0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADIS16489BMLZ-P

ADIS16489BMLZ-P

  • 厂商:

    AD(亚德诺)

  • 封装:

    Modular

  • 描述:

    PRECISION 7 DEGREES OF FREEDOM I

  • 数据手册
  • 价格&库存
ADIS16489BMLZ-P 数据手册
Seven Degrees of Freedom Inertial Sensor ADIS16489 Data Sheet FEATURES GENERAL DESCRIPTION Triaxial, digital gyroscope, ±450°/sec dynamic range ±0.018° axis-to-axis misalignment error 5.3°/hr in-run bias stability 0.25°/√hr angular random walk 0.045°/sec nonlinearity Triaxial, digital accelerometer, ±18 g dynamic range Barometer, 300 mbar to 1100 mbar Triaxial, delta angle and delta velocity outputs Factory calibrated sensitivity, bias, and axial alignment Calibration temperature range: −40°C to +85°C SPI compatible Programmable operation and control Automatic and manual bias correction controls 4 FIR filter banks, 120 configurable taps Digital I/O: data ready alarm indicator, external clock Alarms for condition monitoring Power-down/sleep mode for power management Optional input sync clock: up to 2.4 kHz On demand self test of inertial sensors On demand flash memory test (checksum) Single-supply operation: 3.0 V to 3.6 V 2000 g shock survivability Parylene coating (moisture barrier for internal circuitry) Operating temperature range: −40°C to +105°C The ADIS16489 is a complete inertial system that includes a triaxis gyroscope, a triaxis accelerometer, and a barometer. Each inertial sensor in the ADIS16489 combines industry leading iMEMS® technology with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyroscope bias). As a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements. The ADIS16489 provides a simple, cost effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. The serial peripheral interface (SPI) and register structure provide a simple interface for data collection and configuration control. Parylene coating of all internal circuitry (except the barometer) provides a protective barrier against moisture exposure. The ADIS16489 uses the same footprint and connector system as the ADIS16375, ADIS16480, ADIS16485, and ADIS16488A, which greatly simplifies the upgrade process. The ADIS16489 is packaged in a module that is approximately 44 mm × 47 mm × 14 mm and includes a standard connector interface. APPLICATIONS Platform stabilization and control Navigation Personnel tracking Instrumentation Robotics FUNCTIONAL BLOCK DIAGRAM DIO1 DIO2 DIO3 DIO4 RST SELF TEST I/O VDD ALARMS POWER MANAGEMENT GND TRIAXIAL GYROSCOPE OUTPUT DATA REGISTERS TRIAXIAL ACCELEROMETER CONTROLLER CALIBRATION AND FILTERS TEMP VDD CLOCK SCLK SPI USER CONTROL REGISTERS DIN DOUT ADIS16489 VDDRTC 15596-001 PRESSURE CS Figure 1. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADIS16489 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications ...................................................................................... 1 Flash Memory Endurance Counter (FLSHCNT_LOW, FLSHCNT_HIGH) .................................................................... 27 General Description ......................................................................... 1 Page 3 (PAGE_ID) ..................................................................... 27 Functional block Diagram............................................................... 1 Global Commands (GLOB_CMD) ......................................... 27 Revision History ............................................................................... 3 Auxiliary I/O Line Configuration (FNCTIO_CTRL) ........... 28 Specifications .................................................................................... 4 General-Purpose I/O Control (GPIO_CTRL) ....................... 29 Timing Specifications .................................................................. 6 Miscellaneous Configuration (CONFIG) ............................... 