0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD628AR-REEL

AD628AR-REEL

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP CURR SENSE 600KHZ 8SOIC

  • 数据手册
  • 价格&库存
AD628AR-REEL 数据手册
High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES High common-mode input voltage range ±120 V at VS = ±15 V Gain range 0.1 to 100 Operating temperature range: −40°C to ±85°C Supply voltage range Dual supply: ±2.25 V to ±18 V Single supply: 4.5 V to 36 V Excellent ac and dc performance Offset temperature stability RTI: 10 μV/°C maximum Offset: ±1.5 V mV maximum CMRR RTI: 75 dB minimum, dc to 500 Hz, G = +1 FUNCTIONAL BLOCK DIAGRAM REXT2 +VS REXT1 RG –IN 100kΩ 10kΩ G = +0.1 –IN A1 +IN 10kΩ –IN A2 +IN OUT +IN 100kΩ 10kΩ AD628 CFILT CMRR (dB) High voltage current shunt sensing Programmable logic controllers Analog input front end signal conditioning +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA Isolation Sensor signal conditioning Power supply monitoring Electrohydraulic control Motor control Figure 1. 130 120 110 100 90 80 70 60 50 40 10 100 1k FREQUENCY (Hz) 10k 100k 02992-C-002 VS = ±15V GENERAL DESCRIPTION The AD628 is a precision difference amplifier that combines excellent dc performance with high common-mode rejection over a wide range of frequencies. When used to scale high voltages, it allows simple conversion of standard control voltages or currents for use with single-supply ADCs. A wideband feedback loop minimizes distortion effects due to capacitor charging of Σ-Δ ADCs. A reference pin (VREF) provides a dc offset for converting bipolar to single-sided signals. The AD628 converts +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA input signals to a single-ended output within the input range of single-supply ADCs. The AD628 has an input common-mode and differential-mode operating range of ±120 V. The high common-mode input impedance makes the device well suited for high voltage measurements across a shunt resistor. The inverting input of the buffer amplifier is available for making a remote Kelvin connection. VS = ±2.5V 30 Figure 2. CMRR vs. Frequency of the AD628 A precision 10 kΩ resistor connected to an external pin is provided for either a low-pass filter or to attenuate large differential input signals. A single capacitor implements a lowpass filter. The AD628 operates from single and dual supplies and is available in an 8-lead SOIC_N or 8-lead MSOP package. It operates over the standard industrial temperature range of −40°C to +85°C. Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. 02992-C-001 APPLICATIONS –VS VREF AD628 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 7 Thermal Characteristics .............................................................. 7 ESD Caution.................................................................................. 7 Pin Configuration and Function Descriptions............................. 8 Typical Performance Characteristics ............................................. 9 Test Circuits..................................................................................... 13 Theory of Operation ...................................................................... 14 Applications..................................................................................... 15 Gain Adjustment ........................................................................ 15 Input Voltage Range................................................................... 15 Voltage Level Conversion.......................................................... 