0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LE87251NQCT

LE87251NQCT

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    16-VFQFN Exposed Pad

  • 描述:

    IC TELECOM INTERFACE 16QFN

  • 数据手册
  • 价格&库存
LE87251NQCT 数据手册
Le87251 Worldwide ADSL2+ Dual Channel Line Driver BD870 Series Data Sheet Features June 2009 Document Number • Fixed Voltage Gain Of 13 • 450 mA Peak Output Drive Capability • ±5 V to ±12 V Dual Supplies Or 10 V to 24 V Single Supply • 44 Vp-p Differential Output Into a 100 Ω Load • 40.5 Vp-p Differential Output Into a 60 Ω Load • Low-power Disable Mode For Each Driver • 4 mA Per Amplifier Quiescent Supply Current • -75 dBc THD With 1 MHz Signal Into a 60 Ω load • 16-pin (4 mm x 4 mm) QFN Package • Ordering Information Le87251NQC16 pin QFN Green Pkg.Tray Le87251NQCT16 pin QFN Green Pkg.Tape & Reel The green package meets RoHS Directive 2002/95/EC of the European Council to minimize the environmental impact of electrical equipment. • ENAB Logic Control ENCD Logic Control VS+ VS- RoHS Compliant Applications • 129739 GND + VINA VS+ Dual Port Full Rate ADSL2+ Line Drivers A – 7.5k VOUTA RF 50k HDSL Line Drivers VCMAB Description RG RF 50k The Le87251 is a dual channel differential amplifier designed to drive full rate ADSL2+ signals with very low power dissipation. The Le87251 contains two pairs of wide band amplifiers designed with Zarlink’s HV30 Bipolar SOI process for low power consumption in DSL systems. The amplifiers have an internal fixed gain, which helps to eliminate external feedback and gain setting resistors. 7.5k VSVINB B VOUTB C VOUTC + VINC VS+ – 7.5k RF 50k The drivers achieve better than -75 dB MTPR while driving a 1 MHz, 16Vp_p signal into a 60 Ω load. The amplifiers are enabled by forcing the ENAB/ENCD pins to ground. Leaving the ENAB/ENCD pins floating or forcing them high will disable the two amplifiers. The ENAB and ENCD pins are pulled up to an internal 2.5 V through on-chip 50 kΩ resistors. VCMCD RG RF 50k 7.5k VS- D VIND Le87251 device is one of the most cost-effective and high performance line drivers for xDSL2+ applications. Figure 1 - Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2009, Zarlink Semiconductor Inc. All Rights Reserved. VOUTD Le87251 Data Sheet Table of Contents 1.0 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Component Values for Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Input Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Output Driving Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 Power Supplies and Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.5 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Cable Termination Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Line Driver Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Thermal Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Package Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.0 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.0 Device Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1 16-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.0 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.1 Version 1 to Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.2 Version 2 to Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Zarlink Semiconductor Inc. Le87251 ENAB VS+ VOUTA 15 14 13 Top View VCMAB Pin Diagram 16 1.0 Data Sheet VINA 1 12 VOUTB VINB 2 11 GND 10 VOUTC 9 VOUTD 16-pin QFN 7 8 ENCD VS- EXPOSED PAD 6 4 VCMCD VINC 5 3 VIND GND Notes: 1. Pin 1 is marked for orientation. 2. The Le87251 device incorporates an exposed die pad on the underside of its package. The pad acts as a heat sink and must be connected to a copper plane through thermal vias, for proper heat dissipation. 