 100 kHz mode 0 — µs Hold Time 400 kHz mode 0 0.9 µs 1 MHz mode(2) 0.2 — µs TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 2) — µs Only relevant for Setup Time Repeated Start — µs 400 kHz mode TCY/2 (BRG + 2) condition (2) 1 MHz mode TCY/2 (BRG + 2) — µs THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 2) — µs After this period, the Hold Time first clock pulse is — µs 400 kHz mode TCY/2 (BRG +2) generated 1 MHz mode(2) TCY/2 (BRG + 2) — µs TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 2) — µs Setup Time 400 kHz mode TCY/2 (BRG + 2) — µs — µs 1 MHz mode(2) TCY/2 (BRG + 2) THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 2) — µs Hold Time 400 kHz mode TCY/2 (BRG + 2) — µs — µs 1 MHz mode(2) TCY/2 (BRG + 2) TAA:SCL Output Valid 100 kHz mode — 3500 ns From Clock 400 kHz mode — 1000 ns 1 MHz mode(2) — 400 ns TBF:SDA Bus Free Time 100 kHz mode 4.7 — µs Time the bus must be free before a new 400 kHz mode 1.3 — µs transmission can start 0.5 — µs 1 MHz mode(2) CB Bus Capacitive Loading — 400 pF TPGD Pulse Gobbler Delay 65 390 ns See Note 3 BRG is the value of the I2C Baud Rate Generator. Refer to “Inter-Integrated Circuit (I2C)” (www.microchip.com/DS70000195) in the “dsPIC33/PIC24 Family Reference Manual”. Please see the Microchip website for the latest “dsPIC33/PIC24 Family Reference Manual” sections. Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). Typical value for this parameter is 130 ns. These parameters are characterized but not tested in manufacturing. DS70005144H-page 390  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-30: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition FIGURE 30-31: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS25 IS31 SDAx In IS40 IS40 IS26 IS33 IS45 SDAx Out  2013-2019 Microchip Technology Inc. DS70005144H-page 391 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-47: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol No. Characteristic(3) IS10 TLO:SCL Clock Low Time IS11 THI:SCL IS20 IS21 IS25 IS26 IS30 IS31 IS33 IS34 IS40 IS45 IS50 IS51 Note Clock High Time Min. Max. Units 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 4.7 1.3 0.5 4.0 — — — — µs µs µs µs 400 kHz mode 0.6 — µs 0.5 — µs 1 MHz mode(1) SDAx and SCLx 100 kHz mode — 300 ns TF:SCL Fall Time 300 ns 400 kHz mode 20 + 0.1 CB (1) 1 MHz mode — 100 ns — 1000 ns TR:SCL SDAx and SCLx 100 kHz mode Rise Time 300 ns 400 kHz mode 20 + 0.1 CB 1 MHz mode(1) — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns 1 MHz mode(1) 100 — ns THD:DAT Data Input 100 kHz mode 0 — µs Hold Time 400 kHz mode 0 0.9 µs 1 MHz mode(1) 0 0.3 µs TSU:STA Start Condition 100 kHz mode 4.7 — µs Setup Time 400 kHz mode 0.6 — µs (1) 1 MHz mode 0.25 — µs THD:STA Start Condition 100 kHz mode 4.0 — µs Hold Time 400 kHz mode 0.6 — µs 1 MHz mode(1) 0.25 — µs TSU:STO Stop Condition 100 kHz mode 4.7 — µs Setup Time 400 kHz mode 0.6 — µs 1 MHz mode(1) 0.6 — µs THD:STO Stop Condition 100 kHz mode 4 — µs Hold Time 400 kHz mode 0.6 — µs 1 MHz mode(1) 0.25 µs TAA:SCL Output Valid 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns (1) 1 MHz mode 0 350 ns TBF:SDA Bus Free Time 100 kHz mode 4.7 — µs 400 kHz mode 1.3 — µs 1 MHz mode(1) 0.5 — µs CB Bus Capacitive Loading — 400 pF TPGD Pulse Gobbler Delay 65 390 ns 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 2: The typical value for this parameter is 130 ns. 3: These parameters are characterized but not tested in manufacturing. DS70005144H-page 392 Conditions Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated Time the bus must be free before a new transmission can start See Note 2  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY FIGURE 30-32: CANx MODULE I/O TIMING CHARACTERISTICS CxTX Pin (output) Old Value New Value CA10, CA11 CxRX Pin (input) CA20 TABLE 30-48: CANx MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Characteristic(1) Symbol CA10 Min. Typ.