0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD1584ART-REEL7

AD1584ART-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    TO236-3

  • 描述:

    IC VREF 2.5-5V SOT23-3

  • 数据手册
  • 价格&库存
AD1584ART-REEL7 数据手册
2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References AD1582/AD1583/AD1584/AD1585 Data Sheet PIN CONFIGURATION Series reference (2.5 V, 3 V, 4.096 V, 5 V) Low quiescent current: 70 µA maximum Current output capability: ±5 mA Wide supply range: VIN = VOUT + 200 mV to 12 V Wideband noise (10 Hz to 10 kHz): 50 µV rms Specified temperature range: −40°C to +125°C Compact, surface-mount SOT-23 package VOUT 1 AD1582/ AD1583/ AD1584/ AD1585 3 VIN 00701-001 FEATURES TOP VIEW GND 2 (Not to Scale) Figure 1. 3-Lead SOT-23-3 (RT Suffix) 900 APPLICATIONS 800 Portable, battery-powered equipment; for example, notebook computers, cellular phones, pagers, PDAs, GPSs, and DMMs Computer workstations; suitable for use with a wide range of video RAMDACs Smart industrial transmitters PCMCIA cards Automotive Hard disk drives 3 V/5 V, 8-bit/12-bit data converters 700 ISUPPLY (µA) 600 SHUNT REFERENCE 1 500 400 300 200 100 AD1582 SERIES REFERENCE 0 2.7 13.076kΩ SOURCE RESISTOR. 00701-002 5 VSUPPLY (V) Figure 2. Supply Current (μA) vs. Supply Voltage (V) GENERAL DESCRIPTION The AD1582/AD1583/AD1584/AD1585 are low cost, low power, low dropout, precision band gap references. These designs are available as 3-terminal (series) devices and are packaged in the compact SOT-23, 3-lead surface-mount package. The versatility of these references makes them ideal for use in battery-powered 3 V or 5 V systems where there can be wide variations in supply voltage and a need to minimize power dissipation. The superior accuracy and temperature stability of the AD1582/ AD1583/AD1584/AD1585 result from the precise matching and thermal tracking of on-chip components. Patented temperature drift curvature correction design techniques minimize the nonlinearities in the voltage output temperature characteristic. The AD1582/AD1583/AD1584/AD1585 series mode devices source or sink up to 5 mA of load current and operate efficiently with only 200 mV of required headroom supply. These parts draw a maximum 70 μA of quiescent current with only a 1.0 μA/V variation with supply voltage. The advantage of these designs over conventional shunt devices is extraordinary. Valuable supply current is no longer wasted through an input series resistor, and maximum power efficiency is achieved at all input voltage levels. The AD1582/AD1583/AD1584/AD1585 are available in two grades, A and B, and are provided in a tiny footprint, the SOT23. All grades are specified over the industrial temperature range of −40°C to +125°C. Table 1. AD158x Products, Three Electrical Grades Initial Accuracy Electrical Grade B A Rev. J AD1582 0.08% 0.80% AD1583/AD1585 0.10% 1.00% AD1584 0.10% 0.98% Temperature Coefficient (ppm°C) 50 100 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1997–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD1582/AD1583/AD1584/AD1585 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Theory of Operation ...................................................................... 10 Applications ....................................................................................... 1 Applications Information .............................................................. 11 Pin Configuration ............................................................................. 1 Temperature Performance......................................................... 11 General Description ......................................................................... 1 Voltage Output Nonlinearity vs. Temperature ....................... 11 Revision History ............................................................................... 2 Output Voltage Hysteresis ......................................................... 12 Specifications..................................................................................... 