16 Current Loop Receiver .............................................................. 17 Monitoring Battery Voltages..................................................... 17 Filter Capacitor Values............................................................... 18 Kelvin Connection ..................................................................... 18 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19 REVISION HISTORY 3/06—Rev. E to Rev. F Changes to Table 1............................................................................ 3 Changes to Figure 3.......................................................................... 7 Replaced Voltage Level Conversion Section ............................... 16 Changes to Figure 32 and Figure 33............................................. 17 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 19 5/05—Rev. D to Rev. E Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 Changes to Figure 33..................................................................... 18 3/05—Rev. C to Rev. D Updated Format................................................................ Universal Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 4/04—Rev. B to Rev. C Updated Format................................................................ Universal Changes to Specifications ............................................................... 3 Changes to Absolute Maximum Ratings ...................................... 7 Changes to Figure 3......................................................................... 7 Changes to Figure 26..................................................................... 13 Changes to Figure 27..................................................................... 13 Changes to Theory of Operation................................................. 14 Changes to Figure 29..................................................................... 14 Changes to Table 5......................................................................... 15 Changes to Gain Adjustment Section......................................... 15 Added the Input Voltage Range Section..................................... 15 Added Figure 30 ............................................................................ 15 Added Figure 31 ............................................................................ 15 Changes to Voltage Level Conversion Section .......................... 16 Changes to Figure 32..................................................................... 16 Changes to Table 6......................................................................... 16 Changes to Figure 33 and Figure 34............................................ 17 Changes to Figure 35..................................................................... 18 Changes to Kelvin Connection Section...................................... 18 6/03—Rev. A to Rev. B Changes to General Description ................................................... 1 Changes to Specifications............................................................... 2 Changes to Ordering Guide ........................................................... 4 Changes to TPCs 4, 5, and 6 .......................................................... 5 Changes to TPC 9............................................................................ 6 Updated Outline Dimensions...................................................... 14 1/03—Rev. 0 to Rev. A Change to Ordering Guide............................................................. 