(2) Max. Units — — — ns See Parameter DO32 See Parameter DO31 TIOF Port Output Fall Time CA11 TIOR Port Output Rise Time — — — ns CA20 TCWF Pulse Width to Trigger CAN Wake-up Filter 120 — — ns Note 1: 2: Conditions These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 30-33: UARTx MODULE I/O TIMING CHARACTERISTICS UA20 UxRX UxTX MSb In Bits 6-1 LSb In UA10 TABLE 30-49: UARTx MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +125°C AC CHARACTERISTICS Param No. Symbol Characteristic(1) UA10 TUABAUD UARTx Baud Time UA11 FBAUD UARTx Baud Frequency UA20 TCWF Start Bit Pulse Width to Trigger UARTx Wake-up Note 1: 2: Min. Typ.(2) 66.67 — — ns — — 15 Mbps 500 — — ns Max. Units Conditions These parameters are characterized but not tested in manufacturing. Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.  2013-2019 Microchip Technology Inc. DS70005144H-page 393 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS Standard Operating Conditions (see Note 3): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ.(1) Max. Units Conditions V+ input step of 100 mV, V- input held at VDD/2 Comparator AC Characteristics CM10 TRESP Response Time — 19 80 ns CM11 Comparator Mode Change to Output Valid — — 10 µs TMC2OV Comparator DC Characteristics CM30 VOFFSET Comparator Offset Voltage -80 ±60 80 mV CM31 VHYST Input Hysteresis Voltage — 30 — mV CM32 TRISE/ TFALL Comparator Output Rise/Fall Time — 20 — ns CM33 VGAIN Open-Loop Voltage Gain — 90 — db CM34 VICM Input Common-Mode Voltage AVSS — AVDD V 1 pF load capacitance on input Op Amp AC Characteristics CM20 SR Slew Rate — 9 — V/µs CM21 PM Phase Margin — 35 — °C G = 100V/V, 10 pF load CM22 GM Gain Margin — 20 — db G = 100V/V, 10 pF load CM23 GBW Gain Bandwidth — 10 — MHz 10 pF load 10 pF load Op Amp DC Characteristics CM40 VCMR Common-Mode Input Voltage Range AVSS — AVDD V CM41 CMRR Common-Mode Rejection Ratio — 45 — db CM42 VOFFSET Op Amp Offset Voltage -50 ±6 50 mV CM43 VGAIN Open-Loop Voltage Gain — 90 — db CM44 IOS Input Offset Current — — — — See pad leakage currents in Table 30-10 CM45 IB Input Bias Current — — — — See pad leakage currents in Table 30-10 CM46 IOUT Output Current — — 420 µA With minimum value of RFEEDBACK (CM48) 8 — — k See Note 2 AVSS + 0.075 — AVDD – 0.075 V IOUT = 420 µA CM48 RFEEDBACK Feedback Resistance Value CM49a VOUT Note 1: 2: 3: Output Voltage VCM = AVDD/2 Data in “Typ.” column are at 5.0V, +25°C unless otherwise stated. Resistances can vary by ±10% between op amps. Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values. DS70005144H-page 394  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-51: OP AMP/COMPARATOR x VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS Standard Operating Conditions (see Note 2): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol VRD310 TSET Note 1: 2: Characteristic Settling Time Min. Typ. Max. Units — 1 10 µs Conditions See Note 1 Settling time measured while CVRSS = 1 and the CVR[6:0] bits transition from ‘0000000’ to ‘1111111’. Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values. TABLE 30-52: OP AMP/COMPARATOR x VOLTAGE REFERENCE SPECIFICATIONS Standard Operating Conditions (see Note 1): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. Symbol Characteristics Min. Typ. Max. Units Conditions VRD311 CVRAA Absolute Accuracy of Internal DAC Input to Comparators — ±25 — mV AVDD = CVRSRC = 5.0V VRD312 CVRAA1 Absolute Accuracy of CVREFxO Pins — — +35/-65 mV AVDD = CVRSRC = 5.0V VRD313 CVRSRC Input Reference Voltage 0 — AVDD + 0.3 V VRD314 CVROUT Buffer Output Resistance — 1.5k —  VRD315 CVCL Permissible Capacitive Load (CVREFxO pins) — — 25 pF VRD316 IOCVR Permissible Current Output (CVREFxO pins) — — 1 mA VRD317 ION Current Consumed when Module is Enabled — — 500 µA AVDD = 5.0V VRD318 IOFF Current Consumed when Module is Disabled — — 1 nA AVDD = 5.0V Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.  