3 Supply Current vs. Temperature............................................... 12 AD1582 Specifications ................................................................. 3 Supply Voltage ............................................................................ 12 AD1583 Specifications ................................................................. 4 AC Performance ......................................................................... 12 AD1584 Specifications ................................................................. 5 Noise Performance and Reduction .......................................... 13 AD1585 Specifications ................................................................. 6 Turn-On Time ............................................................................ 13 Absolute Maximum Ratings............................................................ 7 Dynamic Performance ............................................................... 14 ESD Caution .................................................................................. 7 Outline Dimensions ....................................................................... 15 Terminology ...................................................................................... 8 Ordering Guide .......................................................................... 16 Typical Performance Characteristics ............................................. 9 Package Branding Information ................................................ 16 REVISION HISTORY 2/13—Rev. I to Rev. J Change to Table 6 ............................................................................. 7 Changes to Ordering Guide .......................................................... 16 5/10—Rev. H to Rev. I Changes to Figure 10 ...................................................................... 11 Updated Outline Dimensions ....................................................... 16 Changes to Ordering Guide .......................................................... 16 11/07—Rev. G to Rev. H Deleted C Grade ................................................................. Universal Changes to VOERR Parameter ....................................................... 3 Changes to Ordering Guide .......................................................... 16 12/02—Rev. B to Rev. C Changes to Features ..........................................................................1 Changes to General Description .....................................................1 Changes to Specifications .................................................................2 Changes to Absolute Maximum Ratings ........................................6 Replaced TPC 3 .................................................................................8 Changes to Temperature Performance Section .............................9 Replaced Figure 4 ..............................................................................9 Changes to Output Voltage Hysteresis Section .......................... 10 Updated SOT-23 Package .............................................................. 13 3/97—Revision 0: Initial Version 6/06—Rev. F to Rev. G Changes to Features.......................................................................... 1 Changes to General Description .................................................... 1 2/06—Rev. E to Rev. F Updated Format .................................................................. Universal Changes to Features.......................................................................... 1 Changes to Table 6 ............................................................................ 7 Changes to Ordering Guide .......................................................... 16 6/05—Rev. D to Rev. E Changes to Ordering Guide ........................................................... 7 Moved Package Branding Section .................................................. 