29 Absolute Maximum Ratings ........................................................... 8 Decimation Filter (DEC_RATE) ............................................. 30 Thermal Resistance ...................................................................... 8 Continuous Bias Estimation (NULL_CNFG) ........................ 30 ESD Caution.................................................................................. 8 Power Management (SLP_CNT) ............................................. 31 Pin Configuration and Function Descriptions ............................ 9 FIR Filter Control (FILTR_BNK_0, FILTR_BNK_1) ............... 31 Typical Performance Characteristics ........................................... 10 Alarm Configuration (ALM_CNFG_0, ALM_CNFG_1, ALM_CFG_2) ............................................................................. 31 Theory of Operation ...................................................................... 11 Introduction ................................................................................ 11 Register Structure ....................................................................... 11 SPI Communication .................................................................. 12 Device Configuration ................................................................ 12 Reading Sensor Data .................................................................. 12 User Register Memory Map .......................................................... 13 User Register Defintions ............................................................... 16 Page 0 (PAGE_ID) ..................................................................... 16 Sample Sequence Counter (SEQ_CNT) ................................. 16 Status/Error Flag Indicators (SYS_E_FLAG) ......................... 16 Self Test Error Flags (DIAG_STS) ........................................... 16 Alarm Error Flags (ALM_STS) ................................................ 17 Internal Temperature (TEMP_OUT) ..................................... 17 Gyroscope Data .......................................................................... 17 Acceleration Data ....................................................................... 18 Barometer Data........................................................................... 19 Delta Angles ................................................................................ 20 Delta Velocity ............................................................................. 21 Real-Time Clock ......................................................................... 22 Page 2 (PAGE_ID) ..................................................................... 23 Calibration................................................................................... 23 Barometers .................................................................................. 26 X-Axis Gyroscope Alarm (XG_ALM_MAGN) ..................... 33 Y-Axis Gyroscope Alarm (YG_ALM_MAGN) ..................... 33 Z-Axis Gyroscope Alarm (ZG_ALM_MAGN) ..................... 33 X-Axis Accelerometer Alarm (XA_ALM_MAGN) .............. 33 Y-Axis Accelerometer Alarm (YA_ALM_MAGN) .............. 33 Z-Axis Accelerometer Alarm (ZA_ALM_MAGN) .................. 34 Barometer Alarm (BR_ALM_MAGN) ................................... 34 Firmware Revision (FIRM_REV) ............................................ 34 Firmware Revision Day and Month (FIRM_DM) ................ 34 Firmware Revision Year (FIRM_Y) ........................................ 34 Page 4 (PAGE_ID) ..................................................................... 34 Part Identification Numbers (PART_ID1, PART_ID2, PART_ID3, PART_ID4) ........................................................... 35 FIR Filters .................................................................................... 