0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ZL30241LDF1

ZL30241LDF1

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    VFQFN-48

  • 描述:

    IC CLK GEN NCO UNIV 1CH 48QFN

  • 数据手册
  • 价格&库存
ZL30241LDF1 数据手册
Data Sheet ZL30241 Single Channel Precision Universal Clock Generator and NCO Ordering Information ZL30241LDG1 48 Pin QFN Tray ZL30241LDF1 48 Pin QFN Tape/Reel Matte Tin -40oC to +85oC Package size: 7 x 7 mm Features Outputs • PLL • • One PLL with ultra low jitter – Up to 275 fs RMS jitter for integer mode Supports integer, fractional and ratio modes – Up to 400 fs RMS jitter for fractional mode – Ratio mode for flexible FEC rate support Inputs • Synthesizes two different frequencies from the PLL Crystals, crystal oscillator or reference (singled ended or differential) inputs – Crystal Input range from 22 MHz to 54 MHz – Crystal oscillator or single-ended reference input from 22 MHz to 180 MHz – Differential reference input from 22 to 864 MHz Configuration • Generates clock signals at power-up per user defined custom configuration (factory programmable) • Dynamically configurable configuration registers via SPI and • Each output is independently configurable to support LVDS, LVPECL, HCSL, LVCMOS • Generates any output frequency from 12 MHz to 914 MHz • Generates output from crystal, a crystal oscillator or reference • NCO accuracy less than 0.1 ppb in fractional mode Applications volatile • Clocks for NPUs, FPGAs, 10G CDRs, high-speed ADC, PCIe interface devices, Ethernet switches and PHYs • Timing for optical, storage, networking and broadcast video applications Single Ended/ Differential In_p In_n Single Ended/ Differential Input Divider PLL1 Divider  1 Single Ended/ Differential Divider  2 Single Ended/ Differential PLL XO1 Crystal  Input 1 XO2 Figure 1 • Configuration and  Status External Filters SPI Filter 1 RefOut Enable RefOut_p RefOut_n Output Enable1 Out1_p Out1_n Output Enable2 Out2_p Out2_n Block Diagram November 2012 © 2012 Microsemi Corporation 1 ZL30241 Data Sheet Table of Contents 1.0 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Output Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.2 Output Electrical Format - (LVCMOS, LVDS, LVPECL, or HCSL). . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.1 Integer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 Fractional Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 Ratio Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Output Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.0 SPI Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.0 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.0 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.0 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.0 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.0 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.0 Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Microsemi Corporation ZL30241 Data Sheet List of Figures Figure 1 • Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Input Termination - LVCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 3 - Input Termination - LVDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 4 - Input Termination - LVPECL AC coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5 - Input Termination - LVPECL DC coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6 - Input Termination - HCSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 7 - Output Enable/Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 8 - Example SPI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 9 - Read (opcode 2) cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 10 - Write (opcode 1) cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11 - Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 12 - LVDS Output Load & Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 13 - LVCMOS Output Load & Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 14 - LVPECL Output Load & Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 15 - HCSL Output Loads & Test Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 16 - Serial Peripheral Interface Timing - Master Read (opcode 2) cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 17 - Serial Peripheral Interface Timing - Master Write (opcode 1) cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Microsemi Corporation ZL30241 Data Sheet List of Tables Table 1 - Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2 - Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 3 - Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 5 - Xtal_gain[3:0] Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4 - Reference Input (In_p/In_n) Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 6 - Interpretation of S Parameter in Ratio Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 7 - SPI Operation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 8 - Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 9 - Thermal Care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Microsemi Corporation Data Sheet ZL30241 Pin Diagram 48 47 46 45 44 43 42 41 40 39 38 37 VDDA6 VDD NC NC RefOut_p RefOut_n In_p In_n In_VCM XO1 XO2 VDDA5 1.0 1 2 3 4 5 6 7 8 9 10 11 12 36 35 34 33 32 31 30 29 28 27 26 25 48 Pin QFN (Top View) 7mm x 7mm Package Pin Pitch 0.5mm VSS NC NC NC NC VDDA4 NC NC NC NC PD1_b VDDA3 FILTER1+ FILTER1OE1 OE2 SDO CSB\PROG SCK SDI NC NC NC NC 13 14 15 16 17 18 19 20 21 22 23 24 VSSO1 OUT1_p OUT1_n VDDO1 VDDA1 VDDO2 OUT2_p OUT2_n VSSO2 VSS OEREF VDDA2 