7 6/04—Rev. C to Rev. D Changes to Ordering Guide ............................................................ 6 Updated Outline Dimensions ....................................................... 13 Rev. J | Page 2 of 16 Data Sheet AD1582/AD1583/AD1584/AD1585 SPECIFICATIONS AD1582 SPECIFICATIONS TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE (@ 25°C) VO INITIAL ACCURACY ERROR (@ 25°C) VOERR OUTPUT VOLTAGE TEMPERATURE DRIFT TEMPERATURE COEFFICIENT (TCVO) −40°C < TA < +125°C 0°C < TA < 70°C MINIMUM SUPPLY HEADROOM (VIN – VOUT) LOAD REGULATION 0 mA < IOUT < 5 mA (−40°C to +85°C) 0 mA < IOUT < 5 mA (−40°C to +125°C) −5 mA < IOUT < 0 mA (−40°C to +85°C) −5 mA < IOUT < 0 mA (−40°C to +125°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +125°C) LINE REGULATION VOUT + 200 mV < VIN < 12 V IOUT = 0 mA RIPPLE REJECTION (ΔVOUT/ΔVIN) VIN = 5 V ± 100 mV (f = 120 Hz) QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND NOISE VOLTAGE (@ 25°C) 0.1 Hz to 10 Hz 10 Hz to 10 kHz TURN-ON SETTLING TIME TO 0.1% CL = 0.2 µF LONG-TERM STABILITY 1000 Hours @ 25°C OUTPUT VOLTAGE HYSTERESIS TEMPERATURE RANGE Specified Performance (A, B, C) Operating Performance (A, B, C) Min 2.480 AD1582A Typ Max 2.500 −20 −0.80 40 35 Min 2.520 2.498 +20 +0.80 100 −2 −0.08 AD1582B Typ Max 2.502 V +2 +0.08 50 mV % ppm/°C 50 ppm/°C ppm/°C mV 0.2 0.4 0.25 0.45 2.7 3.5 0.2 0.4 0.25 0.45 2.7 3.5 mV/mA mV/mA mV/mA mV/mA mV/mA mV/mA 25 25 µV/V 70 15 dB µA mA 100 200 2.500 18 15 200 80 80 70 15 70 50 70 50 100 Rev. J | Page 3 of 16 µV p-p µV rms 100 100 115 −40 −55 Unit 100 115 +125 +125 −40 −55 µs ppm/1000 hr ppm +125 +125 °C °C AD1582/AD1583/AD1584/AD1585 Data Sheet AD1583 SPECIFICATIONS TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE (@ 25°C) VO INITIAL ACCURACY ERROR (@ 25°C) VOERR OUTPUT VOLTAGE TEMPERATURE DRIFT TEMPERATURE COEFFICIENT (TCVO) –40°C < TA < +125°C 0°C < TA < 70°C MINIMUM SUPPLY HEADROOM (VIN – VOUT) LOAD REGULATION 0 mA < IOUT < 5 mA (–40°C to +85°C) 0 mA < IOUT < 5 mA (–40°C to +125°C) –5 mA < IOUT < 0 mA (–40°C to +85°C) –5 mA < IOUT < 0 mA (–40°C to +125°C) –0.1 mA < IOUT < +0.1 mA (–40°C to +85°C) –0.1 mA < IOUT < +0.1 mA (–40°C to +125°C) LINE REGULATION VOUT + 200 mV < VIN < 12 V IOUT = 0 mA RIPPLE REJECTION (ΔVOUT/ΔVIN) VIN = 5 V ± 100 mV (f = 120 Hz) QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND NOISE VOLTAGE (@ 25°C) 0.1 Hz to 10 Hz 10 Hz to 10 kHz TURN-ON SETTLING TIME TO 0.1% CL = 0.2 µF LONG-TERM STABILITY 1000 Hours @ 25°C OUTPUT VOLTAGE HYSTERESIS TEMPERATURE RANGE Specified Performance (A, B, C) Operating Performance (A, B, C) Min 2.970 AD1583A Typ Max 3.000 −30 −1.0 40 35 Min 3.030 2.997 +30 +1.0 100 −3 −0.1 AD1583B Typ Max 3.003 V +3 +0.1 50 mV % ppm/°C 50 ppm/°C ppm/°C mV 0.25 0.45 0.40 0.6 2.9 3.7 0.25 0.45 0.40 0.6 2.9 3.7 mV/mA mV/mA mV/mA mV/mA mV/mA mV/mA 25 25 µV/V 70 15 dB µA mA 100 200 3.000 18 15 200 80 80 70 15 85 60 85 60 120 Rev. J | Page 4 of 16 µV p-p µV rms 120 100 115 −40 −55 Unit 100 115 +125 +125 −40 −55 µs ppm/1000 hr ppm +125 +125 °C °C Data Sheet AD1582/AD1583/AD1584/AD1585 AD1584 SPECIFICATIONS TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE (@ 25°C) VO INITIAL ACCURACY ERROR (@ 25°C) VOERR OUTPUT VOLTAGE TEMPERATURE DRIFT TEMPERATURE COEFFICIENT (TCVO) −40°C < TA < +125°C 0°C < TA < 70°C MINIMUM SUPPLY HEADROOM (VIN – VOUT) LOAD REGULATION 0 mA < IOUT < 5 mA (−40°C to +85°C) 0 mA < IOUT < 5 mA (−40°C to +125°C) −5 mA < IOUT < 0 mA (−40°C to +85°C) −5 mA < IOUT < 0 mA (−40°C to +125°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +125°C) LINE REGULATION VOUT + 200 mV < VIN 12 V IOUT = 0 mA RIPPLE REJECTION (ΔVOUT/ΔVIN) VIN = 5 V ± 100 mV (f = 120 Hz) QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND NOISE VOLTAGE (@ 25°C) 0.1 Hz to 10 Hz 10 Hz to 10 kHz TURN-ON SETTLING TIME TO 0.1% CL = 0.2 µF LONG-TERM STABILITY 1000 Hours @ 25°C OUTPUT VOLTAGE HYSTERESIS TEMPERATURE RANGE Specified Performance (A, B, C) Operating Performance (A, B, C) Min 4.056 AD1584A Typ Max 4.096 −40 −0.98 40 35 