35 Applications Information ............................................................. 38 Mounting Best Practices ........................................................... 38 Evaluation Tools......................................................................... 39 Power Supply Considerations .................................................. 39 X-Ray Sensitivity ........................................................................ 39 Packaging and Ordering Information ......................................... 40 Outline Dimensions ................................................................... 40 Ordering Guide .......................................................................... 40 Scratch Registers (USER_SCR_x) ............................................ 26 Rev. B | Page 2 of 40 Data Sheet ADIS16489 REVISION HISTORY 8/2020—Rev. A to Rev. B Changed EVAL-ADIS to EVAL-ADIS2 .................... Throughout Change to Nonlinearity Parameter, Table 1.................................. 4 Changes to Table 6 ............................................................................ 9 Changes to Introduction Section ..................................................11 Changes to Dual Memory Structure Section and Reading Sensor Data Section ........................................................................12 Changes to Table 10 ........................................................................13 Changes to Table 12 Title, Table 13 Title, Table 14 Title, Table 16 Title, and Table 16...........................................................................16 Changes to Table 18 ........................................................................17 Changes to Table 92 ........................................................................23 Changes to Table 144 and Table 146............................................ 27 Changes to Continuous Bias Estimation (NULL_CNFG) Section, Table 161, and Figure 33 ................................................................ 30 Change to Solving for ΔX_ACCL_OUT, ΔZ_GYRO_OUT, ΔY_GYRO_OUT, and ΔX_GYRO_OUT Section ..................... 32 Changes to FIR Filters Section ...................................................... 35 11/2018—Rev. 0 to Rev. A Added Endnote 4, Table 1; Renumbered Sequentially ................ 4 Added X-Ray Sensitivity Section .................................................. 39 2/2017—Revision 0: Initial Version Rev. B | Page 3 of 40 ADIS16489 Data Sheet SPECIFICATIONS TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, unless otherwise noted. Table 1. Parameter GYROSCOPES Dynamic Range Sensitivity Repeatability 1 Sensitivity Temperature Coefficient Misalignment Error Nonlinearity Bias Repeatability1, 2 In-Run Bias Stability Angular Random Walk Temperature Coefficient Error over Temperature Linear Acceleration Effect Noise Output Noise Rate Noise Density 3 dB Bandwidth Sensor Resonant Frequency ACCELEROMETERS 3 Dynamic Range Sensitivity Repeatability1 Sensitivity Temperature Coefficient Misalignment Nonlinearity Bias Repeatability1, 2, 4 In-Run Bias Stability Velocity Random Walk Temperature Coefficient Noise Output Noise Noise Density 3 dB Bandwidth Sensor Resonant Frequency BAROMETER Pressure Range Sensitivity Error with Supply Total Error Relative Error 5 Nonlinearity 6 Linear g Sensitivity Noise Test Conditions/Comments Min Typ ±450 Max Unit ±480 x_GYRO_OUT and x_GYRO_LOW (32-bit) −40°C ≤ TC ≤ +85°C −40°C ≤ TC ≤ +85°C, 1 σ Axis to axis Axis to frame (package) Best fit straight line, full scale (FS) = 450°/sec 3.052 × 10−7 ±25 ±0.018 ±1.0 0.01 °/sec °/sec/LSB % ppm/°C Degrees Degrees % FS −40°C ≤ TC ≤ +85°C, 1 σ 1σ 1σ −40°C ≤ TC ≤ +85°C, 1 σ −15°C ≤ TC ≤ +65°C, 10°C range Any axis, 1 σ (CONFIG[7] = 1) Any axis, 1 σ (CONFIG[7] = 0) ±0.2 5.3 0.25 ±0.0025 ±0.0611 0.009 0.015 °/sec °/hr °/√hr °/sec/°C °/sec °/sec/g °/sec/g No