4 11/02—Rev. 0: Initial Version Rev. F | Page 2 of 20 AD628 SPECIFICATIONS TA = 25°C, VS = ±15 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 0, unless otherwise noted. Table 1. Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Conditions G = +0.1(1+ REXT1/REXT2) See Figure 29 VCM = 0 V; RTI of input pins 2 ; output amplifier G = +1 Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm/°C ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ % V/V ppm mV μV/°C V V 0.1 1 −1.5 4 75 75 70 77 −120 −120 600 5 1 94 100 +1.5 8 0.11 −1.5 4 75 75 70 100 +1.5 8 RTI of input pins; G = +0.1 to +100 500 Hz Minimum CMRR Over Temperature −40°C to +85°C vs. Temperature PSRR (RTI) VS = ±10 V to ±18 V Input Voltage Range Common Mode Differential Dynamic Response Small Signal Bandwidth −3 dB G = +0.1 Full Power Bandwidth Settling Time G = +0.1, to 0.01%, 100 V step Slew Rate Noise (RTI) Spectral Density 1 kHz 0.1 Hz to 10 Hz DIFFERENTIAL AMPLIFIER Gain Error vs. Temperature Nonlinearity vs. Temperature Offset Voltage RTI of input pins vs. Temperature Input Impedance Differential Common Mode CMRR 4 RTI of input pins; G = +0.1 to +100 500 Hz Minimum CMRR Over Temperature −40°C to +85°C vs. Temperature Output Resistance Error OUTPUT AMPLIFIER Gain Equation G = (1 + REXT1/REXT2) Nonlinearity G = +1, VOUT = ±10 V Offset Voltage RTI of output amp vs. Temperature Output Voltage Swing RL = 10 kΩ RL = 2 kΩ 4 77 +120 +120 −120 −120 1 94 4 +120 +120 600 5 40 0.3 300 15 0.1 +0.01 0.3 300 15 0.1 +0.01 40 −0.1 3 −1.5 +0.1 5 5 10 +1.5 8 −0.1 3 −1.5 +0.1 5 5 10 +1.5 8 220 55 75 75 70 1 10 −0.1 4 +0.1 −0.1 75 75 70 220 55 1 10 4 +0.1 −0.15 −14.2 −13.8 0.5 +0.15 0.6 +14.1 +13.6 −0.15 −14.2 −13.8 0.5 +0.15 0.6 +14.1 +13.6 Rev. F | Page 3 of 20 AD628 Parameter Bias Current Offset Current CMRR Open-Loop Gain POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE 1 2 Conditions Min AD628AR Typ Max 1.5 3 0.2 0.5 Min AD628ARM Typ Max 1.5 3 0.2 0.5 VCM = ±13 V VOUT = ±13 V 130 130 ±2.25 −40 ±18 1.6 +85 130 130 ±2.25 −40 ±18 1.6 +85 Unit nA nA dB dB V mA °C To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. (0.1)(VCM ) 3 Error due to common mode as seen at the output: VOUT = [ ] × [Output Amplifier Gain] 75 10 20 4 Error due to common mode as seen at the output of A1: VOUT A1 = [ (0.1)(VCM ) 75 10 20 ] Rev. F | Page 4 of 20 AD628 TA = 25°C, VS = 5 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 2.5, unless otherwise noted. Table 2. Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Minimum CMRR Over Temperature vs. Temperature PSRR (RTI) Input Voltage Range Common Mode 4 Differential Dynamic Response Small Signal Bandwidth – 3 dB Full Power Bandwidth Settling Time Slew Rate Noise (RTI) Spectral Density DIFFERENTIAL AMPLIFIER Gain Error Nonlinearity vs. Temperature Offset Voltage vs. Temperature Input Impedance Differential Common Mode CMRR 5 Minimum CMRR Over Temperature vs. Temperature Output Resistance Error OUTPUT AMPLIFIER Gain Equation Nonlinearity Output Offset Voltage vs. Temperature Output Voltage Swing Bias Current Offset Current CMRR Open-Loop Gain Conditions G = +0.1(1+ REXT1/REXT2) See Figure 29 VCM = 2.25 V; RTI of input pins 2 ; output amplifier G = +1 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C VS = 4.5 V to 10 V Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ % V/V ppm mV μV/°C V V nA nA dB dB 0.1 1 −3.0 6 75 75 70 77 −12 −15 1 94 100 +3.0 15 0.11 −3.0 6 75 75 70 100 +3.0 15 4 77 +17 +15 −12 −15 1 94 4 +17 +15 440 30 15 0.3 350 15 0.1 +0.01 3 G = +0.1 G = +0.1; to 0.01%, 30 V step 440 30 15 0.3 350 15 0.1 +0.01 3 1 kHz 0.1 