2.0 Pin Description Pin Name 48 QFN Pin # Name In_p In_n 42 41 Input In_VCM 40 Input Bias XO1 XO2 39 38 OUT1_p OUT1_n 2 3 Type INPUT Selectable Description Input (singled ended or differential). Can be selected as the reference clock for PLL1, and/or the Reference Clock Output. When not used for a single ended crystal oscillator, it can be differential with a DC bias provided by the In_VCM pin. DC When In_p/In_n act as a differential input, this pin connects to the midpoint of the two 50 ohm internal termination resistors. Crystal Input 1 INPUT External Crystal should be connected to these pins to drive the internal oscillator reference. This input can be used as the reference for PLL1 and/or the Reference Clock Output. Clock Output 1 OUTPUT Clock Output derived from PLL1. Supports frequencies up to the device maximum. When used in LVCMOS mode, OUT1_p is the active pin and OUT1_n is not used and is High-Z. Selectable1 Table 1 - Pin Description 5 Microsemi Corporation Data Sheet ZL30241 Pin Name 48 QFN Pin # Name Type Description INPUT LVCMOS Output Enable for Clock Output 1. Active High, When the output is disabled, it places OUT1_p & OUT1_n into High-Z state. This pin is internally pulled-up to VDD through 75 kohms. OUTPUT Selectable1 Clock Output derived from PLL1. Supports frequencies up to the device maximum. When used in LVCMOS mode, OUT2_p is the active pin. OUT2_n is not used and is High-Z. INPUT LVCMOS Output Enable for Clock Output 2. Active High, When the output is disabled, it places OUT2_p & OUT2_n into High-Z state. This pin is internally pulled-up to VDD through 75 kohms. OUTPUT Selectable1 Reference Clock Output. Provides a copy of the Reference Input (or Crystal input) frequency. OE1 15 Output Enable 1 OUT2_p OUT2_n 7 8 Clock Output 2 OE2 16 Output Enable 2 RefOut_p RefOut_n 44 43 Reference Output OEREF 11 Output Enable for REFOUT INPUT LVCMOS Output Enable for Reference Output. Active High. When the output is disabled, it places RefOut_p & RefOut_n into High-Z state. This pin is internally pulled-up to VDD through 50 kohms. SCK 19 Serial Clock INPUT LVCMOS Clock Input for SPI control. SDI 20 Serial Data In INPUT LVCMOS Data Input for SPI control. SDO 17 Serial Data Out OUTPUT LVCMOS Data Output for SPI control. CSB 18 Chip Select INPUT LVCMOS Chip Select for SPI control. This pin also functions as a programming pin for the internal fuses. If this pin is held above 3.3 V, then the device will accept SPI commands to program internal fuses. This pin is internally pulled-up to VDD through 75 kohms. FILTER1+ FILTER1- 13 14 PLL1 Filter Analog CP external Filter capacitor input and return for PLL1 PD1_b 26 Power Down 1 (Inverted) INPUT LVCMOS Active Low Power Down pin for PLL1. When active, PLL1 enters power down state; all outputs from PLL1 are disabled, High-Z. This pin is internally pulled-down to VSS through 50 kohms. Table 1 - Pin Description 6 Microsemi Corporation Data Sheet ZL30241 Pin Name 48 QFN Pin # Name Type Description VDD 47 Core Power SUPPLY +Power VSS 10, 36 Device GND -Power VDDA1 VDDA2 VDDA3 VDDA4 VDDA5 VDDA6 5 12 25 31 37 48 Analog Power SUPPLY +Power 2.5 V or 3.3 V Analog Power Supply VDDO1 VDDO2 4 6 Clock Output Power Supply SUPPLY +Power Respective Power Supply pins for individual Clock Outputs. VSSO1 VSSO2 1 9 Clock Output GND’s -Power Return path GND pins for respective Clock Outputs NC 21, 22, 23, 24, 27, 28, 29, 30, 32, 33, 34, 35, 45, 46 No connection NC 2.5 V or 3.3 V Power Supply for device core. Device GND Leave unconnected Table 1 - Pin Description 1 Selectable Pins can be programmed to support LVCMOS, LVDS, LVPECL or HCSL. 7 Microsemi Corporation Data Sheet ZL30241 3.0 Description The ZL30241 is a single PLL clock generator with two programmable outputs. The PLL with either a crystal, crystal oscillator or external reference input frequency, produce up to two related output frequencies. Each output can select between LVCMOS, LVDS, LVPECL, and HCSL. The input crystal is a low cost fundamental mode type, and the ZL30241 provides programmable gain and load capacitors for the crystal inputs. Alternatively, a multi-standard input reference can be used with a dedicated divider. The crystal or external reference is also available as an output bypassing the PLL for test purposes. For the PLL, three modes of operation can be selected: integer mode, fractional mode, and ratio mode. The integer mode provides lowest noise and behaves like a conventional PLL with whole number dividers. The device will get interger mode performance even with 3 fractional bits in use allowing eights in the feedback divider without increasing the jitter. The fractional mode allows the feedback divider to have an 8 bit integer part and 28 bit fractional part, resulting in a frequency resolution of 0.1 ppb or better. Finally, the ratio mode offers frequency translation of an N + X/Y nature, ideal for frequency translation applications like SONET and OTN. The PLL has a VCO that operates between 3053 MHz and 3677 MHz. There are two output dividers on the PLL, with a range of 4 to 259. In order to prevent a “frequency hole” between 750.6 MHz and 777.5 MHz, a special divide by 4.5 mode is also included. Any output frequency between 12 MHz and 914 MHz can be produced on the differential output. Additional features include loss of lock indicators and high speed SPI control. The ZL30241 has factory programmed defaults and may also be configured through the SPI port. 3.1 Input Configuration The In_p/In_n pins can take one of four modes. Refmode [1:0] Mode 00 LVCMOS 01 LVDS 10 LVPECL 11 HCSL Table 2 - Input modes 8 Microsemi Corporation Data Sheet ZL30241 For LVCMOS mode, the external components are shown in Figure 2.. VDD_driver VDD CMOS Driver Zo = 50 Ohms In_p In_n NC In_VCM 1 kohm Figure 2 - Input Termination - LVCMOS For LVDS mode, the external components are shown in Figure 3. VDD_driver VDD Zo = 50 Ohms In_p LVDS Driver In_n Zo = 50 Ohms NC Figure 3 - Input Termination - LVDS 9 Microsemi Corporation In_VCM Data Sheet ZL30241 For LVPECL mode, the external components are shown in Figure 4 for AC coupled and Figure 5 for DC coupled. VDD_driver VDD 500 Ohms Zo = 50 Ohms In_p LVPECL Driver In_n Zo = 50 Ohms 200 Ohms 200 Ohms In_VCM 500 Ohms Figure 4 - Input Termination - LVPECL AC coupled VDD_driver VDD Zo = 50 Ohms In_p LVPECL Driver In_n Zo = 50 Ohms In_VCM 50 Ohms Figure 5 - Input Termination - LVPECL DC coupled 10 Microsemi Corporation Data Sheet ZL30241 For HCSL mode, the external components are shown in Figure 6. VDD_driver VDD Zo = 50 Ohms In_p HCSL Driver In_n Zo = 50 Ohms In_VCM Figure 6 - Input Termination - HCSL 3.2 Output Configuration There are three separate output buffers on the ZL30241. The PLL has two outputs and the input frequency can also bypass the PLL to a additional output buffer. The three buffers can be configured for LVCMOS, LVDS, LVPECL or HCSL. Each output has an output enable pin (OE), and each output may be enabled or disabled from this pin or a bit in the register set. For each output, the modes are defined in Table 3. OutnMode [1:0] Mode 00 LVCMOS 01 LVDS 10 LVPECL 11 HCSL Table 3 - Output modes Each output is by default enabled or disabled by a logical AND of the OEn hardware pin value accessible in register 2 and the SPI bit. The logical behavior of all relevant bits are shown in Figure 7. OEn_override 0 OEn pin SPI OEn 1 PU1_b or SPI for PLL1 VDD for OE[1:2] VSS for OEref Figure 7 - Output Enable/Disable 11 Microsemi Corporation ZL30241 3.2.1 Data Sheet Output Control Pins The outputs are controlled by either a hardware OE pin or a OE register based on the value in the override bit in the register. The default values of the override bits are zero, so the hardware pins controls the outputs. When the hardware pin in enabled, the OEn SPI bit is read-only showing the current state of the realted hardware pin. The OE1 and OE2 pins have 75 k pull-up resistors, while the OERef pin has a 50 k pull-down resistor. To disable the hardware pin control, the associated override bit can be set in SPI register 0x2. When the ‘override’ bit is set to ‘1’, the external OE pin is ignored, and its value is no longer passed into register 0x2. Instead the value of the OEn bit in register 0x2 is used in its place, and can be set through the SPI. Under this configuration, both the override bit and OEn bit in register 0x2 must be set to ‘1’ to enable the output. When an output changes from disabled to enabled, there is an approximately 2 microsecond delay before it begins switching. During this delay, the outputs will settle to the appropriate DC levels according to the configured mode. After this initial delay, the outputs will begin switching with precise periods and no ‘runt’ pulses. When an output changes from enabled to disabled, it will stop switching at the appropriate DC levels according to the configured mode. After it has stopped, the biases will be disabled and the output will be set to high impedance. 3.2.2 Output Electrical Format - (LVCMOS, LVDS, LVPECL, or HCSL) The output format (mode) may be factory programmed and the output will operate in that mode at every power-up. In addition, the mode may be changed by writing the new value into register 0x4 via the SPI. Although all three output buffers are independent, the enables and modes may be programmed simultaneously. Note that all of the output modes are differential except the LVCMOS mode. When LVCMOS is selected, the positive output pin has the LVCMOS signal, and the negative (inverting) output pin is high impedance. In LVCMOS mode, the output should be series terminated, or unterminated. Series termination consists of a 33 ohm resistor placed within 0.25 inches of the ZL30241 package to absorb the reflections in the driven 50 ohm transmission line. Differential output modes are highly recommended to preserve the high performance of the ZL30241, and also to reduce noise pickup and generation. 3.3 Reference Input Two input references are available for the PLL: a crystal oscillator which accepts fundamental crystals from 22 MHz to 54 MHz and an external reference that may be supplied as a differential or single ended signal. Likewise, either reference may be selected for an optional output buffer that supports LVCMOS, LVDS, LVPECL or HCSL. Register 0x2 contains the reference select control bits. Register 0x3 contains the configuration bits for the input reference buffer, prescaler, and reference output. Three device pins are associated with the input signal: In_p, In_n and In_VCM. For differential signals, In_p and In_n are the signal and In_VCM is the terminating voltage. A LVCMOS single ended signal needs to be applied to In_p. The input signal is applied to a reference divider before being used by the PLL.. Note that the noise properties of the PLL reference matter a great deal to the output noise. At offset frequencies below the PLL loop bandwidth, the PLL tracks and multiplies the reference phase noise. The crystal input offers a very low phase noise reference, ensuring the output phase noise near