filtering f = 10 Hz to 40 Hz, no filtering 0.16 0.0068 330 18 °/sec rms °/sec/√Hz rms Hz kHz ±1 Each axis ±18 x_ACCL_OUT and x_ACCL_LOW (32-bit) −40°C ≤ TC ≤ +85°C −40°C ≤ TC ≤ +85°C, 1 σ Axis to axis Axis to frame (package) Best fit straight line, ±10 g Best fit straight line, ±18 g ±25 ±0.035 ±1.0 10 90 g g/LSB % ppm/°C Degrees Degrees mg mg −40°C ≤ TC ≤ +85°C, 1 σ 1σ 1σ −40°C ≤ TC ≤ +85°C, 1 σ ±16 70 0.029 ±0.1 mg μg m/sec/√hr mg/°C No filtering f = 10 Hz to 40 Hz, no filtering 1.29 0.063 330 5.5 mg rms mg/√Hz rms Hz kHz Extended BAROM_OUT and BAROM_LOW (32-bit) −40°C ≤ TC ≤ +85°C Best fit straight line, FS = 1100 mbar −40°C ≤ TC ≤ +85°C ±1 g, 1 σ Rev. B | Page 4 of 40 1.221 × 10−8 ±0.5 300 10 1100 1200 6.1 × 10−7 0.04 4.5 2.5 0.1 0.2 0.005 0.025 mbar mbar mbar/LSB %/V mbar mbar % of FS % of FS mbar/g mbar rms Data Sheet Parameter TEMPERATURE SENSOR Scale Factor LOGIC INPUTS 7 Input Voltage High, VIH Low, VIL RST Pulse Width CS Wake-Up Pulse Width Input Current Logic 1 (High), IIH Logic 0 (Low), IIL All Pins Except RST RST Pin Input Capacitance, CIN DIGITAL OUTPUTS Output Voltage High, VOH Low, VOL FLASH MEMORY Data Retention 9 FUNCTIONAL TIMES 10 Power-On Start-Up Time Back-up Reset Recovery Time 11 Sleep Mode Recovery Time Flash Memory Update Time 12 Test Time On Demand Self Test Time CONVERSION RATE Initial Clock Accuracy Temperature Coefficient Sync Input Clock 13 POWER SUPPLY, VDD Power Supply Current, IDD 14 POWER SUPPLY, VDDRTC Real-Time Clock Supply Current ADIS16489 Test Conditions/Comments Min Output = 0x0000 at 25°C (±5°C) Typ Max 0.00565 °C/LSB 2.0 0.8 1 20 VIH = 3.3 V VIL = 0 V µA 10 µA mA pF 2.4 0.4 100,000 20 1370 390 730 1.05 50 12 2.46 0.02 40 Using internal clock (2460 Hz) Operating voltage range, VDD = 3.3 V Normal mode, µ ± σ Sleep mode Power-down mode Operating voltage range Normal mode, VDDRTC = 3.3 V 0.7 3.0 3.0 V V Cycles Years 600 1500 600 1000 ms ms ms µs 6.8 sec ms ms kSPS % ppm/°C kHz V mA mA µA V µA 2.4 3.6 186 12.2 37 3.3 13 V V µs µs 10 0.33 10 ISOURCE = 0.5 mA ISINK = 2.0 mA Endurance 8 TJ = 85°C Time until data is available Unit 3.6 The repeatability specifications represent analytical projections based on the following drift contributions and conditions: temperature hysteresis (−40°C to +85°C), electronics drift (high temperature operating life test: 110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles, −55°C to +85°C), rate random walk (10-year projection), and broadband noise. 2 Bias repeatability describes a long-term behavior over a variety of conditions. Short-term repeatability relates to the in-run bias stability and noise density specifications. 3 All specifications associated with the accelerometers relate to the full-scale range of ±18 g. 4 X-ray exposure can degrade this performance metric. 5 The relative error assumes that the initial error, at 25°C, is corrected in the end application. 6 Specification assumes a full scale (FS) of 1000 mbar. 7 The digital I/O signals use a 3.3 V system. 8 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C. 9 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ. 10 These times do not include thermal settling and internal filter response times, which may affect overall accuracy. 11 The RST line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery. 12 Monitoring the data ready signal (see Table 153 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times. 13 The device functions at clock rates below 0.7 kHz but at reduced performance levels. 14 Supply current transients can reach 600 mA during initial startup or reset recovery. 