0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD7401

AD7401

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    AD7401 - Isolated Sigma-Delta Modulator - Analog Devices

  • 数据手册
  • 价格&库存
AD7401 数据手册
Isolated Sigma-Delta Modulator AD7401 FEATURES 20 MHz maximum external clock rate Second-order modulator 16 bits no missing codes ±2 LSB INL typical at 16 bits 3.5 μV/°C maximum offset drift On-board digital isolator On-board reference Low power operation: 20 mA maximum at 5.25 V −40°C to +105°C operating range 16-lead SOIC package AD7400, internal clock version Safety and regulatory approvals UL recognition 3750 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice #5A VDE Certificate of Conformity DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 VIORM = 891 V peak GENERAL DESCRIPTION The AD7401 1 is a second-order, Σ-Δ modulator that converts an analog input signal into a high speed, 1-bit data stream with on-chip digital isolation based on Analog Devices, Inc. iCoupler® technology. The AD7401 operates from a 5 V power supply and accepts a differential input signal of ±200 mV (±320 mV full scale). The analog input is continuously sampled by the analog modulator, eliminating the need for external sample-and-hold circuitry. The input information is contained in the output stream as a density of ones with a data rate up to 20 MHz. The original information can be reconstructed with an appropriate digital filter. The serial I/O can use a 5 V or a 3 V supply (VDD2). The serial interface is digitally isolated. High speed CMOS, combined with monolithic air core transformer technology, means the on-chip isolation provides outstanding performance characteristics, superior to alternatives such as optocoupler devices. The part contains an on-chip reference. The AD7401 is offered in a 16-lead SOIC and has an operating temperature range of −40°C to +105°C. 1 APPLICATIONS AC motor controls Data acquisition systems A/D + opto-isolator replacements VDD1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending. FUNCTIONAL BLOCK DIAGRAM VDD2 AD7401 VIN+ VIN– T/H Σ-Δ ADC UPDATE WATCHDOG BUF ENCODE DECODE MDAT REF CONTROL LOGIC WATCHDOG UPDATE DECODE ENCODE MCLKIN GND1 GND2 Figure 1. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. 05851-001 AD7401 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Timing Specifications .................................................................. 4 Insulation and Safety Related Specifications ............................ 5 Regulatory Information............................................................... 5 DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics .............................................................................. 6 Absolute Maximum Ratings............................................................ 7 ESD Caution.................................................................................. 7 Pin Configuration and Function Descriptions............................. 8 Typical Performance Characteristics ..............................................9 Terminology .................................................................................... 12 Theory of Operation ...................................................................... 13 Circuit Information.................................................................... 13 Analog Input ............................................................................... 13 Differential Inputs ...................................................................... 14 Digital Filter ................................................................................ 15 Application Information................................................................ 17 Grounding and Layout .............................................................. 17 Evaluating the AD7401 Performance ...................................... 