Hz to 10 Hz –0.1 RTI of input pins −2.5 +0.1 3 10 +2.5 10 –0.1 −2.5 +0.1 3 10 +2.5 10 220 55 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C 75 75 70 1 10 −0.1 G = (1 + REXT1/REXT2) G = +1, VOUT = 1 V to 4 V RTI of output amplifier RL = 10 kΩ R L = 2 kΩ 4 +0.1 −0.1 75 75 70 220 55 1 10 4 +0.1 −0.15 0.9 1 1.5 0.2 0.5 0.15 0.6 4.1 4 3 0.5 −0.15 0.9 1 1.5 0.2 130 130 0.5 0.15 0.6 4.1 4 3 0.5 VCM = 1 V to 4 V VOUT = 1 V to 4 V Rev. F | Page 5 of 20 130 130 AD628 Parameter POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE 1 2 Conditions Min ±2.25 −40 AD628AR Typ Max +36 1.6 +85 Min AD628ARM Typ Max +36 1.6 +85 Unit V mA °C ±2.25 −40 To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. (0.1)(VCM ) 3 Error due to common mode as seen at the output: VOUT = [ ] × [Output Amplifier Gain] 75 10 20 Greater values of voltage are possible with greater or lesser values of VREF. (0.1)(VCM ) 5 Error due to common mode as seen at the output of A1: VOUT A1 = [ ] 75 4 10 20 Rev. F | Page 6 of 20 AD628 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Internal Power Dissipation Input Voltage (Common Mode) Differential Input Voltage Output Short-Circuit Duration Storage Temperature Operating Temperature Range Lead Temperature (Soldering, 10 sec) 1 Rating ±18 V See Figure 3 ±120 V 1 ±120 V1 Indefinite −65°C to +125°C –40°C to +85°C 300°C Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL CHARACTERISTICS 1.6 1.4 POWER DISSIPATION (W) TJ = 150°C When using ±12 V supplies or higher (see the Input Voltage Range section). 1.2 8-LEAD MSOP PACKAGE 1.0 0.8 0.6 0.4 0.2 0 –60 MSOP θJA (JEDEC; 4-LAYER BOARD) = 132.54°C/W SOIC θJA (JEDEC; 4-LAYER BOARD) = 154°C/W –40 –20 0 20 40 60 80 100 02992-C-003 8-LEAD SOIC PACKAGE AMBIENT TEMPERATURE (°C) Figure 3. Maximum Power Dissipation vs. Temperature ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. F | Page 7 of 20 AD628 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS +IN 1 –VS 2 8 –IN +VS 02992-C-004 AD628 7 TOP VIEW VREF 3 (Not to Scale) 6 RG CFILT 4 5 OUT Figure 4. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic +IN −VS VREF CFILT OUT RG +VS −IN Descriptions Noninverting Input Negative Supply Voltage Reference Voltage Input Filter Capacitor Connection Amplifier Output Output Amplifier Inverting Input Positive Supply Voltage Inverting Input Rev. F | Page 8 of 20 AD628 TYPICAL PERFORMANCE CHARACTERISTICS 40 8440 UNITS 35 30 25 20 15 10 5 02992-C-005 140 G = +0.1 120 100 % OF UNITS PSRR (dB) 80 –15V 60 +2.5V 40 20 0 0.1 +15V –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 1 10 100 1k 10k 100k 1M INPUT OFFSET VOLTAGE (mV) FREQUENCY (Hz) Figure 5. Typical Distribution of Input Offset Voltage, VS = ±15 V, SOIC_N Package 25 8440 UNITS 20 VOLTAGE NOISE DENSITY (nV/√Hz) 1000 Figure 8. PSRR vs. Frequency, Single and Dual Supplies % OF UNITS 15 10 5 02992-C-006 –78 –82 –86 –90 –94 –98 –102 –106 –110 1 10 100 1k 10k 100k CMRR (dB) FREQUENCY (Hz) Figure 6. Typical Distribution of Common-Mode Rejection, SOIC_N Package 130 120 110 100 CMRR (dB) VOLTAGE NOISE DENSITY (nV/√Hz) 1000 Figure 9. Voltage Noise Spectral Density, RTI, VS = ±15 V 90 80 70 60 50 40 VS = ±15V VS = ±2.5V 02992-C-007 10 100 1k FREQUENCY (Hz) 10k 100k 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 7. CMRR vs. Frequency Figure 10. Voltage Noise Spectral Density, RTI, VS = ±2.5 V Rev. F | Page 9 of 20 02992-C-010 30 100 02992-C-009 0 –74 100 02992-C-008 0 –1.6 AD628 40 1s 100 90 9638 UNITS 35 30 NOISE (5μV/DIV) % OF DEVICES 10 0 25 20 15 10 5 02992-C-014 02992-C-016 02992-C-015 0 5 TIME (Sec) 10 02992-C-011 0 0 1 2 3 4 5 6 7 8 9 10 GAIN ERROR (ppm) Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI 60 50 150 Figure 14. Typical Distribution of +1 Gain Error UPPER CMV LIMIT COMMON-MODE VOLTAGE (V) 40 30 G = +100 100 –40°C 50 +85°C 0 +25°C VREF = 0V GAIN (dB) 20 10 0 –10 –20 –30 G = +10 G = +1 –50 +85°C –40°C G = +0.1 –100 LOWER CMV LIMIT 02992-C-012 –40 100 –150 1k 10k 100k 1M 10M 0 5 10 VS (±V) 15 20 FREQUENCY (Hz) Figure 12. Small Signal Frequency Response, VOUT = 200 mV p-p, G = +0.1, +1, +10, and +100 60 50 40 30 G = +100 100 Figure 15. Common-Mode Operating Range vs. Power Supply Voltage for Three Temperatures 500μV VS = ±15V RL = 1kΩ GAIN (dB) 20 10 0 –10 –20 –30 G = +10 OUTPUT ERROR (μV) 90 RL = 2kΩ G = +1 RL = 10kΩ 10 0 G = +0.1 4.0V 02992-C-013 –40 10 100 1k 10k 100k 1M FREQUENCY (Hz) OUTPUT VOLTAGE (V) Figure 13. Large Signal Frequency Response, VOUT = 20 V p-p, G = +0.1, +1, +10, and +100 Figure 16. Normalized Gain Error vs. VOUT, VS = ±15 V Rev. F | Page 10 of 20 AD628 100μV 100 90 VS = ±2.5V RL = 1kΩ 100 90 500mV OUTPUT ERROR (μV) RL = 2kΩ RL = 10kΩ 10 0 10 0 OUTPUT VOLTAGE (V) 02992-C-017 500mV 50mV 4μs Figure 17. Normalized Gain Error vs. VOUT, VS = ±2.5 V 4 Figure 20. Small Signal Pulse Response, RL = 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output 500mV 3 100 90 BIAS CURRENT (nA) 2 1 10 0 0 –40 –20 0 20 40 TEMPERATURE (°C) 60 80 100 02992-C-018 50mV 4μs Figure 18. Bias Current vs. Temperature Buffer 15 –40°C 10 –25°C +85°C Figure 21. Small Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output OUTPUT VOLTAGE SWING (V) 500mV 100 5 +25°C 90 0 –40°C –5 +85°C –10 +25°C –25°C 10 0 –15 0 5 10 15 OUTPUT CURRENT (mA) 20 25 02992-C-019 50mV 4μs Figure 19. Output Voltage Operating Range vs. Output Current Figure 22. Large Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output Rev. F | Page 11 of 20 02992-C-021 02992-C-021 02992-C-020 AD628 100 90 100 90 5V 5V 10mV 10 0 10mV 10 0 100μs 02992-C-023 100μs 02992-C-024 Figure 23. Settling Time to 0.01%, 0 V to 10 V Step Figure 24. Settling Time to 0.01% 0 V to −10 V Step Rev. F | Page 12 of 20 AD628 TEST CIRCUITS HP3589A SPECTRUM ANALYZER HP3561A +VS SPECTRUM ANALYZER +VS –IN 100kΩ 10kΩ 10kΩ +IN CFILT 4 – OUT 7 AD829 + G = +100 +IN 100kΩ –IN G = +0.1 +IN –IN FET PROBE –IN 8 100kΩ 10kΩ 10kΩ +IN 5 OUT 10kΩ VREF CFILT RG AD628 +IN 1 100kΩ –IN G = +0.1 +IN 10kΩ –IN AD628 6 –VS VREF – 02992-C-025 3 2 RG –VS 10kΩ 10kΩ 02992-C-027 AD707 + Figure 25. CMRR vs. Frequency Figure 27. Noise Tests SCOPE +VS 1 VAC +15V –IN 100kΩ –IN G = +0.1 +IN 10kΩ 10kΩ G = +100 +IN –IN OUT 20Ω + G = +100 AD829 – +IN 100kΩ 10kΩ AD628 VREF –VS CFILT RG 02992-C-026 Figure 26. PSRR vs. Frequency Rev. F | Page 13 of 20 AD628 THEORY OF OPERATION The AD628 is a high common-mode voltage difference amplifier, combined with a user-configurable output amplifier (see Figure 28 and Figure 29). Differential mode voltages in excess of 120 V are accurately scaled by a precision 11:1 voltage divider at the input. A reference voltage input is available to the user at Pin 3 (VREF). The output common-mode voltage of the difference amplifier is the same as the voltage applied to the reference pin. If the uncommitted amplifier is configured for gain, connect Pin 3 to one end of the external gain resistor to establish the output common-mode voltage at Pin 5 (OUT). The output of the difference amplifier is internally connected to a 10 kΩ resistor trimmed to better than ±0.1% absolute accuracy. The resistor is connected to the noninverting input of the output amplifier