2013-2019 Microchip Technology Inc. DS70005144H-page 395 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-53: CTMU CURRENT SOURCE SPECIFICATIONS Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units — nA Conditions CTMU Current Source CTMUI1 IOUT1 Base Range CTMUI2 IOUT2 CTMUI3 IOUT3 CTMUI4 IOUT4 CTMUFV1 VF CTMUFV2 VFVR Note 1: 2: — 550 10x Range — 5.5 — µA CTMUICON[9:8] = 10 100x Range — 55 — µA CTMUICON[9:8] = 11 1000x Range — 550 — µA CTMUICON[9:8] = 00 Temperature Diode Forward Voltage(1,2) — 0.525 — V TA = +25°C, CTMUICON[9:8] = 01 — 0.585 — V TA = +25°C, CTMUICON[9:8] = 10 — 0.645 — V TA = +25°C, CTMUICON[9:8] = 11 — -1.92 — mV/°C CTMUICON[9.8] = 01 — -1.74 — mV/°C CTMUICON[9:8] = 10 — -1.56 — mV/°C CTMUICON[9:8] = 11 Temperature Diode Rate of Change(1,2) CTMUICON[9:8] = 01 Nominal value at center point of current trim range (CTMUICON[15:10] = 000000). Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions: • VREF = AVDD = 5.0V • ADC configured for 10-bit mode • ADC configured for conversion speed of 500 ksps • All PMDx bits are cleared (PMDx = 0) • CPU executing while(1) { NOP(); } • Device operating from the FRC with no PLL DS70005144H-page 396  2013-2019 Microchip Technology Inc. dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-54: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Param Symbol No. Characteristic Standard Operating Conditions (see Note 1): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units Conditions Device Supply AD01 AVDD Module VDD Supply Greater of: VDD – 0.3 or VBOR — Lesser of: VDD + 0.3 or 5.5 V AD02 AVSS Module VSS Supply VSS – 0.3 — VSS + 0.3 V AD05 VREFH Reference Voltage High 4.5 — 5.5 V AD06 VREFL Reference Voltage Low AVSS — AVDD – VBORMIN V See Note 1 0 — 0 V VREFH = AVDD, VREFL = AVSS = 0 Reference Inputs AD06a VREFH = AVDD, VREFL = AVSS = 0 AD07 VREF Absolute Reference Voltage 4.5 — 5.5 V VREF = VREFH – VREFL AD08 IREF Current Drain — — — — 10 600 µA µA ADC off ADC on AD09 IAD Operating Current — 5 — mA — 2 — mA ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1) Analog Input AD12 VINH Input Voltage Range VINH VINL — VREFH V This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input AD13 VINL Input Voltage Range VINL VREFL — AVSS + 1V V This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input AD17 RIN Recommended Impedance of Analog Voltage Source — — 200  Impedance to achieve maximum performance of ADC Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.  2013-2019 Microchip Technology Inc. DS70005144H-page 397 dsPIC33EVXXXGM00X/10X FAMILY TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE) Standard Operating Conditions (see Note 1): 4.5V to 5.5V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ. Max. Units Conditions ADC Accuracy (12-Bit Mode) AD20a Nr Resolution 12 data bits AD21a INL Integral Nonlinearity AD22a DNL AD23a bits -2 — +2 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V Differential Nonlinearity -1 — 6623@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV 1 H 3LWFK 2YHUDOO+HLJKW $ 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ 2YHUDOO:LGWK ( 0ROGHG3DFNDJH:LGWK ( 2YHUDOO/HQJWK ' )RRW/HQJWK / )RRWSULQW / F /HDG7KLFNQHVV )RRW$QJOH E /HDG:LGWK 0,1         ƒ  0,//,0(7(56 120 0$;  %6&               5()   ƒ ƒ   Notes: 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRU SURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ & * & 6,/.6&5((1 
DSPIC33EV256GM103-I/M5 价格&库存

很抱歉,暂时无法提供与“DSPIC33EV256GM103-I/M5”相匹配的价格&库存,您可以联系我们找货

免费人工找货