1.1 Pin Description Pin Name Type Description Note ENAB Input DSL channel #1 enable/disable control pin Reference Circuit 1 ENCD Input DSL channel #2 enable/disable control pin Reference Circuit 1 VINA Input Amplifier A non-inverting input Reference Circuit 2 VINB Input Amplifier B non-inverting input Reference Circuit 2 VINC Input Amplifier C non-inverting input Reference Circuit 2 VIND Input Amplifier D non-inverting input Reference Circuit 2 VCMAB Input Bias voltage for amplifier A and B VCMCD Input Bias voltage for amplifier C and D VS+ Power Positive power supply VS- Power Negative power supply GND Ground Ground connection VOUTA Output Amplifier A output Reference Circuit 2 VOUTB Output Amplifier B output Reference Circuit 2 VOUTC Output Amplifier C output Reference Circuit 2 VOUTD Output Amplifier D output Reference Circuit 2 Note 1: Amplifiers A and B comprise DSL channel #1. ENAB allows enable/disable control for DSL channel #1. Note 2: Amplifiers C and D comprise DSL channel #2. ENCD allows enable/disable control for DSL channel #2. Note 3: Reference circuits 1 and 2 are shown in Figure 2. 3 Zarlink Semiconductor Inc. Le87251 Data Sheet 2.5V VS+ 50K 150K ENAB/CD Reference circuit 1 GND VS+ VINx VOUTx x = A, B, C, D Internal Circuit Reference circuit 2 VS- Figure 2 - Reference Circuit 4 Zarlink Semiconductor Inc. Le87251 2.0 Data Sheet Applications The Le87251 integrates two sets of high-power line driver amplifiers that can be connected for full duplex differential line transmission. The amplifiers are designed to be used with signals up to 10 MHz with low signal distortion. The driver can put out 20.5 dBm power level onto the telephone line and can drive 450 mA current, which exceeds the level required when using a transformer with 1:2 ratio. 2.1 Typical Application Circuit A typical application interface circuit (one channel) is shown in Figure 3. TX+ VINA ROUT + CTX VOUTA – RF 100 2RG RF ROUT TX- CTX VOUTB VINB RF RX1 – RX+ + RX2 RX1 RX- RF RX2 Data Receive Figure 3 - Typical Application Interface Circuit As shown in Figure 3 the amplifiers have identical positive gain connections with common-mode rejection. Any DC input errors are duplicated and create common-mode rather than differential line errors. 5 Zarlink Semiconductor Inc. Le87251 2.1.1 Component Values for Typical Application Item 2.1.2 Data Sheet Quantity Type Value Tolerance Rating ROUT 2 SMT 49.9 Ω 1% 1/16 W CTX 2 X7R 0.22 µF 10% Table 1 - Parts List for Typical Application Circuit 50V Input Considerations The driving source impedance should be less than 100 nH to avoid any ringing or oscillation. This inductance is equivalent to about 4" of unshielded wiring, or 6" of unterminated transmission line. Normal high-frequency construction obviates any such problem. 2.1.3 Output Driving Considerations While the drive amplifiers can output in excess of 450 mA peak, the internal metallization is not designed to carry more than 100 mA of steady DC current and there is no current limit mechanism. The device can safely drive sinusoidal currents of 2 x 100 mArms, or 200 mArms. This current is more than that required to drive line impedance to large output levels, but output short circuits can not be tolerated. The series output resistor will usually limit currents to safe values in the event of line shorts. Driving lines with no series resistor is not recommended. The amplifiers are sensitive to capacitive loading. More than 100pF may cause peaking of the frequency response. The same is true of badly terminated lines connected without a series matching resistor. When in power down mode, several volts of differential voltage may appear across the line driver outputs. If a DC current path exists between the two outputs, a large DC current can flow from the positive supply rail to the negative supply rail through the outputs. To avoid DC current flow, the most effective solution is to place DC blocking capacitors in series at the output, as shown in the typical application circuit. 