1 Rev. B | Page 5 of 40 ADIS16489 Data Sheet TIMING SPECIFICATIONS TC = 25°C, VDD = 3.3 V, unless otherwise noted. Table 2. Parameter fSCLK tSTALL 2 tCLS tCHS tCS Description Serial clock Stall period between data Serial clock low period Serial clock high period Chip select to clock edge tDAV tDSU tDHD tDR, tDF tDSOE tHD tSFS tDSHI DOUT valid after SCLK edge DIN setup time before SCLK rising edge DIN hold time after SCLK rising edge DOUT rise/fall times, ≤100 pF loading CS assertion to data out active SCLK edge to data out invalid Last SCLK edge to CS deassertion CS deassertion to data out high impedance Data ready pulse width Input sync pulse width Input sync to data invalid Input sync period t1 t2 t3 1 2 Min 1 0.01 2 31 31 32 Typ Max1 15 Unit MHz µs ns ns ns 10 ns ns ns ns ns ns ns ns µs µs µs µs 2 2 3 8 11 0 0 32 0 11 9 15 560 570 5 417 Guaranteed by design and characterization, but not tested in production. See Table 3 for exceptions to the stall time rating. Register Specific Stall Times Table 3. Parameter STALL TIME FNCTIO_CTRL FILTR_BNK_0 FILTR_BNK_1 NULL_CNFG GLOB_CMD[1] GLOB_CMD[2] GLOB_CMD[3] GLOB_CMD[6] GLOB_CMD[7] 1 Description Min 1 Configure DIOx functions Enable/select finite impulse response (FIR) filter banks Enable/select FIR filter banks Configure autonull bias function Self test Flash memory test Flash memory update Factory calibration restore Software reset 15 10 10 10 12000 50000 375000 75000 120000 Typ Max Monitoring the data ready signal (see Table 153 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times. Rev. B | Page 6 of 40 Unit μs μs μs μs μs μs ms sec ms Data Sheet ADIS16489 Timing Diagrams CS tCHS tCS 1 2 3 tCLS 4 5 tSFS 6 15 16 SCLK tDAV MSB DOUT DB14 tHD DB13 tDSU DIN R/W A6 DB12 DB11 tDR DB10 DB2 tDSHI DB1 tDHD A5 LSB tDF A4 A3 A2 D2 D1 15596-002 tDSOE LSB Figure 2. SPI Timing and Sequence tSTALL 15596-003 CS SCLK Figure 3. Stall Time and Data Rate t2 t3 t1 DIO4 (SYNC CLOCK) OUTPUT REGISTERS DATA VALID DATA VALID Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL[7:4] = 0xFD Rev. B | Page 7 of 40 15596-004 DATA READY ADIS16489 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Shock Survivability Any Axis, Unpowered Any Axis, Powered VDD to GND Digital Input Voltage to GND Digital Output Voltage to GND Operating Temperature Range Storage Temperature Range1 Barometric Pressure 1 Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. Rating 2000 g 2000 g −0.3 V to +3.6 V −0.3 V to VDD + 0.2 V −0.3 V to VDD + 0.2 V −40°C to +105°C −65°C to +150°C 2 bar θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Extended exposure to temperatures that are lower than −55°C or higher than +105°C can adversely affect the accuracy of the factory calibration. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. The ADIS16489 is a multichip module, which includes many active components. The values in Table 5 identify the thermal response of the hottest component inside of the ADIS16489 with respect to the overall power dissipation of the module. This approach enables a simple method for predicting the temperature of the hottest junction, based on either ambient or case temperature. For example, when the ambient temperature is 70°C, the hottest junction inside of the ADIS16489 is 89.1°C. TJ = θJA × VDD × IDD + 70°C TJ = 22.8°C/W × 3.3 V × 0.254A + 70°C TJ = 89.1°C Table 5. Package Characteristics Package Type ML-24-61 1 θJA 22.8°C/W θJC 10.1°C/W Device Weight 48 g Thermal impedance simulated values come from a case when four M2 × 0.4 mm machine screws (torque = 20 inch ounces) secure the ADIS16489 to the printed circuit board. ESD CAUTION Rev. B | Page 8 of 40 Data Sheet ADIS16489 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADIS16489 DNC DNC DNC DNC DNC GND VDD VDD RST CS DOUT DIO4 TOP VIEW (Not to Scale) 24 22 20 18 16 14 12 10 8 6 4 2 PIN 23 DNC GND GND 7 5 3 1 NOTES 1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT FOR THE MATING SOCKET CONNECTOR. 2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM THE TOP VIEW. 3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT. 4. DNC = DO NOT CONNECT. PIN 1 PIN 2 15596-006 DNC 9 15596-005 DNC 11 DIO3 13 SCLK 15 DIN 17 DIO1 19 VDD 21 DIO2 23 VDDRTC PIN 1 Figure 6. Axial Orientation (Top Side Facing Up) Figure 5. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10, 11, 12 13, 14, 15 16 to 22, 24 23 Mnemonic DIO3 DIO4 SCLK DOUT DIN CS DIO1 RST DIO2 VDD GND DNC VDDRTC Type Input and output Input and output Input Output Input Input Input and output Input Input and output Supply Supply Not applicable Supply Description Configurable Digital Input and Output 3. Configurable Digital Input and Output 4. SPI Serial Clock. SPI Data Output. Clocks output on the SCLK falling edge. SPI Data Input. Clocks input on the SCLK rising edge. SPI Chip Select. Configurable Digital Input and Output 1. Reset. Configurable Digital Input and Output 2. Power Supply. Power Ground. Do Not Connect. Do not connect to these pins. Real-Time Clock Power Supply. The VDDRTC power supply must be connected, even if the RTC feature is not used. Rev. B | Page 9 of 40 ADIS16489 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 0.3 AVERAGE AVERAGE BIAS ERROR (°/sec) 0.2 +1σ 10 +3σ 0.1 0 –3σ –0.1 –1σ 1 0.01 0.1 1 10 100 1000 10000 INTEGRATION PERIOD (Seconds) –0.3 –50 –40 –30 –20 –10 0 Figure 9. Gyroscope Bias Error vs. Temperature Figure 7. Gyroscope Allan Variance, TC = 25°C 0.001 10 20 30 40 50 60 70 80 90 100 110 TEMPERATURE (°C) 15596-209 –0.2 15596-007 ROOT ALLAN VARIANCE (°/Hour) 100 0.8 AVERAGE AVERAGE SENSITIVITY ERROR (% FS) ROOT ALLAN VARIANCE ( g) 0.6 +1σ 0.0001 –1σ 0.4 0.2 +3σ 0 –0.2 –3σ –0.4 0.1 1 10 100 1000 INTEGRATION PERIOD (Seconds) 10000 Figure 8. Accelerometer Allan Variance, TC = 25°C –0.8 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 110 TEMPERATURE (°C) Figure 10. Gyroscope Scale (Sensitivity) Error vs. Temperature Rev. B | Page 10 of 40 15596-210 0.00001 0.01 15596-008 –0.6 Data Sheet ADIS16489 THEORY OF OPERATION INTRODUCTION REGISTER STRUCTURE The ADIS16489 is an autonomous sensor system that starts up on its own when it has a valid power supply. After running through its initialization process, the ADIS16489 begins sampling, processing, and loading calibrated sensor data into the output registers, which are accessible using the SPI port. The SPI port typically connects to a compatible port on an embedded processor (see Figure 11). The four SPI signals facilitate synchronous, serial data communication. The factory default configuration provides users with a data ready signal on the DIO2 pin to trigger data acquisition (see Figure 31). The register structure and SPI port support a simple connection between the ADIS16489 and an embedded processor platform. The register structure contains both output data and control registers. The output data registers include the latest sensor data, a real-time clock, error flags, alarm flags, and identification data. The control registers include sample rate, filtering, input and output, alarms, calibration, and diagnostic configuration options. All communication between the ADIS16489 and an external processor involves either reading or writing to one of the user registers. +3.3V 10 SYSTEM PROCESSOR SPI MASTER 11 12 23 6 CS SCLK 3 SCLK MOSI 5 DIN MISO 4 DOUT IRQ 9 DIO2 TEMP SENSOR 14 15 Figure 11. Electrical Connection Diagram Table 7. Generic Master Processor Pin Names and Functions Mnemonic SS SCLK MOSI MISO IRQ Function Slave select Serial clock Master output, slave input Master input, slave output Interrupt request CONTROLLER CONTROL REGISTERS Table 8. Generic Master Processor SPI Settings Description The ADIS16489 operates as slave Maximum serial clock rate CPOL = 1 (polarity), CPHA = 1 (phase) Bit sequence Shift register/data length The register structure uses a paged addressing scheme that contains 13 pages with each page containing 64 register locations. Each register is 16 bits wide and each byte has a unique address within the memory map of that page. The