Min 4.136 4.092 +40 +0.98 100 −4 −0.1 AD1584B Typ Max 4.100 V +4 +0.1 50 mV % ppm/°C 50 ppm/°C ppm/°C mV 0.32 0.52 0.40 0.6 3.2 4.1 0.32 0.52 0.40 0.6 3.2 4.1 mV/mA mV/mA mV/mA mV/mA mV/mA mV/mA 25 25 µV/V 70 15 dB µA mA 100 200 4.096 18 15 200 80 80 70 15 110 90 110 90 140 Rev. J | Page 5 of 16 µV p-p µV rms 140 100 115 −40 −55 Unit 100 115 +125 −125 −40 −55 µs ppm/1000 hr ppm +125 +125 °C °C AD1582/AD1583/AD1584/AD1585 Data Sheet AD1585 SPECIFICATIONS @ TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted. Table 5. Parameter OUTPUT VOLTAGE (@ 25°C) VO INITIAL ACCURACY ERROR (@ 25°C) VOERR OUTPUT VOLTAGE TEMPERATURE DRIFT TEMPERATURE COEFFICIENT (TCVO) −40°C < TA < 125°C 0°C < TA < 70°C MINIMUM SUPPLY HEADROOM (VIN – VOUT) LOAD REGULATION 0 mA < IOUT < 5 mA (−40°C to +85°C) 0 mA < IOUT < 5 mA (−40°C to +125°C) −5 mA < IOUT < 0 mA (−40°C to +85°C) −5 mA < IOUT < 0 mA (−40°C to +125°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) −0.1 mA < IOUT < +0.1 mA (−40°C to +125°C) LINE REGULATION VOUT + 200 mV < VIN < 12 V IOUT = 0 mA RIPPLE REJECTION (ΔVOUT/ΔVIN) VIN = 6 V ± 100 mV (f = 120 Hz) QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND NOISE VOLTAGE (@ 25°C) 0.1 Hz to 10 Hz 10 Hz to 10 kHz TURN-ON SETTLING TIME TO 0.1% CL = 0.2 μF LONG-TERM STABILITY 1000 Hours @ 25°C OUTPUT VOLTAGE HYSTERESIS TEMPERATURE RANGE Specified Performance (A, B, C) Operating Performance (A, B, C) Min 4.950 AD1585A Typ Max 5.000 −50 −1.0 40 35 Min 5.050 4.995 +50 +1.0 100 −5 −0.10 AD1585B Typ Max 5.005 V +5 +0.10 50 mV % ppm/°C 50 ppm/°C ppm/°C mV 0.40 0.6 0.40 0.6 4 4.8 0.40 0.6 0.40 0.6 4 4.8 mV/mA mV/mA mV/mA mV/mA mV/mA mV/mA 25 25 µV/V 70 15 dB µA mA 100 200 5.000 18 15 200 80 80 70 15 140 100 140 100 175 Rev. J | Page 6 of 16 µV p-p µV rms 175 100 115 −40 −55 Unit 100 115 +125 +125 −40 −55 µs ppm/1000 hr ppm +125 +125 °C °C Data Sheet AD1582/AD1583/AD1584/AD1585 ABSOLUTE MAXIMUM RATINGS Table 6. Parameter VIN to Ground Internal Power Dissipation 1 SOT-23-3 (RT-3) Storage Temperature Range Specified Temperature Range AD1582RT/AD1583RT/ AD1584RT/AD1585RT Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) 1 Rating 12 V 400 mW −65°C to 150°C −40°C to +125°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION 215°C 220°C Specification is for device in free air at 25°C; SOT-23 package, θJA = 300°C. Rev. J | Page 7 of 16 AD1582/AD1583/AD1584/AD1585 Data Sheet TERMINOLOGY Temperature Coefficient (TCVO) The change of output voltage over the operating temperature change and normalized by the output voltage at 25°C, expressed in ppm/°C. The equation follows TCVO [ppm/°C ] = VO (T2 ) − VO (T1 ) VO (25°C ) × (T2 − T1 ) Thermal Hysteresis (VO_HYS) The change of output voltage after the device is cycled through temperatures from +25°C to −40°C to +85°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle VO _ HYS = VO (25°C ) − VO _ TC × 10 6 VO _ HYS [ppm ] = where: VO (25°C) = VO @ 25°C. VO (T1) = VO @ Temperature 1. VO (T2) = VO @ Temperature 2. Line Regulation (ΔVO/ΔVIN) Definition The change in output voltage due to a specified change in input voltage. It includes the effects of self-heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage. Load Regulation (ΔVO/ΔILOAD) The change in output voltage due to a specified change in load current. It includes the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts per million per milliampere, or ohms of dc output resistance. VO (t 0 ) × 10 6 Operating Temperature The temperature extremes at which the device can still function. Parts can deviate from their specified performance outside the specified temperature range. ∆VO = VO (t 0 ) − VO (t 1 ) VO (t 0 ) − VO (t 1 ) VO (25°C ) where: VO (25°C) = VO at 25°C. VO_TC = VO at 25°C after temperature cycle at +25°C to −40°C to +85°C and back to +25°C. Long-Term Stability (ΔVO) Typical shift of output voltage at 25°C on a sample of parts subjected to an operation life test of 1000 hours at 125°C. ∆VO [ppm ] = VO (25°C ) − VO _ TC × 10 6 where: VO (t0) = VO @25°C at Time 0. VO (t1) = VO @ 25°C after 1000 hours of operation at 125°C. Rev. J | Page 8 of 16 Data Sheet AD1582/AD1583/AD1584/AD1585 TYPICAL PERFORMANCE CHARACTERISTICS 0.40 22 0.35 20 0.30 16 AD1585 0.25 14 mV/mA 12 10 0.20 AD1582 0.15 8 6 0.10 4 –50 –40 –30 –20 –10 0 ppm/°C 10 20 30 40 50 0 00701-003 0 –60 0 2 Figure 3. Typical Output Voltage Temperature Drift Distribution 6 VIN (V) 8 10 12 5 Figure 6. Load Regulation vs. VIN 50 0 45 –10 40 –20 35 –30 30 µV/V NUMBER OF PARTS 4 00701-006 0.05 2 00701-007 NUMBER OF PARTS 18 25 20 –40 AD1582 –50 –60 15 AD1585 –70 10 –80 5 –0.6% –0.2% 0.2% VOUT (ERROR) 0.6% 1.0% –90 00701-004 0 –1.0% –5 Figure 4. Typical Output Voltage Error Distribution –4 –3 –2 –1 0 1 IOUT (mA) 2 3 4 Figure 7. Line Regulation vs. ILOAD 2.504 10k 2.502 2.500 IOUT = 1mA nV/ Hz 2.496 IOUT = 0mA 1k 2.494 2.492 2.488 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 100 10 Figure 5. Typical Temperature Drift Characteristic Curves 100 1k FREQUENCY (Hz) 10k Figure 8. Noise Spectral Density Rev. J | Page 9 of 16 100k 00701-008 2.490 00701-005 VOUT 2.498 AD1582/AD1583/AD1584/AD1585 Data Sheet THEORY OF OPERATION Rev. J | Page 10 of 16 VIN R4 R3 VOUT R5 VBG + VBE R2 – R1 R6 + V1 – GND Figure 9. Simplified Schematic 00701-009 The AD1582/AD1583/AD1584/AD1585 use the band gap concept to produce stable, low temperature coefficient voltage references suitable for high accuracy data acquisition components and systems. These parts of precision references use the underlying temperature characteristics of a silicon transistor’s base emitter voltage in the forward-biased operating region. Under this condition, all such transistors have a −2 mV/°C temperature coefficient (TC) and a VBE that, when extrapolated to absolute zero, 0 K (with collector current proportional to absolute temperature), approximates the silicon band gap voltage. By summing a voltage that has an equal and opposite temperature coefficient of 2 mV/°C with the VBE of a forward-biased transistor, an almost 0 TC reference can be developed. In the AD1582/AD1583/AD1584/AD1585 simplified circuit diagram shown in Figure 9, such a compensating voltage, V1, is derived by driving two transistors at different current densities and amplifying the resultant VBE difference (∆VBE, which has a positive TC). The sum of VBE and V1 (VBG) is then buffered and amplified to produce stable reference voltage outputs of 2.5 V, 3 V, 4.096 V, and 5 V. Data Sheet AD1582/AD1583/AD1584/AD1585 APPLICATIONS INFORMATION 2 2.498 2.496 2.494 2.492 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 11. Output Voltage vs. Temperature VOLTAGE OUTPUT NONLINEARITY VS. TEMPERATURE When using a voltage reference with data converters, it is important to understand the impact that temperature drift can have on converter performance. The nonlinearity of the reference output drift represents additional error that cannot be easily calibrated out of the overall system. To better understand the impact such a drift can have on a data converter, refer to Figure 12, where the measured drift characteristic is normalized to the endpoint average drift. The residual drift error for the AD1582/ AD1583/AD1584/AD1585 of approximately 200 ppm demonstrates that these parts are compatible with systems that require 12-bit accurate temperature performance. VIN 3 2.500 4.7µF Figure 10. Typical Connection Diagram TEMPERATURE PERFORMANCE The AD1582/AD1583/AD1584/AD1585 are designed for applications where temperature performance is important. Extensive temperature testing and characterization ensure that device performance is maintained over the specified temperature range. The error band guaranteed with the AD1582/AD1583/AD1584/ AD1585 is the maximum deviation from the initial value at 25°C. Therefore, for a given grade of the AD1582/AD1583/AD1584/ AD1585, the designer can easily determine the maximum total error by summing initial accuracy and temperature variation. For example, for the AD1582BRT, the initial