the carrier is low. When selecting the input reference, ensure the phase noise of the source is adequately low to meet the system noise requirements. The reference divider is programmed via the refdiv[3:0] value in register 3; it divides by N+1 for a range of 1 to 16. The In_p/In_n pins will accept LVCMOS, LVDS, LVPECL or HCSL signals. The register 0x3 bit 17, diff_ref_sel must be set to 0 to select LVCMOS, and 1 for any differential signal. When LVCMOS is selected, it is applied to REFIN (pin 42). When a LVCMOS signal is used, it must be applied to In_p. 12 Microsemi Corporation Data Sheet ZL30241 diff_ref_sel Reference_signal 0 LVCMOS 1 differential ( LVDS, LVPECL or HCSL) Table 4 - Reference Input (In_p/In_n) Selection The RefOut_p/RefOut_n pins may be used to buffer the prescaled input signal or crystal oscillator. Like the other outputs, it may be set to LVPECL, LVDS, HCSL, or LVCMOS formats. Register 0x3, bit 19, is the refmux_sel, which determines if the reference input signal or the crystal oscillator is provided on RefOut_p/RefOut_n. 3.4 Crystal Oscillator The quartz crystal input (XO1/XO2) accept standard 8-12pf AT cut crystals from 22 MHz to 54 MHz. Since the negative resistance required for such a spread of crystals varies considerably, a programmable gain is provided in 7 steps. Microsemi recommends a gain of 5 or above to help ensure start-up in all conditions. To aid in trimming the crystal, programmable on-chip load capacitors are available. In general, for lowest phase noise, the highest frequency crystal, compatible with the applications cost and other requirements, should be used. If integer modes of PLL operation are possible, the crystal should be selected so that the multiplication is an integer value for lowest noise. The gain of the crystal oscillator is set via 3 bits. Register 0x4, bit 15 is xtal_ftrim; set this bit if the crystal is 33 MHz or lower. Xtal_gain[2:0] are found in register 0x4, bits 10:8. The values in this register depend on the crystal load caps, ESR, and frequency value. Recommendations are given below. The xtal_gain should be the minimum value that insures startup at maximum temperature for the maximum ESR value of the crystal. Crystal Frequency (MHz) ESR=25 ESR=35 ESR=45 xtal=ftrim 22 0 1 3 1 27 1 2 4 1 33 2 3 5 1 34 1 2 3 0 39 2 3 4 0 44 3 4 5 0 49 4 5 6 0 54 5 6 7 0 Table 5 - Xtal_gain[3:0] Values Crystal load capacitors should be on the PCB and the on-chip load capacitors can then be used to trim for component variation. Register 0x4, bits 14:12, xtal_cap[2:0] set the on-chip load capacitance. The value in xtal_cap can then be used to optimize the load. It is also acceptable to set xtal_cap to 0, and trim the crystal load with the PCB capacitors only. 3.5 PLLs The PLL in the ZL30241consists of an input reference frequency, a phase/frequency detector, loop filter, VCO, feedback divider, and two output dividers. The feedback divider can operate in three distinct modes: integer, fractional and ratio. 13 Microsemi Corporation ZL30241 Data Sheet • The integer mode behaves like a traditional integer value PLL, where the feedback divisor is an integer. Due to the internal structure of this PLL, values divisible for 1/8 will give the same high performance as integer values. • The fractional mode allows the feedback divider to take on a value of the form Qm.n, where m (the integer part) is 8 bits and n (the fractional part) is 28 bits. • The ratio mode would typically be used for FEC (Forward Error Correction) rate translation. The feedback divider will take on values of the form A + (1/8)(B +C/D). In this mode, the C and D have 16 bit resolution. For all modes, the relation of the input frequency (fin), output frequency (fout), feedback divider (fbdiv) and output divider (outdiv) is: .  finfout = fbdiv ------------------------outdiv The VCO frequency is (fout*outdiv). 3.5.1 Integer Mode Integer mode will provide the lowest possible phase noise. To operate in this mode, set S=0 in register 0x7. The integer part of the feedback value is placed in divval[35:28] in register 0x6. Since the integer mode can take multiples of 1/8 without a degradation in phase noise, three more fractional bits may be programmed in divval[27:25], and still operate with high integerlike performance without adding modulator noise (M=0). In Q notation, Q8.3 numbers may be entered in divval[35:25] in integer mode. The remainder of the bits in divval should be set to 0. 3.5.2 Fractional Mode The fractional mode allows Q8.28 numbers to be placed in divval In fractional mode, M must be set to 2 or the PLL will ignore the lower 25 fractional bits. S should be set to 0 to use all fractional mode bits in this mode. 3.5.3 Ratio Mode The ratio mode is needed when frequency translation is required. This mode is triggered by setting the rational_mode bit to 1 in register 0x7 (bit 10) and setting M=2. It is recommended that S=0 in this mode. The format of the feedback divider equation will change depending on the value of S. With the recommended S value of 0, it will have the form of A + (1/8)(B +C/D). A is put in divval[35:28] while B is placed in divval[27:25]. C is placed in divval[24:9] and the modulus[15:0] bits hold D. B may be 0 to 7. C and D are 16 bit values, where D must be greater than C. Note that the modulus value is split with modulus[15:6] and modulus[5:0] which are found in different registers. Modulus[5:0] is in register 0x6 (bits 9:4) and modulus[15:6] in register 0x7 (bits 9:0). Other values of S will product the feedback divider values in Table 6. Value of S Divider Value 0 A + (1/8)(B +C/D) 1 A + (1/4)(B +C/D) 2 A + (1/2)(B +C/D) 3 A + C/D Table 6 - Interpretation of S Parameter in Ratio Mode 3.6 Output Dividers The VCO output is divided down to the required output frequency; there is one divider per output. The output dividers are found in register 5. 