SPI port has access to one page at a time, using the bit sequence in Figure 13. Select the page to activate for SPI access by writing its code to the PAGE_ID register. Read the PAGE_ID register to determine which page is currently active. Table 9 displays the PAGE_ID register contents for each page, along with their basic functions. The PAGE_ID register is located at Address 0x00 on every page. Table 9. User Register Page Assignments Embedded processors typically use control registers to configure their serial ports for communicating with SPI slave devices such as the ADIS16489. Table 8 contains a list of settings that describe the SPI protocol of the ADIS16489. Processor Setting Master SCLK ≤ 15 MHz SPI Mode 3 MSB First Mode 16-Bit Mode OUTPUT REGISTERS Figure 12. Basic Operation 15596-011 13 DSP TRIAXIS ACCELEROMETER ADIS16489 SS ADC 15596-012 TRIAXIS GYROSCOPE SPI I/O LINES ARE COMPATIBLE WITH 3.3V LOGIC LEVELS VDD Page 0 1 2 3 PAGE_ID 0x00 0x01 0x02 0x03 4 5 6 7 8 9 10 11 12 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C Rev. B | Page 11 of 40 Function Output data, clock, identification Reserved Calibration Control: sample rate, filtering, input and output, alarms Serial number FIR Filter Bank A, Coefficient 0 to Coefficient 59 FIR Filter Bank A, Coefficient 60 to Coefficient 119 FIR Filter Bank B, Coefficient 0 to Coefficient 59 FIR Filter Bank B, Coefficient 60 to Coefficient 119 FIR Filter Bank C, Coefficient 0 to Coefficient 59 FIR Filter Bank C, Coefficient 60 to Coefficient 119 FIR Filter Bank D, Coefficient 0 to Coefficient 59 FIR Filter Bank D, Coefficient 60 to Coefficient 119 ADIS16489 Data Sheet CS SCLK DIN DOUT R/W D15 A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R/W D15 A6 A5 D14 D13 15596-013 NOTES 1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0. 2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE FOR OTHER DEVICES. Figure 13. SPI Communication Bit Sequence SPI COMMUNICATION MANUAL FLASH BACKUP Each SPI command and response is 16 bits in length and uses the digital coding from Figure 13. DEVICE CONFIGURATION DIN 0x90DC 0x91FE Figure 14. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW Dual Memory Structure The ADIS16489 uses a dual memory structure (see Figure 15) in which the SRAM supports real-time operation and the flash memory provides nonvolatile storage. During the start-up process, the operating code, calibration coefficients, and user register settings load from the flash memory into the SRAM to support normal operation. The manual flash update command (GLOB_CMD[3], see Table 151) provides a simple method for saving user register values to the flash memory. Registers with the flash backup feature are indicated by a yes in the flash backup column of Table 10. This flash backup preserves these settings for automatic recall during the next power-on or reset recovery process. (NO SPI ACCESS) SPI ACCESS 15596-015 START-UP RESET Figure 15. SRAM and Flash Memory Diagram READING SENSOR DATA The 16-bit command code (see Figure 13) for a read request on the SPI has three parts: the read bit (R/W = 0), either address of the register, [A6:A0], and eight don’t care bits, [DC7:DC0]. A read command produces the registers contents on the DOUT pin, during the following 16-bit communication cycle. Figure 16 provides an example that includes two register reads in succession. This example starts with DIN = 0x1A00, to request the contents of the Z_GYRO_OUT register, and follows with 0x1800, to request the contents of the Z_GYRO_LOW register (assuming the PROD_ID register already equals 0x0000). This is an example of full duplex operation in which the ADIS16489 receives a new request while transmitting the data response from the prior request (see Figure 16). DIN DOUT 0x1A00 0x1800 NEXT ADDRESS Z_GYRO_OUT Z_GYRO_LOW Figure 16. SPI Read Example Figure 17 provides