tolerance is ±2 mV, and the temperature error band is ±8 mV; therefore, the reference is guaranteed to be 2.5 V ± 10 mV from −40°C to +125°C. 250 200 150 Figure 11 shows the typical output voltage drift for the AD1582/ AD1583/AD1584/AD1585 and illustrates the methodology. The box in Figure 11 is bounded on the x-axis by operating temperature extremes. It is bounded on the y-axis by the maximum and minimum output voltages observed over the operating temperature range. The slope of the diagonal drawn from the initial output value at 25°C to the output values at +125°C and −40°C determines the performance grade of the device. Rev. J | Page 11 of 16 100 50 0 –50 –50 –25 0 25 50 TEMPERATURE (°C) Figure 12. Residual Drift Error 75 100 00701-012 1µF AD1582/ AD1583/ AD1584/ AD1585 2.502 ΔVOUT (ppm) – 1 00701-010 + VOUT 2.504 00701-011 Unlike conventional shunt reference designs, the AD1582/ AD1583/AD1584/AD1585 provide stable output voltages at constant operating current levels. When properly decoupled, as shown in Figure 10, these devices can be applied to any circuit and provide superior low power solutions. Duplication of these results requires a test system that is highly accurate with stable temperature control. Evaluation of the AD1582/AD1583/AD1584/AD1585 produces curves similar to those in Figure 5 and Figure 11, but output readings can vary depending on the test methods and test equipment used. VOUT (V) The AD1582/AD1583/AD1584/AD1585 are series references that can be used for many applications. To achieve optimum performance with these references, only two external components are required. Figure 10 shows the AD1582/AD1583/ AD1584/AD1585 configured for operation under all loading conditions. With a simple 4.7 µF capacitor attached to the input and a 1 µF capacitor applied to the output, the devices can achieve specified performance for all input voltage and output current requirements. For best transient response, add a 0.1 µF capacitor in parallel with the 4.7 µF capacitor. While a 1 µF output capacitor can provide stable performance for all loading conditions, the AD1582/AD1583/AD1584/AD1585 can operate under low (−100 µA < IOUT < +100 µA) current conditions with just a 0.2 µF output capacitor. The 4.7 µF capacitor on the input can be reduced to 1 μF in this condition. AD1582/AD1583/AD1584/AD1585 Data Sheet OUTPUT VOLTAGE HYSTERESIS SUPPLY VOLTAGE High performance industrial equipment manufacturers can require the AD1582/AD1583/AD1584/AD1585 to maintain a consistent output voltage error at 25°C after the references are operated over the full temperature range. All references exhibit a characteristic known as output voltage hysteresis; however, the AD1582/AD1583/AD1584/AD1585 are designed to minimize this characteristic. This phenomenon can be quantified by measuring the change in the +25°C output voltage after temperature excursions from +125°C to +25°C and from −40°C to +25°C. Figure 13 displays the distribution of the AD1582/AD1583/ AD1584/AD1585 output voltage hysteresis. One of the ideal features of the AD1582/AD1583/AD1584/AD1585 is low supply voltage headroom. The parts can operate at supply voltages as low as 200 mV above VOUT and up to 12 V. However, if negative voltage is inadvertently applied to VIN with respect to ground, or any negative transient >5 V is coupled to VIN, the device can be damaged. 70 NUMBER OF PARTS 60 50 40 To apply the AD1582/AD1583/AD1584/AD1585, it is important to understand the effects of dynamic output impedance and power supply rejection. In Figure 15, a voltage divider is formed by the AD1582/AD1583/AD1584/ AD1585 output impedance and by the external source impedance. Figure 16 shows the effect of varying the load capacitor on the reference output. Power supply rejection ratio (PSRR) should be determined when characterizing the ac performance of a series voltage reference. Figure 17 shows a test circuit used to measure PSRR, and Figure 18 demonstrates the ability of the AD1582/AD1583/ AD1584/AD1585 to attenuate line voltage ripple. 