14 Microsemi Corporation ZL30241 Data Sheet As a special case, for frequencies between 750 MHz and 778 MHz which cannot be accessed with divider of 4 or 5, a divider of 4.5 is provided. To divide by 4.5, set the outn_4p5. When this bit is set, the associated output divider will ignore the value in register 5 and divide by 4.5. In any case that the change to the feedback divider is small, i.e., a change in phase or a few ppm in frequency, the output frequencies will change smoothly with no sudden phase step. The change in the feedback divider will be instantaneous, but the VCO response will be smoothed by the loop filter. Thus any changes small enough not to cause lock disturbance will be smooth and continuous. 3.7 Status Indicators The lock status of the PLL may be monitored via the pllx_lock bit in register 15, bit 21. A value of "1" indicates lock, and is the normal condition. A 0 indicates out of lock, or the absence of a reference (either input signal or crystal). 3.8 Resets The ZL30241 does not need a reset after power is applied, but some other configuration changes require a reset of the associated subsystem in the device. If the feedback divisor (fbdiv), M, or S value is changed in a PLL, then the corresponding fbdiv_resetn (register 0x7 bit 14) bit needs to be toggled. If the output divisor (register 0x5) value is changed, output1_2_reset (register 0x7, bit 13) needs to be toggled. 4.0 SPI Programming At power up, the ZL30241 takes on the values programmed by the factory. Thereafter, the SPI may be used to overwrite any value. Care should be taken not to overwrite the factory-programmed calibrations (registers 10 through 14). The maximum SPI clock rate is 10 MHz. All transfers are multiples of 8-bit bytes, and are read and written with most significant byte first, and most significant bit first. Serial Peripheral Interface Description 1. SCK is the clock input to the SPI interface. 2. SDI is the data input to the SPI interface. Data must be valid by the rising edge of SCK. 3. SDO is the data output from the SPI interface. Data at SDO will be valid 12 ns after the rising edge of the clock. 4. CSB is the active-low enable signal for the SPI. The rising edge of CSB disables the SPI controller on the slave device. In the disabled state, the SPI controller will not respond to events on SCK or SDI, and SDO is in a highimpedance state. The falling edge of CSB enables the SPI for read/write access, and resets it to the initial state (awaiting the control/address byte). Register contents are not reset or otherwise altered by cycling CSB. 5. Multiple SPI slave devices may communicate with the same SPI master by sharing SDO, SDI, and SCK, and addressing each device with its individual CSB signal. 6. Upon power-up, all SPI read/write register contents are set to default values. For those registers associated with fuse addresses, the state of the fuse determines the default value. 7. The SPI master initiates a data transfer by dropping CSB to enable the slave device, followed by eight bits of data applied synchronously with eight pulses of SCK. The first four bits define the opcode, and the last four bits define the register to be addressed. The data stream is shown in the following diagram: 15 Microsemi Corporation Data Sheet ZL30241 CSB SCK SDI OP[3] SDO SDO output is defined to be zero during the command and address input cycles OP[2] OP[1] OP[0] ADDR[3] ADDR[2] ADDR[1] ADDR[0] Figure 8 - Example SPI Read The register addresses ADDR[3:0] define an address space for up to 16 registers. The opcode OP[3:0] is not fully utilized in this implementation. The following four opcodes are defined by the interface: OP[3:0] Operation 0000 no-op 0001 write data 0010 read data 0011 reserved Table 7 - SPI Operation Codes The default state for CSB high is opcode zero, or no-op. The “read” opcodes are followed by one or more series of eight SCK pulses. Data from the register addressed by ADDR are placed on SDO, msb first. The number of eightpulse cycles is determined by the type of register defined at address ADDR. The “write” opcodes are followed by one or more series of eight SCK pulses, with data to be written to the addressed register placed on SDI and valid at the rising edge of SCK. The core circuits of the chip see the new contents of each byte on the falling edge of the eighth SCK pulse, with the exception of registers 6 and 8, all bits of which are updated simultaneously on the falling edge of the eighth SCK pulse of the last (5th) byte. CSB must be held low through the entire operation CSB SCK any data on SDI are ignored SDI SDO data[7] data[6] data[5] data[4] data[3] data[2] SDO data valid Figure 9 - Read (opcode 2) cycle 16 Microsemi Corporation data[1] data[0] Data Sheet ZL30241 CSB must be held low through the entire operation CSB SCK SDI SDO data[7] data[6] data[5] data[4] data[3] data[2] data[1] SDO output is defined to be zero during the data input cycle Figure 10 - Write (opcode 1) cycle 17 Microsemi Corporation data[0] Data Sheet ZL30241 5.0 Register Map The device is controlled by accessing registers through the SPI interface. Reg_Addr (Hex) Size (Bytes) Register Name Default Value (Hex) Description Type