2.1.4 Power Supplies and Component Placement The power supplies should be well bypassed close to the Le87251 device. A 2.2 µF tantalum capacitor and a 0.1 µF ceramic capacitor for each supply is recommended. The ground terminal of the positive and negative bypass capacitors should be connected to each other directly and then returned to circuit ground to prevent ground current loops. The Le87251 can also be powered from a single positive voltage supply. When operating in this mode, the VS+ pin is connected to the positive supply. The VS- pin is connected to GND. 2.1.5 Stability The Le87251 features improved frequency compensation for all applications, allowing stable operation at very low power levels and eliminating any need for external “snubber” circuit. Differential circuits, such as ADSL line driver applications, can be especially prone to common-mode oscillation. The Le87251 is specifically compensated to eliminate this type of instability and allows for reliable operation even at very low power levels. 2.2 Cable Termination Technique There are various techniques available. Figure 4 shows a passive termination technique. Figure 5 shows an active termination technique. A quick comparison of the reduction in voltage and power requirements for the driver with passive or active termination is shown in Table 2. 6 Zarlink Semiconductor Inc. Le87251 Data Sheet The output impedance and the voltage gain of the circuit in Figure 5 are shown in the following equations. Z OUT = K • R BM ) ---------------V -----O --- = -----------------R ---D ----( ---P ---2----V IN 2( RD ( G ) – RD ( P1 ) ) where ZOUT is the output impedance. 1 K = ----------------------------R D( P 1 ) 1 – ------- ----------RD( G ) And the resistor dividers are defined as following RP1 RD( P1 ) = ----------------------------RP1 + RP2 RP2 RD( P2 ) = ----------------------------RP1 + RP2 RG RD( G ) = ---------------------RG + R F And VO/VIN represents the voltage gain. RG RF RBM ZL VO VIN RL Figure 4 - Passive Termination Technique RG RF RBM ZL VO RP1 RP2 RL VIN Figure 5 - Active Termination Technique 7 Zarlink Semiconductor Inc. Le87251 Passive Termination Data Sheet Active Termination 16.5 VP-P into a 100 Ω line 16.5 VP-P into a 100 Ω line VOUT DRIVER = VRBM + VRLOAD VOUT DRIVER = VRBM + VRLOAD RBM = RLOAD RBM = RLOAD/5 VRBM = VRLOAD VRBM = VRLOAD/5 VOUT DRIVER = 33.52 V VOUT DRIVER = 20.11 V VSUPPLY = 37.52 V VSUPPLY = 24.11 V IOUT = 31.6 mA IOUT = 31.6 mA POUT DRIVER = VSUPPLY * IOUT = 1.185 W (plus quiescent power) POUT DRIVER = VSUPPLY * IOUT = 0.714 W (plus quiescent power) Table 2 - Passive and Active Termination Comparison 2.3 Line Driver Protection High voltage transients such as lightning can appear on the telephone lines. Transient protection devices should be used to absorb the transient energy and clamp the transient voltages. However, large transient voltages can still couple to the primary side of the transformer. As shown in Reference Circuit 2, the outputs of the Le87251 incorporate on-chip circuitry that clamps the output voltage to no more than a diode drop beyond either rail. No external diodes immediately at the output of the amplifiers are required. As shown in Figure 6, the series output termination resistors limit the current going into the line driver and internal clamps, thus these termination resistors should be specified at 0.5 W. The actual protection scheme may vary depending on the type of data transformer used and the line protection components used in the front of the data transformer. RBM VIN + 0.5W RF Subscriber Line 2RG RF RBM VIN - 0.5W Figure 6 - Line Driver Protection A large DC voltage can develop between the line driver outputs during system turn-on when the AFE has not been reset or when the line driver is disabled. Figure 6 shows an AC coupling capacitor between the two line driver outputs. This AC coupling capacitor prevents large DC current from flowing from one output of the line driver to another. 8 Zarlink Semiconductor Inc. Le87251 3.0 Data Sheet Absolute Maximum Ratings Stresses above the values listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods can affect device reliability. Storage Temperature −65 ≤ TA ≤ +150°C Operating Ambient Temperature −40 ≤ TA ≤ +85°C Operating Junction Temperature (See Notes 1 and 2) −40 ≤ TA ≤ +150°C VS+ to VS- Supply Voltage −0.3 V to 30 V VS+ with respect to GND −0.3 V to 30 V VS- with respect to GND −30 V to +0.3 V Driver inputs VINA/B/C/D VS- to VS+ Control inputs ENAB/ENCD with respect to GND −0.3 V to 6 V Maximum current on any input 10 mA Maximum current at amplifier output (DC continuous) 100 mA ESD Immunity (Human Body Model) JESD22 Class 2 compliant ESD Immunity (Charge Device Model) JESD22 Class IV compliant Note: Continuous operation above 145°C junction temperature may degrade device reliability. 