30 VLOAD DC 20 2 × VOUT 0 –700 –450 –200 50 ppm 300 00701-013 10 550 2kΩ 10kΩ 10kΩ ×1 ±100µA 10kΩ ±2V 5V DUT 5µF 1µF 00701-015 80 AC PERFORMANCE Figure 15. Output Impedance Test Circuit Figure 13. Output Voltage Hysteresis Distribution SUPPLY CURRENT VS. TEMPERATURE 100 1µF CAP OUTPUT IMPEDANCE (Ω) The quiescent current for the AD1582/AD1583/AD1584/ AD1585 varies slightly over temperature and input supply range. Figure 14 illustrates the typical performance for the AD1582/AD1583/AD1584/AD1585 reference when varying both temperature and supply voltage. As is evident from Figure 14, the AD1582/AD1583/AD1584/AD1585 supply current increases only 1.0 μA/V, making this device extremely attractive for use in applications where there can be wide variations in supply voltage and a need to minimize power dissipation. 10 AD1585 AD1582 1 0.1 10 100 80 1k 10k FREQUENCY (Hz) 100k 1M Figure 16. Output Impedance vs. Frequency TA = +85°C TA = +25°C 10V 10kΩ 5V ± 100mV ×1 40 ±200mV TA = –40°C 10kΩ 0.22µF DUT VOUT 0.22µF 20 3 4 5 6 7 VIN (V) 8 9 10 11 00701-014 Figure 17. Ripple Rejection Test Circuit 0 Figure 14. Typical Supply Current over Temperature Rev. J | Page 12 of 16 00701-017 IQ (µA) 60 00701-016 100 Data Sheet AD1582/AD1583/AD1584/AD1585 100 100µV 90 80 10ms 100 90 70 60 50 AD1585 40 30 10 0% 00701-020 20 0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 00701-018 10 Figure 18. Ripple Rejection vs. Frequency NOISE PERFORMANCE AND REDUCTION The noise generated by the AD1582/AD1583/AD1584/AD1585 is typically less than 70 µV p-p over the 0.1 Hz to 10 Hz frequency band. Figure 19 shows the 0.1 Hz to 10 Hz noise of a typical AD1582/AD1583/AD1584/AD1585. The noise measurement is made with a high gain band-pass filter. Noise in a 10 Hz to 10 kHz region is approximately 50 µV rms. Figure 20 shows the broadband noise of a typical AD1582/AD1583/AD1584/AD1585. If further noise reduction is desired, add a 1-pole, low-pass filter between the output pin and ground. A time constant of 0.2 ms has a −3 dB point at roughly 800 Hz and reduces the high frequency noise to about 16 V rms. It should be noted, however, that while additional filtering on the output can improve the noise performance of the AD1582/AD1583/ AD1584/AD1585, the added output impedance can degrade the ac performance of the references. 10µV 1s 100 90 Figure 20. 1 Hz to 10 Hz Voltage Noise TURN-ON TIME Many low power instrument manufacturers are concerned with the turn-on characteristics of the components used in their systems. Fast turn-on components often enable the end user to save power by keeping power off when not needed. Turn-on settling time is defined as the time required, after the application of power (cold start), for the output voltage to reach its final value within a specified error. The two major factors affecting this are the active circuit settling time and the time required for the thermal gradients on the chip to stabilize. Figure 21 shows the turn-on settling and transient response test circuit. Figure 22 shows the turn-on characteristics of the AD1582/AD1583/ AD1584/AD1585. These characteristics are generated from coldstart operation and represent the true turn-on waveform after power-up. Figure 23 shows the fine settling characteristics of the AD1582/AD1583/AD1584/AD1585. Typically, the reference settles to within 0.1% of its final value in about 100 µs. The device can momentarily draw excessive supply current when VSUPPLY is slightly below the minimum specified level. Power supply resistance must be low enough to ensure reliable turn-on. Fast power supply edges minimize this effect. 0V OR 10V 10kΩ 5V OR 10V 0V OR 5V 0V TO 10V 10kΩ 0.22µF DUT VOUT 0.22µF 10 0% 00701-019 Figure 21. Turn-On/Transient Response Test Circuit Figure 19. 