17 Insulation Lifetime ..................................................................... 17 Outline Dimensions ....................................................................... 18 Ordering Guide .......................................................................... 18 REVISION HISTORY 12/06—Rev. 0 to Rev. A Changes to Features and General Description ............................. 1 Changes to Table 1............................................................................ 3 Changes to Table 2............................................................................ 4 Changes to Table 6............................................................................ 7 Changes to Table 8............................................................................ 8 Changes to Circuit Information Section ..................................... 13 Changes to Figure 27...................................................................... 15 1/06—Revision 0: Initial Version Rev. A | Page 2 of 20 AD7401 SPECIFICATIONS VDD1 = 4.5 V to 5.25 V, VDD2 = 3 V to 5.5 V, VIN+ = −200 mV to +200 mV, and VIN− = 0 V (single-ended); TA = TMIN to TMAX, fMCLK = 16 MHz maximum, tested with Sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted. Table 1. Parameter STATIC PERFORMANCE Resolution Integral Nonlinearity 3 Y Version 1 , 2 16 ±15 ±25 ±55 ±0.9 ±0.6 ±50 3.5 1 120 ±1.6 ±2 ±1 23 110 ±200 ±9 ±0.5 10 70 68 65 65 81 80 80 −92 −92 11.5 25 30 0.8 × VDD2 0.2 × VDD2 ±0.5 10 VDD2 − 0.1 0.4 Unit Bits min LSB max LSB max LSB max LSB max mV max μV typ μV/°C max μV/°C typ μV/V typ mV max mV max mV typ μV/°C typ μV/V typ mV min/mV max μA max μA max pF typ dB min dB min dB min dB min dB typ dB min dB min dB typ dB typ Bits kV/μs min kV/μs typ V min V max μA max pF max V min V max IO = −200 μA IO = +200 μA Test Conditions/Comments Filter output truncated to 16 bits −40°C to +85°C; ±2 LSB typical; fMCLK = 20 MHz maximum 4 >85°C to 105°C fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV Guaranteed no missed codes to 16 bits; fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV TA = 25°C −40°C to +105°C Differential Nonlinearity3 Offset Error3 Offset Drift vs. Temperature3 Offset Drift vs. VDD13 Gain Error3 Gain Error Drift vs. Temperature3 Gain Error Drift vs. VDD13 ANALOG INPUT Input Voltage Range Dynamic Input Current DC Leakage Current Input Capacitance DYNAMIC SPECIFICATIONS Signal-to-(Noise + Distortion) Ratio (SINAD)3 −40°C to +85°C >85°C to 105°C fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV −40°C to +105°C For specified performance; full range ±320 mV VIN+ = 400 mV, VIN− = 0 V VIN+ = 5 kHz, 400 mV p-p sine −40°C to +85°C; fMCLK = 9 MHz to 20 MHz4 −40°C to +85°C; fMCLK = 5 MHz to 85°C to 105°C fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV −40°C to +105°C; 82 dB typ fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV fMCLK = 20 MHz maximum4; VIN+ = −250 mV to +250 mV Signal-to-Noise Ratio (SNR)3 Total Harmonic Distortion (THD)3 Peak Harmonic or Spurious Noise (SFDR)3 Effective Number of Bits (ENOB)3 Isolation Transient Immunity3 LOGIC INPUTS Input High Voltage, VIH Input Low Voltage, VIL Input Current, IIN Input Capacitance, CIN 5 LOGIC OUTPUTS Output High Voltage, VOH Output Low Voltage, VOL Rev. A | Page 3 of 20 AD7401 Parameter POWER REQUIREMENTS VDD1 VDD2 IDD1 6 IDD2 7 Y Version 1, 2 4.5/5.25 3/5.5 12 8 4 Unit V min/V max V min/V max mA max mA max mA max Test Conditions/Comments VDD1 = 5.25 V VDD2 = 5.5 V VDD2 = 3.3 V 1 2 3 Temperature range is −40°C to +85°C. All voltages are relative to their respective ground. See the Terminology section. 4 For fMCLK > 16 MHz to 20 MHz, mark space ratio is 48/52 to 52/48, VDD1 = VDD2 = 5 V ± 5% and TA = −40°C to +85°C. 5 Sample tested during initial release to ensure compliance. 6 See Figure 15. 