Miscellaneous Registers 0x0 4 Chip_id 0x13100000 Chip Identification R 0x1 6 Product_id Product Identification R 0x2 3 Device_Config1 0x00AA0A External pin read back and override R/W 0x3 4 Device_Config2 0x100F0000 Reference buffer/divider, interpolated value increment, and miscellaneous R/W 0x4 2 Buffer_config Input and output buffer configuration R/W 0x5 4 Output_divider 0x00000000 Control the value of the output dividers R/W 0x6 5 PLL1_config1 0x000000000E Control the value of the feedback divider in PLL1 R/W 0x7 5 PLL1_config2 0x0000000000 Control PLL1 parameters R/W 0x8 5 Reserved - Reserved - 0x9 5 Reserved - Reserved - 0xA 2 Reserved - Reserved - 0xB 4 Reserved - Reserved - 0xC 4 PLL1 band 0x00000000 Control the PLL1 band R/W 0xD 4 Reserved - Reserved - 0xE 4 Reserved - Reserved - 0xF 3 PLL_lock 0x060000 Determine if either PLL is locked R 0x7AF000000000 0x0000 Table 8 - Register Map 18 Microsemi Corporation Data Sheet ZL30241 6.0 Detailed Register Map Register_Address: 0x0 Register Name: Chip_id Default Value: 0x13100000 Type: R Bit Field Function Name Description 31:16 Chip_id[15:0] For ZL30241, chip_id = 0x1310 15:0 Reserved Leave as default Register_Address: 0x1 Register Name: Product_id Default Value: 0x7AF000000000 Type: R Bit Field 31:0 Function Name Product_id[31:0] Description Common value for all ZL3024x products Register_Address: 0x2 Register Name: Device_config1 Default Value: 0x00AA0A Type: R/W Bit Field Function Name Description 23:20 Reserved Leave as default 19 Reserved Leave as default 18 Reserved Leave as default 17 OERef Output enable for the reference output 16 OERef_override If this bit is 0, the reference output is controlled by the OERef pin. If this bit is 1, the reference output is controlled by bit 17. 15 Reserved Leave as default 14 Reserved Leave as default 13 Reserved Leave as default 12 Reserved Leave as default 19 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x2 Register Name: Device_config1 Default Value: 0x00AA0A Type: R/W Bit Field Function Name Description 11 OE2 Output 2 enable 10 OE2_override If this bit is 0, output 2 is controlled by the OE2 pin. If this bit is 1, output 2 is controlled by bit 11. 9 OE1 Output 1 enable 8 OE1_override If this bit is 0, output 1 is controlled by the OE1 pin. If this bit is 1, output 1 is controlled by bit 9. 7 Reserved Leave as default 6 Reserved Leave as default 5 Refsel1 Control of PLL1 reference selection multiplexer Selection: 0 - The input for PLL1 is XO1/XO2. 1 - The input for PLL1 is In_p/In_n 4 Reserved Leave as default (set to 1) 3 Reserved Leave as default 2 Reserved Leave as default 1 PU1 Power up PLL1 0 Reserved Leave as default (set to 1) Register_Address: 0x3 Register Name: Device_config2 Default Value: 0x100F0000 Type: R/W Bit Field 31:30 Function Name Refmode[1:0] Description Determine the mode of the reference output (RefOut_p/RefOut_n) Selection: 0b11 -HCSL 0b10 -LVPECL 0b01 -LVDS 0b00 -LVCMOS 29:28 Reserved (differential) (differential) (differential) (single ended) - default Leave as default (en_refdiv = 1, en_act_det= 1) 20 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x3 Register Name: Device_config2 Default Value: 0x100F0000 Type: R/W Bit Field 27 Function Name refmux_sel Description Reference Multiplexer: Selection: 0 - Reference output from Crystal Input 1 (XO1/XO2) 1 - Reference output from In_p/In_n 26 xtal_enable Enables the XO1/XO2 crystal input 1 function 25 diff_ref_sel Sets the mode for In_p/In_n Selection: 0 - CMOS (singled ended) - Input signal on In_p Note: In_n should not be connected 1 - Differential - Input signal on In_p/In_n pair 24 Reserved Leave as default Ref_div[3:0] Reference divider is (bits[23:20] + 1) Range: 1 (0x0) to 16 (0xF) 19 Reserved Leave as default (Set to 1) 18 Reserved Leave as default (Set to 1) 17 Reserved Leave as default (Set to 1) 16 Reserved Leave as default (Set to 1) 15:12 Reserved Leave as default 11 Reserved Leave as default 10 Reserved Leave as default 9 out2_4p5 mode When this bit is 1, an output divisor of 4.5 is selected for output 2 8 out1_4p5 mode When this bit is 1, an output divisor of 4.5 is selected for output 1 Reserved Leave as default 23:20 7:0 21 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x4 Register Name:Buffer_configure Default Value: 0x0000 Type: R/W Bit Field 15 14:12 11 10:8 Function Name Description xtal_ftrim Set based on crystal frequency Set bit to 1 of crystal is below 33 MHz, otherwise set to 0. xtal_cap[2:0] The crystal I/O pins have an internal load capacitance according to the equation (10 + 2 * xtal_cap) pF. The 3-bit value ranges from 0 to 7, so the minimum capacitive load is 10 pF, and the maximum is 24 pF. Reserved Leave as default xtal_gain[3:0] Sets the gain in the crystal input 1 (XO1/XO2) amplifier. The application note has suggested values for this parameter based on the crystal’s equivalent series resistance (ESR) and nominal frequency. 7:6 Reserved Leave as default 5:4 Reserved Leave as default 3:2 Out2mode[1:0] Mode for output 2 Selection: 0b11 -HCSL 0b10 -LVPECL 0b01 -LVDS 0b00 -LVCMOS 1:0 Out1mode[1:0] (differential) (differential) (differential) (single ended) Mode for output 1- See description for bits 7:6 Register_Address: 0x5 Register Name: Output_divider Default Value: 0x00000000 Type: R/W Bit Field Function Name Description 31:24 Reserved Leave as default 23:16 Reserved Leave as default 22 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x5 Register Name: Output_divider Default Value: 0x00000000 Type: R/W Bit Field 15:8 Function Name output2_div[7:0] Description Output divider 2 can be set to 4 to 259 For values 4 to 255, the output divider is set to the value of bits 15:8. For values 0 to 3: Value output2_div 0 256 1 257 2 258 3 259 For the output4_div = 4.5, see register 3, Device_config2, bit 9. 