10 Hz to 10 kHz Wideband Noise Rev. J | Page 13 of 16 00701-021 PSRR (dB) AD1582 Data Sheet 20µs 100 100 90 90 10 0% Figure 22. Turn-On Characteristics 5V 20µs 100 90 90 10 0% 00701-023 10 0% 20µs 200mV 50µs Figure 24. Line Transient Response 100 1mV 50µs Figure 23. Turn-On Settling 5V 20µs 5mV 20µs 00701-025 20µs 1V 00701-022 10 0% 5V Figure 25. Load Transient Response (0 mA to 5 mA Load) DYNAMIC PERFORMANCE Many ADCs and DACs present transient current loads to the reference and poor reference response can degrade converter performance. The AD1582/AD1583/AD1584/AD1585 provide superior static and dynamic line and load regulation. Because these series references are capable of both sourcing and sinking large current loads, they exhibit excellent settling characteristics. Figure 24 displays the line transient response for the AD1582/ AD1583/AD1584/AD1585. The circuit used to perform such a measurement is shown in Figure 21, where the input supply voltage is toggled from 5 V to 10 V, and the input and output capacitors are each 0.22 μF. Figure 25 and Figure 26 show the load transient settling characteristics for the AD1582/AD1583/AD1584/AD1585 when load current steps of 0 mA to +5 mA and 0 mA to −1 mA are applied. The input supply voltage remains constant at 5 V; the input decoupling and output load capacitors are 4.7 μF and 1 μF, respectively; and the output current is toggled. For both positive and negative current loads, the reference responses settle very quickly and exhibit initial voltage spikes of less than 10 mV. Rev. J | Page 14 of 16 20µs 5V 100 90 10 0% 5mV 20µs 00701-026 5V 00701-024 AD1582/AD1583/AD1584/AD1585 Figure 26. Load Transient Response (0 mA to −1 mA Load) Data Sheet AD1582/AD1583/AD1584/AD1585 OUTLINE DIMENSIONS 3.04 2.90 2.80 1.40 1.30 1.20 3 1 2 0.60 0.45 2.05 1.78 1.02 0.95 0.88 2.64 2.10 1.03 0.89 1.12 0.89 0.100 0.013 GAUGE PLANE 0.54 REF 0.180 0.085 0.25 0.60 MAX 0.30 MIN 011909-C 0.51 0.37 SEATING PLANE COMPLIANT TO JEDEC STANDARDS TO-236-AB Figure 27. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3) Dimensions shown in millimeters 1.55 1.50 1.45 2.05 2.00 1.95 8.30 8.00 7.70 1.10 1.00 0.90 0.35 0.30 0.25 3.55 3.50 3.45 3.20 3.10 2.90 1.00 MIN 7” REEL 100.00 OR 13” REEL 330.00 1.10 1.00 0.90 2.80 2.70 2.60 14.40 MIN 1.50 MIN 20.20 MIN 7” REEL 50.00 MIN OR 13” REEL 100.00 MIN 13.20 13.00 12.80 0.75 MIN 9.90 8.40 6.90 DIRECTION OF UNREELING Figure 28. SOT-23 Tape and Reel Outline Dimension (RT-3) Dimensions shown in millimeters Rev. J | Page 15 of 16 053006-0 4.10 4.00 3.90 AD1582/AD1583/AD1584/AD1585 Data Sheet ORDERING GUIDE Model1 AD1582ART-REEL7 AD1582ARTZ-R2 AD1582ARTZ-REEL7 AD1582BRTZ-REEL7 AD1583ARTZ-R2 AD1583ARTZ-REEL7 AD1583BRTZ-REEL7 AD1584ARTZ-R2 AD1584ARTZ-REEL7 AD1584BRTZ-REEL7 AD1585ARTZ-R2 AD1585ARTZ-REEL7 AD1585BRTZ-REEL7 1 2 Output Voltage (V) 2.50 2.50 2.50 2.50 3.00 3.00 3.00 4.096 4.096 4.096 5.00 5.00 5.00 Accuracy (mV) 20 20 20 2 30 30 3 40 40 4 50 50 5 Initial Accuracy (%) 0.80 0.80 0.80 0.08 1.00 1.00 0.10 0.98 0.98 0.10 1.00 1.00 0.10 Initial Temp. Coefficient (ppm/°C) 100 100 100 50 100 100 50 100 100 50 100 100 50 Package Description SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 SOT-23-3 Package Option RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 Branding2 2A R1Z R1Z R20 R22 R22 R23 R25 R25 R26 R28 R28 R29 No. of Parts Banding per Reel 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 Z = RoHS Compliant Part. See Package Branding Information section. PACKAGE BRANDING INFORMATION This branding information is only for nonPb-free versions. Four fields identify the device: First field, product identifier; for example, a 2/3/4/5 identifies the generic as AD1582/AD1583/AD1584/AD1585 Second field, device grade, which can be A, B, or C Third field, calendar year of processing: 7 for 1997..., A for 2001... Fourth field, two-week window within the calendar year; for example, letters A to Z to represent a two-week window starting with “A” for the first two weeks of January. ©1997–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00701-0-2/13(J) Rev. J | Page 16 of 16
AD1584ART-REEL7 价格&库存

很抱歉,暂时无法提供与“AD1584ART-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货