7 See Figure 17. TIMING SPECIFICATIONS 1 VDD1 = 4.5 V to 5.25 V, VDD2 = 3 V to 5.5 V, TA = TMAX to TMIN, unless otherwise noted. Table 2. Parameter fMCLKIN 2 , 3 t1 4 t24 t3 t4 1 2 Limit at TMIN, TMAX 20 5 25 15 0.4 × tMCLKIN 0.4 × tMCLKIN Unit MHz max MHz min ns max ns min ns min ns min Description Master clock input frequency Master clock input frequency Data access time after MCLK rising edge Data hold time after MCLK rising edge Master clock low time Master clock high time Sample tested during initial release to ensure compliance. Mark space ratio for clock input is 40/60 to 60/40 for fMCLKIN to 16 MHz and 48/52 to 52/48 for fMCLKIN > 16 MHz to 20 MHz. 3 VDD1 = VDD2 = 5 V ± 5% for fMCLKIN > 16 MHz to 20 MHz. 4 Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.0 V. 200µA IOL TO OUTPUT PIN 1.6V CL 25pF 200µA IOH 05851-002 Figure 2. Load Circuit for Digital Output Timing Specifications t4 MCLKIN 05851-003 t1 MDAT t2 t3 Figure 3. Data Timing Rev. A | Page 4 of 20 AD7401 INSULATION AND SAFETY-RELATED SPECIFICATIONS Table 3. Parameter Input-to-Output Withstand Momentary Withstand Voltage Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group Symbol VISO L(I01) L(I02) Value 3750 min 7.46 min 8.1 min 0.017 min >175 IIIa Unit V mm mm mm V Conditions 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table I) CTI REGULATORY INFORMATION Table 4. UL 1 Recognized under 1577 Component Recognition Program1 3750 V rms Isolation Voltage CSA Approved under CSA Component Acceptance Notice #5A Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 630 V rms maximum working voltage File 205078 VDE 2 Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-012 Basic insulation, 891 V peak Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 Reinforced insulation, 891 V peak File 2471900-4880-0001 File E214100 1 2 In accordance with UL 1577, each AD7401 is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (current leakage detection limit = 7.5 μA). In accordance with DIN EN 60747-5-2, each AD7401 is proof tested by applying an insulation test voltage ≥ 1671 V peak for 1 second (partial discharge detection limit = 5 pC). Rev. A | Page 5 of 20 AD7401 DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits. Table 5. Description INSTALLATION CLASSIFICATION PER DIN VDE 0110 For Rated Mains Voltage ≤ 300 V rms For Rated Mains Voltage ≤ 450 V rms For Rated Mains Voltage ≤ 600 V rms CLIMATIC CLASSIFICATION POLLUTION DEGREE (DIN VDE 0110, TABLE I) MAXIMUM WORKING INSULATION VOLTAGE INPUT-TO-OUTPUT TEST VOLTAGE, METHOD B1 VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC INPUT-TO-OUTPUT TEST VOLTAGE, METHOD A After Environmental Test Subgroup 1 VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC After Input and/or Safety Test Subgroup 2/3 VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, tTR = 10 sec) SAFETY-LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, ALSO SEE Figure 4) Case Temperature Side 1 Current Side 2 Current INSULATION RESISTANCE AT TS, VIO = 500 V 350 300 SAFETY-LIMITING CURRENT (mA) Symbol Characteristic I–IV I–II I–II 40/105/21 2 891 1671 1426 1069 Unit VIORM VPR VPR V peak V peak V peak V peak V peak °C mA mA Ω VTR TS IS1 IS2 RS 6000 150 265 335 >109 250 SIDE #2 200 150 SIDE #1 100 50 0 0 50 100 150 CASE TEMPERATURE (°C) 200 Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN EN 60747-5-2 Rev. A | Page 6 of 20 05851-004 AD7401 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. All voltages are relative to their respective ground. Table 6. Parameter VDD1 to GND1 VDD2 to GND2 Analog Input Voltage to GND1 Digital Input Voltage to GND2 Output Voltage to GND2 Input Current to Any Pin Except Supplies 1 Operating Temperature Range Storage Temperature Range Junction Temperature SOIC Package θJA Thermal Impedance θJC Thermal Impedance Resistance (Input to Output), RI-O Capacitance (Input to Output), CI-O 3 Pb-Free Temperature , Soldering Reflow ESD 1 2 Rating −0.3 V to +6.5 V −0.3 V to +6.5 V −0.3 V to VDD1 + 0.3 V −0.3 V to VDD1 + 0.5 V −0.3 V to VDD2 + 0.3 V ±10 