7:0 output1_div[7:0] Output divider 1 can be set to 4 to 259 For values 4 to 255, the output divider is set to the value of bits 7:0. For values 0 to 3: Value output1_div 0 256 1 257 2 258 3 259 For the output4_div = 4.5, see register 3, Device_config2, bit 8. 23 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x6 Register Name: PLL1_config1 Default Value: 0x0000000000 Type: R/W Bit Field 39:4 Function Name divval[35:0] Description Feedback Divider Value If rational1 = 0, the divider value for PLL1 uses bits [40:5] for the feedback divider. The top 8 bits represent the integer part and the bottom 28 bits represent the fixed-point part of the divider. if rational = 1, then the S (see Register 7) controls the interpretation of the feedback value: If S=0, fbdiv = A + (1/8)(B+C/D) where A is in divval[35:28], B is in divval[27:25], C is in divval [24:9] and D is in modulus[15:0]. If S=1, fbdiv = A + (1/4)(B+C/D) where A is in divval[35:28], B is in divval[27:26], C is in divval [24:9] and D is in modulus[15:0]. If S=2, fbdiv = A + (1/2)(B+C/D) where A is in divval[35:28], B is in divval[27], C is in divval[24:9] and D is in modulus[15:0]. If S=3, fbdiv = A + C/D where A is in divval[35:28], C is in divval[24:9] and D is in modulus[15:0]. (B is ignored.) Note: Modulus [15:6] is found in register 0x7, bit 9:0 and Modulus [5:0] is in divval[5:0] when using rational mode. 3:0 Reserved Leave as default Register_Address: 0x7 Register Name: PLL1_config2 Default Value: 0x0000000000 Type: R/W Bit Field Function Name Description 39:37 N1[2:0] Reserved - Leave as default 36:32 dscale1[4:0] Reserved - Leave as default 31:29 M1[2:0] PLL1 MASH order (value 0 - 4) 24 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x7 Register Name: PLL1_config2 Default Value: 0x0000000000 Type: R/W Bit Field 28:24 Function Name fsel1[4:0] Description VCO frequency band selection Selection: Value minimum 0 3642 1 3615 2 3583 3 3556 4 3532 5 3509 6 3486 7 3463 8 3440 9 3416 10 3391 11 3375 12 3360 13 3345 14 3307 15 3290 16 3268 17 3249 18 3228 19 3209 20 3189 21 3171 22 3154 23 3135 24 3119 25 3100 26 3084 27 3053 nominal 3654 3623 3597 3568 3542 3518 3496 3473 3450 3426 3402 3382 3366 3350 3322 3298 3278 3256 3237 3217 3198 3179 3161 3143 3126 3108 3091 3072 maximum 3677 3642 3615 3583 3556 3532 3509 3486 3463 3440 3416 3391 3375 3360 3345 3307 3290 3268 3249 3228 3209 3189 3171 3154 3135 3119 3100 3084 Note: For fsel1 of 0 to 13, KVCO must be set to 0. For fsel1 values of 14- 27, KVCO must be set to 1. Fsel1 can be found in register 0xC. 23 Reserved Leave as default 22:21 S1[1:0] See description for PLL1_configure_1 bits 39:4 20:16 Reserved Leave as default 15 advance1 Reserved 14 fbdiv_reset1 Toggle this bit to 1 after a change in M1 or divval1 13 output1_2_reset Toggle this bit to 1 to reset the outputs on PLL1 25 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x7 Register Name: PLL1_config2 Default Value: 0x0000000000 Type: R/W Bit Field Function Name Description 12 force_reset1 Toggle this bit to 1 to reset PLL1 This signal forces a reset cycle that generates synchronization pulses for the outputs of PLL1. 11 decline1 Reserved 10 rational_mode1 See description for PLL1_configure_1 bits 39:4 9:0 modulus1[15:6] See description for PLL1_configure_1 bits 39:4 Register_Address: 0x8 Register Name: Reserved Default Value: 0x0000000000 Type: R Bit Field Function Name Description 39:4 Reserved Leave as default 3:0 Reserved Leave as default Register_Address: 0x9 Register Name: Reserved Default Value: 0x0000000000 Type: R Bit Field Function Name Description 39:37 Reserved Leave as default 36:32 Reserved Leave as default 31:29 Reserved Leave as default 28:24 Reserved Leave as default 23 Reserved Leave as default 22:21 Reserved Leave as default 20:16 Reserved Leave as default 15 Reserved Leave as default 26 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0x9 Register Name: Reserved Default Value: 0x0000000000 Type: R Bit Field Function Name Description 14 Reserved Leave as default 13 Reserved Leave as default 12 Reserved Leave as default 11 Reserved Leave as default 10 Reserved Leave as default 9:0 Reserved Leave as default Register_Address: 0xA Register Name: Reserved Default Value: Type: R Bit Field Function Name Description 15 Reserved Leave as default 14:12 Reserved Leave as default 11:9 Reserved Leave as default 8 Reserved Leave as default 7:0 Reserved Leave as default Register_Address: 0xB Register Name: Reserved Default Value: Type: R Bit Field 31:0 Function Name Reserved Description Leave as default 27 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0xC Register Name: PLL1_band Default Value: 0x00000000 Type: R/W Bit Field 31 30:0 Function Name Description kvco_band1 For fsel1 13, set to 1 Reserved Leave as default Register_Address: 0xD Register Name: Reserved Default Value: Type: R Bit Field 31:0 Function Name Reserved Description Leave as default Register_Address: 0xE Register Name: Reserved Default Value: 0x00000000 Type: R Bit Field Function Name Description 31 Reserved Leave as default 30:0 Reserved Leave as default Register_Address: 0xF Register Name: PLL_Lock Default Value: 0x060000 Type: R/W Bit Field Function Name Description 23 Reserved Leave as default 22 Reserved