3.1 Thermal Resistance The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance requires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through multiple vias to larger internal copper planes.Please refer to the QFN Package application note, available from http://www.zarlink.com, for layout and heat sinking guidelines. 3.2 Package Assembly The green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-free board assembly processes. Refer to IPC/JEDEC J-Std-020 Table 4-2 for recommended peak soldering temperature and Table 5-2 for the recommended solder reflow temperature profile. 9 Zarlink Semiconductor Inc. Le87251 4.0 Data Sheet Operating Ranges Zarlink guarantees the performance of this device over commercial (0°C to 70°C) and industrial (−40°C to 85°C) temperature ranges by conducting electrical characterization over each range and by conducting a single insertion production test coupled with periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications Equipment. 5.0 Ambient temperature -40°C to +85°C VS+ with respect to GND +12 V ± 5% VS- with respect to GND -12 V ± 5% Single battery operation, VS+ with respect to GND (VS- to GND) +24V ± 5% Device Specifications Typical Conditions: VS = ±12V, RL = 65Ω, unless otherwise specified, TA = 25°C. Min/Max Parameters: TA = −40 to +85°C Amplifiers are tested separately. Parameter Description Condition Min. Typ. Max. Unit Supply Current Characteristics IS+ (Full IS) Positive Supply Current per Amplifier All outputs at 0V, ENAB = ENCD = 0V 3.75 4.0 5.3 mA IS- (Full IS) Negative Supply Current per Amplifier All outputs at 0V, ENAB = ENCD = 0V -5.1 -3.8 -3.0 mA IS+ (power down) Positive Supply Current per Amplifier All outputs at 0V, ENAB = ENCD = 5V 0.2 0.4 mA IS- (power down) Negative Supply Current per Amplifier All outputs at 0V, ENAB = ENCD = 5V IGND GND Supply Current per Amplifier All outputs at 0V -0.3 0.1 mA 0.25 mA Control Input (C0 and C1) Characteristics VIH Input High Voltage ENAB and ENCD inputs VIL Input Low Voltage ENAB and ENCD inputs 1.6 IIH Input High Current ENAB = ENCD = 5V 5 IIL Input Low Current ENAB = ENCD = 0V V 0.8 V 20 40 µA -85 -50 -30 µA -10 0 10 mV -5 0 5 mV Amplifier Input (VINx+ and VINx-) Characteristics VOS Input Offset Voltage ΔVOS VOS mismatch IB Input Bias Current -15 14 µA ΔIB IB Mismatch -25 0 25 µA VCM Driver common mode voltage 0.475 0.5 0.525 |VS+| + |VS-| ROL Transimpedance1 pins VCMAB/CD floating, reference to VS- 5 Table 3 - Electrical Specifications 10 Zarlink Semiconductor Inc. MΩ Le87251 Parameter Description Condition Data Sheet Min. Typ. Max. Unit eN Input Noise Voltage1 3.5 nV/ H z iN Input Noise Current1 13 pA/ H z ±11. 1 V Amplifier Output (VOUT) Characteristics VOUT Loaded Output Swing (RL Single-ended to GND) IOUT RL = 100 Ω ±10.3 RL = 30 Ω (+) 10.1 RL = 30 Ω (−) 10.7 -10.5 V -10.1 V VOUT = 0.6 V, RL = 1 Ω 600 mA Total Harmonic Distortion f = 1 MHz, RL = 50 Ω, VOUT = 16 Vpp -75 dBc Multi-Tone Power Ratio 26 kHz to 1.1 MHz, RL = 100 Ω, PLINE =20.4 dBm -70 dBc V/µs Output Current1 Amplifier Dynamic Characteristics THD MTPR SR AV Slew rate (single-ended)1 VOUT from -8 V to +8 V measured at ±4 V 200 400 Voltage Gain VOUT = 16 Vpp, RL = 100 Ω 12.9 13.0 Note 1: This parameter is not tested in production. It is guaranteed by design and device characterization. Table 3 - Electrical Specifications 1 1 13.1 V/V Le87251 6.0 Physical Dimensions 6.1 16-Pin QFN GIFN 16L Data Sheet 4x4 0.10 PIN 1 AREA 0.10 c 0.08 c 16X c:::r. SEATING PLANE .. - 0 30±0 05 16X 1-$-IO.!O@ICIAIB IO.o5@ICI -· ., / -t-I I \ ru - f \ \,'-.. r-------_// ' i If) 'c"i' If) 0. 40±0.05 ' "' ci DETAIL A
LE87251NQCT 价格&库存

很抱歉,暂时无法提供与“LE87251NQCT”相匹配的价格&库存,您可以联系我们找货

免费人工找货