mA −40°C to +105°C −65°C to +150°C 150°C 113°C (UL) 2 89.2°C/W 55.6°C/W 1012 Ω 1.7 pF typ 260 (+0)°C 1.5 kV Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 7. Maximum Continuous Working Voltage1 Parameter AC Voltage, Bipolar Waveform AC Voltage, Unipolar Waveform DC Voltage 1 Max 565 891 891 Unit VPK VPK V Constraint 50-year minimum lifetime Maximum CSA/VDE approved working voltage Maximum CSA/VDE approved working voltage Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details. ESD CAUTION Transient currents of up to 100 mA do not cause SCR to latch up. UL certification applies up to 113°C only. 3 f = 1 MHz. Rev. A | Page 7 of 20 AD7401 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS VDD1 VIN– NC NC NC VDD1 1 16 15 GND2 NC VDD2 VIN+ 2 3 4 5 6 7 MCLKIN TOP VIEW (Not to Scale) 12 NC 13 11 10 9 AD7401 14 MDAT NC 05851-005 GND1 8 GND2 NC = NO CONNECT Figure 5. Pin Configuration Table 8. Pin Function Descriptions Pin No. 1, 7 2 3 4 to 6, 10, 12, 15 8 9, 16 11 13 14 Mnemonic VDD1 VIN+ VIN− NC GND1 GND2 MDAT MCLKIN VDD2 Description Supply Voltage, 4.5 V to 5.25 V. This is the supply voltage for the isolated side of the AD7401 and is relative to GND1. Positive Analog Input. Specified range of ±200 mV. Negative Analog Input. Normally connected to GND1. No Connect. Ground 1. This is the ground reference point for all circuitry on the isolated side. Ground 2. This is the ground reference point for all circuitry on the nonisolated side. Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are clocked out on the rising edge of the MCLKIN input and valid on the following MCLKIN rising edge. Master Clock Logic Input. 20 MHz maximum. The bit stream from the modulator is valid on the rising edge of MCLKIN. Supply Voltage. 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2. Rev. A | Page 8 of 20 AD7401 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, using 25 kHz brick-wall filter, unless otherwise noted. 100 90 80 70 MCLKIN = 16MHz –90 –85 MCLKIN = 10MHz –80 –75 –70 –65 –60 20 200mV p-p SINE WAVE ON V DD1 NO DECOUPLING 10 V = VDD2 = 5V DD1 1MHz CUTOFF FILTER 0 0 100 200 300 400 500 –55 –50 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 VDD1 = VDD2 = 5V MCLKIN = 16MHz 50 40 30 MCLKIN = 5MHz MCLKIN = 10MHz 05851-006 SINAD (dB) PSRR (dB) 60 600 700 800 900 1000 SUPPLY RIPPLE FREQUENCY (kHz) ± INPUT AMPLITUDE (V) Figure 6. PSRR vs. Supply Ripple Frequency Without Supply Decoupling –90 –85 MCLKIN = 16MHz –80 0.4 0.3 0.2 0.1 Figure 9. SINAD vs. VIN =V =5 VDD1 V= VDD2V = 5V DD1 DD2 DNL ERROR SINAD (dB) –75 –70 –65 –60 –55 –50 MCLKIN = 10MHz 0 –0.1 –0.2 –0.3 –0.4 V + = –200mV TO +200mV IN VIN– = 0V –0.5 0 10k 20k 30k CODE MCLKIN = 5MHz 05851-027 0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 40k 50k 60k INPUT FREQUENCY (Hz) Figure 7. SINAD vs. Analog Input Frequency 20 0 –20 –40 –60 0.8 Figure 10. Typical DNL (±200 mV Range) 4096 POINT FFT fIN = 5kHz SINAD = 81.984dB THD = –96.311dB DECIMATION BY 256 VIN+ = –200mV TO +200mV VIN– = 0V 0.6 –80 –100 –120 –140 –160 05851-042 INL ERROR (LSB) 0.4 (dB) 0.2 0 –0.2 0 5 10 15 20 25 30 0 10k 20k 30k CODE 40k 50k 60k FREQUENCY (kHz) Figure 8. Typical FFT (±200 mV Range) Figure 11. Typical INL (±200 mV Range) Rev. A | Page 9 of 20 05851-044 –180 –0.4 05851-043 05851-028 AD7401 250 200 150 100 VDD1 = VDD2 = 4.5V MCLKIN = 16MHz VDD1 = VDD2 = 4.5V MCLKIN = 5MHz VDD1 = VDD2 = 5V MCLKIN = 16MHz VDD1 = VDD2 = 4.5V MCLKIN = 10MHz VDD1 = VDD2 = 5V MCLKIN = 5MHz 0.0105 0.0100 0.0095 0.0090 VDD1 = VDD2 = 5V MCLKIN = 16MHz TA = –40°C MCLKIN = 16MHz TA = +85°C MCLKIN = 16MHz TA = +105°C OFFSET (µV) 50 0 –50 –100 –150 –200 VDD1 = VDD2 = 5.25V MCLKIN = 16MHz VDD1 = VDD2 = 5V MCLKIN = 10MHz VDD1 = VDD2 = 5.25V MCLKIN = 10MHz VDD1 = VDD2 = 5.25V MCLKIN = 5MHz IDD1 (A) 0.0085 0.0080 0.0075 0.0070 0.0065 MCLKIN = 10MHz TA = –40°C MCLKIN = 10MHz TA = +105°C MCLKIN = 10MHz TA = +85°C MCLKIN = 5MHz TA = +85°C MCLKIN = 5MHz TA = –40°C MCLKIN = 5MHz TA = +105°C 05851-034 05851-038 05851-037 5 15 25 35 45 55 65 75 85 95 105 TEMPERATURE (°C) 05851-029 –250 –45 –35 –25 –15 –5 0.0060 –0.33 –0.28 –0.23 –0.18 –0.13 –0.08 –0.03 0.03 0.08 0.13 0.18 0.23 0.28 0.33 VIN DC INPUT VOLTAGE (V) Figure 12. Offset Drift vs. Temperature for Various Supply Voltages 200.5 200.4 200.3 200.2 Figure 15. IDD1 vs. VIN at Various Temperatures 0.0070 0.0065 0.0060 0.0055 0.0050 MCLKIN = 16MHz VDD1 = VDD2 = 4.5V MCLKIN = 16MHz VDD1 = VDD2 = 4.5V MCLKIN = 5MHz VDD1 = VDD2 = 5V MCLKIN = 16MHz VDD1 = VDD2 = 5.25V MCLKIN = 16MHz VDD1 = VDD2 = 5V MCLKIN = 10MHz VDD1 = VDD2 = 4.5V MCLKIN = 10MHz VDD1 = VDD2 = 5V MCLKIN = 5MHz VDD1 = VDD2 = 5.25V MCLKIN = 10MHz VDD1 = VDD2 = 5V TA = 25°C GAIN (mV) IDD2 (A) 200.1 200.0 199.9 199.8 199.7 199.6 VDD1 = VDD2 = 5.25V MCLKIN = 5MHz MCLKIN = 10MHz 0.0045 0.0040 0.0035 MCLKIN = 5MHz 0.0030 0.0025 5 15 25 35 45 55 65 75 85 95 105 TEMPERATURE (°C) 05851-036 199.5 –45 –35 –25 –15 –5 0.0020 –0.225 –0.125 –0.025 0.075 0.175 0.275 –0.325 –0.275 –0.175 –0.075 0.025 0.125 0.225 0.325 VIN DC INPUT VOLTAGE (V) Figure 13. Gain Error Drift vs. Temperature for Various Supply Voltages 0.0070 0.0105 0.0100 0.0095 0.0090 MCLKIN = 16MHz VDD1 = VDD2 = 5V TA = 25°C 0.0065 0.0060 0.0055 0.0050 Figure 16. IDD2 vs. VIN DC Input Voltage VDD1 = VDD2 = 5V MCLKIN = 16MHz TA = –40°C MCLKIN = 16MHz TA = +105°C MCLKIN = 16MHz TA = +85°C IDD2 (A) MCLKIN = 10MHz TA = –40°C MCLKIN = 10MHz TA = +105°C IDD1 (A) 0.0045 0.0040 0.0035 MCLKIN = 5MHz TA = –40°C MCLKIN = 10MHz TA = +85°C 0.0085 0.0080 0.0075 0.0070 0.0065 MCLKIN = 10MHz MCLKIN = 5MHz 0.0030 0.0025 0.0020 MCLKIN = 5MHz TA = +85°C MCLKIN = 5MHz TA = +105°C –0.33 –0.28 –0.23 –0.18 –0.13 –0.08 –0.03 0.03 0.08 0.13 0.18 0.23 0.28 0.33 05851-033 –0.225 –0.125 –0.025 0.075 0.175 0.275 –0.325 –0.275 –0.175 –0.075 0.025 0.125 0.225 0.325 VIN DC INPUT VOLTAGE (V) VIN DC INPUT VOLTAGE (V) Figure 17. IDD2 vs. VIN at Various Temperatures Figure 14. IDD1 vs. VIN DC Input Voltage Rev. A | Page 10 of 20 AD7401 8 6 4 2 VDD1 = VDD2 = 4.5V TO 5.25V MCLKIN = 16MHz MCLKIN = 10MHz 1.0 VDD1 = VDD2 = 5V 50kHz BRICK WALL FILTER 0.8 0 –2 –4 MCLKIN = 5MHz NOISE (mV) 0.6 IIN (µA) 0.4 MCLKIN = 5MHz 0.2 –6 –8 MCLKIN = 10MHz MCLKIN = 16MHz 0 0.05 0.10 0.15 0.20 0.25 0.30 05851-030 VIN– DC INPUT (V) VIN DC INPUT (V) Figure 18. IIN vs. VIN− DC Input 0 Figure 20. RMS Noise Voltage vs. VIN DC Input =V = VDD1 = VVDD2 =5 V 5V DD1 DD2 –20 –40 CMRR (dB) MCLKIN = 5MHz –60 MCLKIN = 10MHz –80 –100 MCLKIN = 16MHz 1 10 RIPPLE FREQUENCY (kHz) 100 1000 Figure 19. CMRR vs. Common-Mode Ripple Frequency 05851-031 –120 0.1 Rev. A | Page 11 of 20 05851-032 –0.30 –0.25 –0.20 –0.15 –0.10 –0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05 –0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 AD7401 TERMINOLOGY Differential Nonlinearity Differential nonlinearity is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC. Integral Nonlinearity Integral nonlinearity is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are specified negative full-scale, −200 mV (VIN+ − VIN−), Code 12,288 for the 16-bit level, and specified positive full-scale, +200 mV (VIN+ − VIN−), Code 53,248 for the 16-bit level. Offset Error Offset is the deviation of the midscale code (Code 32,768 for the 16-bit level) from the ideal VIN+ − VIN− (that is, 0 V). Gain Error This includes both positive full-scale gain error and negative full-scale gain error. Positive full-scale gain error is the deviation of the specified positive full-scale code (53,248 for the 16-bit level) from the ideal VIN+ − VIN− (+200 mV) after the offset error is adjusted out. Negative full-scale gain error is the deviation of the specified negative full-scale code (12,288 for the 16-bit level) from the ideal VIN+ − VIN− (−200 mV) after the offset error is adjusted out. Gain error includes reference error. Signal-to-(Noise + Distortion) Ratio This ratio