and is accessible at Pin 4 (CFILT). A capacitor can be connected to implement a low-pass filter, a resistor can be connected to further reduce the output voltage, or a clamp circuit can be connected to limit the output swing. The uncommitted amplifier is a high open-loop gain, low offset, low drift op amp, with its noninverting input connected to the internal 10 kΩ resistor. Both inputs are accessible to the user. Careful layout design has resulted in exceptional commonmode rejection at higher frequencies. The inputs are connected to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power pins, Pin 2 (−VS) and Pin 7 (+VS). Because the power pins are at ac ground, input impedance balance and, therefore, commonmode rejection are preserved at higher frequencies. RG –IN 100kΩ 10kΩ G = +0.1 –IN A1 +IN 10kΩ –IN A2 +IN OUT +IN 100kΩ 10kΩ 02992-C-028 VREF CFILT Figure 28. Simplified Schematic CFILT +VS AD628 –IN 100kΩ 10kΩ G = +0.1 –IN A1 +IN +IN 100kΩ 10kΩ –IN 10kΩ +IN A2 OUT –VS VREF RG REXT3 REFERENCE VOLTAGE Figure 29. Circuit Connections Rev. F | Page 14 of 20 02992-C-029 REXT2 REXT1 AD628 APPLICATIONS GAIN ADJUSTMENT The AD628 system gain is provided by an architecture consisting of two amplifiers. The gain of the input stage is fixed at 0.1; the output buffer is user-adjustable as GA2 = 1 + REXT1/REXT2. The system gain is then INPUT VOLTAGE RANGE VREF and the supply voltage determine the common-mode input voltage range. The relation is expressed by VCMUPPER ≤ 11 (VS + – 1.2 V ) − 10 VREF VCM LOWER ≥ 11 (VS − + 1.2 V ) − 10 VREF (2) GTOTAL ⎞ ⎛R = 0.1 × ⎜1 + EXT1 ⎟ ⎟ ⎜R EXT2 ⎠ ⎝ (1) At a 2 nA maximum, the input bias current of the buffer amplifier is very low and any offset voltage induced at the buffer amplifier by its bias current may be neglected (2 nA × 10 kΩ = 20 μV). However, to absolutely minimize bias current effects, select REXT1 and REXT2 so that their parallel combination is 10 kΩ. If practical resistor values force the parallel combination of REXT1 and REXT2 below 10 kΩ, add a series resistor (REXT3) to make up for the difference. Table 5 lists several values of gain and corresponding resistor values. Table 5. Nearest Standard 1% Resistor Values for Various Gains1 Total Gain (V/V) 0.1 0.2 0.25 0.5 1 2 5 10 1 where VS+ is the positive supply, VS− is the negative supply, and 1.2 V is the headroom needed for suitable performance. Equation 2 provides a general formula for calculating the common-mode input voltage range. However, keep the AD628 within the maximum limits listed in Table 1 to maintain optimal performance. This is illustrated in Figure 30 where the maximum common-mode input voltage is limited to ±120 V. Figure 31 shows the common-mode input voltage bounds for single-supply voltages. 200 INPUT COMMON-MODE VOLTAGE (V) 150 100 50 0 –50 –100 –150 02992-C-035 02992-C-034 A2 Gain (V/V) 1 2 2.5 5 10 20 50 100 REXT1 (Ω) 10 k 20 k 25.9 k 49.9 k 100 k 200 k 499 k 1M REXT2 (Ω) ∞ 20 k 18.7 k 12.4 k 11 k 10.5 k 10.2 k 10.2 k REXT3 (Ω) 0 0 0 0 0 0 0 0 MAXIMUM INPUT COMMON-MODE VOLTAGE WHEN VREF = GND –200 0 2 4 6 8 10 12 14 16 See Figure 29. SUPPLY VOLTAGE (±V) INPUT COMMON-MODE VOLTAGE (V) To set the system gain to less than 0.1, create an attenuator by placing Resistor REXT4 from Pin 4 (CFILT) to the reference voltage. A divider is formed by the 10 kΩ resistor that is in series with the positive input of A2 and Resistor REXT4. A2 is configured for unity gain. Using a divider and setting A2 to unity gain yields Figure 30. Input Common-Mode Voltage vs. Supply Voltage for Dual Supplies 100 80 60 40 20 0 –20 –40 –60 –80 MAXIMUM INPUT COMMON-MODE VOLTAGE WHEN VREF = MIDSUPPLY ⎛ REXT4 GW / DIVIDER = 0.1 × ⎜ ⎜ 10 kΩ + R EXT4 ⎝ ⎞ ⎟ ×1 ⎟ ⎠ 0 2 4 6 8 10 12 14 16 SINGLE-SUPPLY VOLTAGE (V) Figure 31. Input Common-Mode Voltage vs. Supply Voltage for Single Supplies Rev. F | Page 15 of 20 AD628 The differential input voltage range is constrained to the linear operation of the internal amplifiers A1 and A2. The voltage applied to the inputs of A1 and A2 should be between VS− + 1.2 V and VS+ − 1.2 V. Similarly, the outputs of A1 and A2 should be kept between VS− + 0.9 V and VS+ − 0.9 V. Designing such an application can be done in a few simple steps, including the following: • VOLTAGE LEVEL CONVERSION Industrial signal conditioning and control applications typically require connections between remote sensors or amplifiers and centrally located control modules. Signal conditioners provide output voltages of up to ±10 V full scale. However, ADCs or microprocessors operating on single 3.3 V to 5 V logic supplies are now the norm. Thus, the controller voltages require further reduction in amplitude and reference. Furthermore, voltage potentials between locations are seldom compatible, and power line peaks and surges can generate destructive energy between utility grids. The AD628 offers an ideal solution to both problems. It attenuates otherwise destructive signal voltage peaks and surges by a factor of 10 and shifts the differential input signal to the desired output voltage. Conversion from voltage-driven or current-loop systems is easily accomplished using the circuit shown in Figure 32. This shows a circuit for converting inputs of various polarities and amplitudes to the input of a single-supply ADC. To adjust common-mode output voltage, connect Pin 3 (VREF) and the lower end of the 10 kΩ resistor to the desired voltage. The output common-mode voltage is the same as the reference voltage. • Determine the required gain. For example, if the input voltage must be transformed from ±10 V to 0 V to +5 V, the gain is +5/+20 or +0.25. Determine if the circuit common-mode voltage should be changed. An AD7940 ADC is illustrated for this example. When operating from a 5 V supply, the common-mode voltage of the AD7940 is half the supply, or 2.5 V. If the AD628 reference pin and the lower terminal of the 10 kΩ resistor are connected to a 2.5 V voltage source, the output common-mode voltage is 2.5 V. Table 6 shows resistor and reference values for commonly used single-supply converter voltages. REXT3 is included as an option to balance the source impedance into A2. This is described in more detail in the Gain Adjustment section. Table 6. Nearest 1% Resistor Values for Voltage Level Conversion Applications Input Voltage (V) ±10 ±5 10 5 ±10 ±5 10 5 ADC Supply Voltage (V) 5 5 5 5 3 3 3 3 Desired Output Voltage (V) 2.5 2.5 2.5 2.5 1.25 1.25 1.25 1.25 VREF (V) 2.5 2.5 0 0 1.25 1.25 0 0 REXT1 (kΩ) 15 39.7 39.7 89.8 2.49 15 15 39.7 REXT2 (kΩ) 10 10 10 10 10 10 10 10 Rev. F | Page 16 of 20 AD628 +12V 0.1μF 7 100kΩ 10μF 2 –12V 0.1μF 10μF –IN 8 +/–10V +Vs 10kΩ A1 10kΩ –Vs AD628 SCLK 4 A2 5 49.9Ω 33nF CFILT 15nF 4 6 RG 3 VIN SERIAL DATA +IN 1 100kΩ AD7940 SDATA 5 GND 2 VDD 1 0.1μF VOUT 10μF VIN CS 6 10kΩ VREF 3 REXT1 15kΩ 6 2 REF195 3 4 +12V REXT2 10kΩ AD628 REFERENCE VOLTAGE 1 AD8606 1/2 2 3 7 8 5 AD8606 2/2 6 4 10μF 0.1μF 10kΩ 10kΩ 02992-030 Figure 32. Level Shifter CURRENT LOOP RECEIVER Analog data transmitted on a 4 to 20 mA current loop can be detected with the receiver shown in Figure 33. The AD628 is an ideal choice for such a function