Leave as default 28 Microsemi Corporation Data Sheet ZL30241 Register_Address: 0xF Register Name: PLL_Lock Default Value: 0x060000 Type: R/W Bit Field Function Name Description 21 pll1_lock This bit indicates that PLL1 is locked to the incoming signal from the crystal or reference in. 20:0 Reserved Leave as default 29 Microsemi Corporation Data Sheet ZL30241 7.0 AC and DC Electrical Characteristics Absolute Maximum Ratings Symbol Characteristics Min. Max. Unit 4.6 V VDD Supply Voltage Vin Inputs -0.50 VDD + 0.5 V Vout Outputs -0.50 VDD + 0.5 V TA Operating Temperature Range -40 +85 C TS Storage Temperature Range -65 +150 C Condition Notes: Exposure to stresses at or beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device and may affect product reliability. These are absolute maximum specifications only, and functional operation of the device at these conditions or any conditions beyond those listed is not implied or recommended. DC Characteristics - Power - 2.5 V Supply Symbol Characteristics Min. Typ. Max. Unit 2.375 2.50 2.625 V Condition VDD-2V5 Supply Voltage IDD-MAX2V5 Maximum Supply Current 301 mA For VDD-2V5 IDD-CORE- Core supply current 36 mA For VDD-2V5 IDD-PLL-2V5 PLL supply current 80 mA For VDD-2V5 IDD-CMOS- Supply Current CMOS Output 14 mA For VDD-2V5 and CL=4 pF IDD-HCSL2V5 Supply Current HCSL Output 28 mA For VDD-2V5 IDD-LVDS- Supply Current LVDS Output 14 mA For VDD-2V5 and 100 Ohm load Supply Current LVPECL Output 28 mA For VDD-2V5 2V5 2V5 2V5 IDD-LVPECL2V5 DC Characteristics - Power - 3.3 V Supply VDD3V3 Supply Voltage 2.97 3.30 3.63 V IDD-MAX3V3 Maximum Supply Current 322 mA For VDD-3V3 IDD-CORE- Core supply current 38 mA For VDD-3V3 PLL supply current 79 mA For VDD-3V3 3V3 IDD-PLL-3V3 30 Microsemi Corporation Data Sheet ZL30241 IDD-CMOS3V3 Supply Current CMOS Output 19 mA For VDD-3V3 and CL=4 pF IDD-HCSL- Supply Current HCSL Output 28 mA For VDD-3V3 IDD-LVDS3V3 Supply Current LVDS Output 18 mA For VDD-3V3 and 100 Ohm load IDD-LVPECL- Supply Current LVPECL Output 32 mA For VDD-3V3 3V3 3V3 LVDS DC Characteristics Symbol Characteristics Min. Typ. Max. Unit VOH-LVDS Output HIGH voltage (Note 1) 1.248 1.375 1.711 V VOL-LVDS Output LOW voltage (Note 2) 0.846 1.025 1.252 V VOD-LVDS Output differential voltage 247 630 672 mV VCM-LVDS Common mode output voltage 1.125 1.200 1.375 V Condition Notes: Outputs terminated with 100 ohms between Outn_p and Outn_n. See Switching Waveforms, page 33. 1. VOH max = VCM max + 1/2 VOD max 2. VOL min = VCM min - 1/2 VOD max LVPECL DC Characteristics Symbol Min. Typ. Max. Unit Output HIGH voltage VDD-1.35 VDD-0.95 VDD-0.70 V VOLLVPECL Output LOW voltage VDD-2.00 VDD-1.78 VDD-1.60 V VSWING- Peak to Peak Output Voltage 0.650 0.800 0.950 V VOH- Characteristics Condition LVEPCL LVPECL Notes: Outputs terminated with 200Ω to VSS then AC coupled to tester HCSL DC Characteristics) Symbol Characteristics Min. Typ. Max. Unit VOH Output HIGH voltage 0.660 0.700 0.850 V VOL Output LOW voltage -0.150 0.000 0.150 V VOX Absolute Crossing Point 250 450 550 mV VSWING Peak to Peak Voltage Wing 650 770 950 mV Notes: Outputs terminated with 50 to VSS 31 Microsemi Corporation Condition Data Sheet ZL30241 LVCMOS DC Characteristics Symbol Characteristics Min. Typ. Max. Unit Condition VOH Output HIGH voltage VDD-0.80 VDD-0.60 VDD-0.33 V IL = 10 mA VOL Output LOW voltage 0.33 0.42 0.50 V IL = 10 mA AC Characteristics Symbol Characteristics Min. Typ. Max. Unit Condition TR/TF LVDS Output rise/fall time 85 100 350 ps 20% to 80% TR/TF LVPECL Output rise/fall time 85 210 300 ps 20% to 80% TR/TF HCSL Output rise/fall time 175 300 400 ps 20% to 80% TR/TF LVCMOS Output rise/fall time 100 600 1250 ps 20% to 80% ODCLVDS Output Duty Cycle 47 50 53 % ODCLVPECL Output Duty Cycle 47 50 53 % All other values of output divider ODCLVPECL Output Duty Cycle 45 50 55 % Output divider of 4.5 ODCHCSL Output Duty Cycle 45 50 55 % All other values of output divider ODCHCSL Output Duty Cycle 40 50 60 % Output divider of 4.5 ODCLVCMOS Output Duty Cycle 45 50 55 % Output frequency less than 180 MHz ODCLVCMOS Output Duty Cycle 40 50 60 % Output frequency less than 250 MHz 32 Microsemi Corporation Data Sheet ZL30241 Output Frequency Range Min. Freq (MHz) Max. Freq (MHz) LVCMOS 12 250 33 into 50 trace (Note 1) LVDS 12 914 Each output into 50 trace Differential Termination = 100 HCSL 12 914 Each output into 50 trace Terminated to VSS LVPECL 12 914 Each output into 50 trace terminated at VDD - 2.0V Type Conditions Notes: 1. A 33 Ohm series termination resistor is required within 0.25” of the device. ODC = T1 X 100% T2 T2 V OH T1 V OD 80% VOL V CM 20% TR Figure 11 - Switching Waveforms VDD 3.3V or 2.5V Q ZO = 50 100 Q Figure 12 - LVDS Output Load & Test Circuit 33 Microsemi Corporation TF Data Sheet ZL30241 VDD 3.3V or 2.5V Receiver 17 33 Z O = 50 GND Figure 13 - LVCMOS Output Load & Test Circuit VDD 2V Oscilloscope Q ZO = 50 Q -1.3V or 0.5V 50 50 Figure 14 - LVPECL Output Load & Test Circuit VDD 3.3V or 2.5V Q Preferred alternative ZO = 50 Q 50 50 VDD 3.3V or 2.5V R1 Q ZO = 50 R2 Q R1=R2=0-33 50 50 Figure 15 - HCSL Output Loads & Test Circuits 34 Microsemi Corporation Data Sheet ZL30241 AC Characteristics - REFIN Inputs Symbol Characteristics Min. Typ. Max. Unit 1/tREFP Input reference Frequency (LVCMOS Input) 22 180 MHz 1/tREFP Input reference Frequency (Differential Input) 22 864 MHz tREFW Input reference pulse width high or low 0.15 Condition ns Rise/fall time of input signal
ZL30241LDF1 价格&库存

很抱歉,暂时无法提供与“ZL30241LDF1”相匹配的价格&库存,您可以联系我们找货

免费人工找货