is the measured ratio of signal-to-(noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency (fS/2), excluding dc. The ratio is dependent on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal-to-(noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by Signal-to-(Noise + Distortion) = (6.02 N + 1.76) dB Therefore, for a 12-bit converter, this is 74 dB. Effective Number of Bits (ENOB) The ENOB is defined by ENOB = (SINAD − 1.76)/6.02 Total Harmonic Distortion (THD) THD is the ratio of the rms sum of harmonics to the fundamental. For the AD7401, it is defined as THD (dB ) = 20 log V 2 2 + V 3 2 + V 4 2 + V5 2 + V 6 2 V1 where: V1 is the rms amplitude of the fundamental. V2, V3, V4, V5, and V6 are the rms amplitudes of the second through the sixth harmonics. Peak Harmonic or Spurious Noise Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to fS/2, excluding dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it is a noise peak. Common-Mode Rejection Ratio (CMRR) CMRR is defined as the ratio of the power in the ADC output at ±200 mV frequency, f, to the power of a 200 mV p-p sine wave applied to the common-mode voltage of VIN+ and VIN− of frequency fS as CMRR (dB) = 10log(Pf/PfS) where: Pf is the power at frequency f in the ADC output. PfS is the power at frequency fS in the ADC output. Power Supply Rejection Ratio (PSRR) Variations in power supply affect the full-scale transition but not the converter’s linearity. PSRR is the maximum change in the specified full-scale (±200 mV) transition point due to a change in power supply voltage from the nominal value (see Figure 6). Isolation Transient Immunity The isolation transient immunity specifies the rate of rise/fall of a transient pulse applied across the isolation boundary beyond which clock or data is corrupted. (It was tested using a transient pulse frequency of 100 kHz.) Rev. A | Page 12 of 20 AD7401 THEORY OF OPERATION CIRCUIT INFORMATION The AD7401 isolated Σ-Δ modulator converts an analog input signal into a high speed (20 MHz maximum), single-bit data stream; the time average of the modulator’s single-bit data is directly proportional to the input signal. Figure 23 shows a typical application circuit where the AD7401 is used to provide isolation between the analog input, a current sensing resistor, and the digital output, which is then processed by a digital filter to provide an N-bit word. A differential input of 320 mV results in a stream of ideally all 1s. This is the absolute full-scale range of the AD7401, while 200 mV is the specified full-scale range, as shown in Table 9. Table 9. Analog Input Range Analog Input Full-Scale Range Positive Full-Scale Positive Specified Input Range Zero Negative Specified Input Range Negative Full-Scale Voltage Input +640 mV +320 mV +200 mV 0 mV −200 mV −320 mV ANALOG INPUT The differential analog input of the AD7401 is implemented with a switched capacitor circuit. This circuit implements a second-order modulator stage that digitizes the input signal into a 1-bit output stream. The sample clock (MCLKIN) provides the clock signal for the conversion process as well as the output data-framing clock. This clock source is external on the AD7401. The analog input signal is continuously sampled by the modulator and compared to an internal voltage reference. A digital stream that accurately represents the analog input over time appears at the output of the converter (see Figure 21). MODULATOR OUTPUT +FS ANALOG INPUT To reconstruct the original information, this output needs to be digitally filtered and decimated. A Sinc3 filter is recommended because this is one order higher than that of the AD7401 modulator. If a 256 decimation rate is used, the resulting 16-bit word rate is 62.5 kHz, assuming a 16 MHz external clock frequency. Figure 22 shows the transfer function of the AD7401 relative to the 16-bit output. 