because the current loop is driven with a compliance voltage sufficient to stabilize the loop, and the resultant common-mode voltage often exceeds commonly used supply voltages. Note that with large shunt values, a resistance of equal value must be inserted in series with the inverting input to compensate for an error at the noninverting input. VCM = 15V 3 MONITORING BATTERY VOLTAGES Figure 34 illustrates how the AD628 is used to monitor a battery charger. Voltages approximately eight times the power supply voltage can be applied to the input with no damage. The resistor divider action is well-suited for the measurement of many power supply applications, such as those found in battery chargers or similar equipment. +15V –15V 7 2 4 10kΩ 249 Ω 100k Ω AD628 10kΩ 5 1 0V TO 5V TO ADC 249 Ω 8 100k Ω 10kΩ 6 I = 4 TO 20mA +2.5V 210k Ω 100k Ω 9.53k Ω 02992-C-031 Figure 33. Level Shifter for 4 to 20 mA Current Loop Rev. F | Page 17 of 20 AD628 5V +VS nVBAT(V) –IN 100kΩ 10kΩ 10kΩ +IN –IN +1.5V BATTERY +IN 10kΩ +IN 100kΩ RG G = +0.1 A1 A2 –IN OUT REXT1 10kΩ 0V TO 5V TO ADC CHARGING CIRCUIT –VS VREF CFILT Figure 34. Battery Voltage Monitor FILTER CAPACITOR VALUES Connect a capacitor to Pin 4 (CFILT) to implement a low-pass filter. The capacitor value is KELVIN CONNECTION In certain applications, it may be desirable to connect the inverting input of an amplifier to a remote reference point. This eliminates errors resulting in circuit losses in interconnecting wiring. The AD628 is particularly suited for this type of connection. In Figure 35, a 10 kΩ resistor added in the feedback matches the source impedance of A2. This is described in more detail in the Gain Adjustment section. 5V +VS –IN 100kΩ 10kΩ 10kΩ +IN A2 –IN OUT CIRCUIT LOSS C = 15.9/ft (μF) where ft is the desired 3 dB filter frequency. Table 7 shows several frequencies and their closest standard capacitor values. Table 7. Capacitor Values for Various Filter Frequencies Frequency (Hz) 10 50 60 100 400 1k 5k 10 k Capacitor Value (μF) 1.5 0.33 0.27 0.15 0.039 0.015 0.0033 0.0015 –IN +IN 100kΩ +IN 10kΩ G = +0.1 A1 02992-C-032 OTHER BATTERIES IN CHARGING CIRCUIT AD628 RG 10kΩ LOAD AD628 –VS VREF VS /2 CFILT Figure 35. Kelvin Connection Rev. F | Page 18 of 20 02992-C-033 AD628 OUTLINE DIMENSIONS 3.20 3.00 2.80 5.00 (0.1968) 4.80 (0.1890) 5 3.20 3.00 2.80 PIN 1 8 1 5.15 4.90 4.65 4 4.00 (0.1574) 3.80 (0.1497) 1 8 5 6.20 (0.2440) 4 5.80 (0.2284) 0.65 BSC 0.95 0.85 0.75 0.15 0.00 0.38 0.22 SEATING PLANE 1.10 MAX 8° 0° 0.80 0.60 0.40 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) × 45° 0.25 (0.0099) 0.23 0.08 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 36. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Figure 37. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model AD628AR AD628AR-REEL AD628AR-REEL7 AD628ARZ 1 AD628ARZ-RL1 AD628ARZ-R71 AD628ARM AD628ARM-REEL AD628ARM-REEL7 AD628ARMZ1 AD628ARMZ-RL1 AD628ARMZ-R71 AD628-EVAL 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Description 8-Lead SOIC_N 8-Lead SOIC_N 13" Reel 8-Lead SOIC_N 7" Reel 8-Lead SOIC_N 8-Lead SOIC_N 13" Reel 8-Lead SOIC_N 7" Reel 8-Lead MSOP 8-Lead MSOP 13" Reel 8-Lead MSOP 7" Reel 8-Lead MSOP 8-Lead MSOP 13" Reel 8-Lead MSOP 7" Reel Evaluation Board Package Option R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 RM-8 RM-8 Branding JGA JGA JGA JGZ JGZ JGZ Z = Pb-free part. Rev. F | Page 19 of 20 AD628 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02992-0-3/06(F) T T Rev. F | Page 20 of 20
AD628AR-REEL 价格&库存

很抱歉,暂时无法提供与“AD628AR-REEL”相匹配的价格&库存,您可以联系我们找货

免费人工找货