65535 53248 ANALOG INPUT 05851-020 –FS ANALOG INPUT ADC CODE SPECIFIED RANGE Figure 21. Analog Input vs. Modulator Output 12288 A differential signal of 0 V results (ideally) in a stream of 1s and 0s at the MDAT output pin. This output is high 50% of the time and low 50% of the time. A differential input of 200 mV produces a stream of 1s and 0s that are high 81.25% of the time. A differential input of −200 mV produces a stream of 1s and 0s that are high 18.75% of the time. 0 05851-021 –320mV –200mV ANALOG INPUT +200mV +320mV Figure 22. Filtered and Decimated 16-Bit Transfer Characteristic ISOLATED 5V VDD1 NONISOLATED 5V/3V AD7401 Σ-Δ MOD/ ENCODER VDD2 VDD SINC3 FILTER DECODER MDAT MCLKIN MDAT CS SCLK + INPUT CURRENT RSHUNT VIN+ VIN– MCLK SDAT DECODER GND1 ENCODER GND2 GND Figure 23. Typical Application Circuit Rev. A | Page 13 of 20 05851-019 AD7401 DIFFERENTIAL INPUTS The analog input to the modulator is a switched capacitor design. The analog signal is converted into charge by highly linear sampling capacitors. A simplified equivalent circuit diagram of the analog input is shown in Figure 24. A signal source driving the analog input must be able to provide the charge onto the sampling capacitors every half MCLKOUT cycle and settle to the required accuracy within the next half cycle. φA VIN+ 1kΩ φB 2pF 2pF When a capacitive load is switched onto the output of an op amp, the amplitude momentarily drops. The op amp tries to correct the situation and, in the process, hits its slew rate limit. This nonlinear response, which can cause excessive ringing, can lead to distortion. To remedy the situation, a low-pass RC filter can be connected between the amplifier and the input to the AD7401. The external capacitor at each input aids in supplying the current spikes created during the sampling process, and the resistor isolates the op amp from the transient nature of the load. The recommended circuit configuration for driving the differential inputs to achieve best performance is shown in Figure 25. A capacitor between the two input pins sources or sinks charge to allow most of the charge that is needed by one input to be effectively supplied by the other input. The series resistor again isolates any op amp from the current spikes created during the sampling process. Recommended values for the resistors and capacitor are 22 Ω and 47 pF, respectively. VIN+ R C VIN– R φA VIN– 1kΩ φB MCLKIN φA φB φA φB Figure 24. Analog Input Equivalent Circuit Because the AD7401 samples the differential voltage across its analog inputs, low noise performance is attained with an input circuit that provides low common-mode noise at each input. The amplifiers used to drive the analog inputs play a critical role in attaining the high performance available from the AD7401. 05851-022 AD7401 05851-023 Figure 25. Differential Input RC Network Rev. A | Page 14 of 20 AD7401 DIGITAL FILTER A Sinc3 filter is recommended for use with the AD7401. This filter can be implemented on an FPGA or possibly a DSP. The following Verilog code provides an example of a Sinc3 filter implementation on a Xylinx® Spartan-II 2.5 V FPGA. This code can possibly be compiled for another FPGA, such as an Altera® device. Note that the data is read on the negative clock edge in this case; although, it can be read on the positive edge, if preferred. Figure 29 shows the effect of using different decimation rates with various filter types. /*`Data is read on negative clk edge*/ module DEC256SINC24B(mdata1, mclk1, reset, DATA); input mclk1; input reset; input mdata1; filtered*/ output [15:0] DATA; integer location; integer info_file; reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [23:0] reg [15:0] reg [7:0] reg word_clk; reg init; /*Perform the Sinc ACTION*/ always @ (mdata1) if(mdata1==0) ip_data1
AD7401 价格&库存

很抱歉,暂时无法提供与“AD7401”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD7401AYRWZ-RL
  •  国内价格
  • 1+19.8315
  • 10+19.097
  • 100+16.8935
  • 500+16.4528

库存:0