an example of the four SPI signals when reading the PROD_ID register (see Table 93) in a repeating pattern. This pattern is helpful when troubleshooting the SPI interface as it provides a clear expectation for all signals because the register contents involved never change. CS SCLK DIN DIN = 0111 1110 0000 0000 = 0x7E00 DOUT DOUT = 0100 0000 0110 1001 = 0x4069 = 16,489 (PROD_ID) Figure 17. SPI Read Example, Second 16-Bit Sequence Rev. B | Page 12 of 40 15596-017 SCLK 15596-014 CS VOLATILE SRAM 15596-016 Each register contains 16 bits (two bytes). Bits[7:0] contain the low byte, and Bits[15:8] contain the high byte of each register. Each byte has its own unique address in the user register map (see Table 10). Update the contents of a register by writing to its low byte first and its high byte second. There are three parts to coding a SPI command (see Figure 13), which writes a new byte of data to a register: the write bit (R/W = 1), the address of the byte, [A6:A0], and the new data for that location, [DC7:DC0]. Figure 14 provides a coding example for writing 0xFEDC to the XG_BIAS_LOW register (see Table 109), assuming the PAGE_ID register already equals 0x0002. NONVOLATILE FLASH MEMORY Data Sheet ADIS16489 USER REGISTER MEMORY MAP Table 10. User Register Memory Map (N/A Means Not Applicable) Name PAGE_ID Reserved SEQ_CNT SYS_E_FLAG DIAG_STS ALM_STS TEMP_OUT X_GYRO_LOW X_GYRO_OUT Y_GYRO_LOW Y_GYRO_OUT Z_GYRO_LOW Z_GYRO_OUT X_ACCL_LOW X_ACCL_OUT Y_ACCL_LOW Y_ACCL_OUT Z_ACCL_LOW Z_ACCL_OUT Reserved BAROM_LOW BAROM_OUT Reserved X_DELTANG_LOW X_DELTANG_OUT Y_DELTANG_LOW Y_DELTANG_OUT Z_DELTANG_LOW Z_DELTANG_OUT X_DELTVEL_LOW X_DELTVEL_OUT Y_DELTVEL_LOW Y_DELTVEL_OUT Z_DELTVEL_LOW Z_DELTVEL_OUT Reserved TIME_MS_OUT TIME_DH_OUT TIME_YM_OUT PROD_ID Reserved PAGE_ID Reserved X_GYRO_SCALE Y_GYRO_SCALE Z_GYRO_SCALE X_ACCL_SCALE Y_ACCL_SCALE Z_ACCL_SCALE R/W R/W N/A R R R R R R R R R R R R R R R R R N/A R R N/A R R R R R R R R R R R R N/A R/W R/W R/W R N/A R/W N/A R/W R/W R/W R/W R/W R/W Flash Backup No N/A No No No No No No No No No No No No No No No No No N/A No No N/A No No No No No No No No No No No No N/A No No No Yes N/A No N/A Yes Yes Yes Yes Yes Yes PAGE_ID 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 Address 0x00, 0x01 0x02 to 0x05 0x06, 0x07 0x08, 0x09 0x0A, 0x0B 0x0C, 0x0D 0x0E, 0x0F 0x10, 0x11 0x12, 0x13 0x14, 0x15 0x16, 0x17 0x18, 0x19 0x1A, 0x1B 0x1C, 0x1D 0x1E, 0x1F 0x20, 0x21 0x22, 0x23 0x24, 0x25 0x26, 0x27 0x28 to 0x2D 0x2E, 0x2F 0x30, 0x31 0x32 to 0x3F 0x40, 0x41 0x42, 0x43 0x44, 0x45 0x46, 0x47 0x48, 0x49 0x4A, 0x4B 0x4C, 0x4D 0x4E, 0x4F 0x50, 0x51 0x52, 0x53 0x54, 0x55 0x56, 0x57 0x58 to 0x77 0x78, 0x79 0x7A, 0x7B 0x7C, 0x7D 0x7E, 0x7F 0x00 to 0x7F 0x00, 0x01 0x02, 0x03 0x04, 0x05 0x06, 0x07 0x08, 0x09 0x0A, 0x0B 0x0C, 0x0D 0x0E, 0x0F Default 0x0000 N/A N/A 0x0000 0x0000 0x0000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0x4069 N/A 0x0000 N/A 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 Rev. B | Page 13 of 40 Register Description Page identifier Reserved Sample sequence counter Output, system error flags Output, self test error flags Output, alarm error flags Output, temperature Output, x-axis gyroscope, low word Output, x-axis gyroscope, high word Output, y-axis gyroscope, low word Output, y-axis gyroscope, high word Output, z-axis gyroscope, low word Output, z-axis gyroscope, high word Output, x-axis accelerometer, low word Output, x-axis accelerometer, high word Output, y-axis accelerometer, low word Output, y-axis accelerometer, high word Output, z-axis accelerometer, low word Output, z-axis accelerometer, high word Reserved Output, barometer, low word Output, barometer, high word Reserved Output, x-axis delta angle, low word Output, x-axis delta angle, high word Output, y-axis delta angle, low word Output, y-axis delta angle, high word Output, z-axis delta angle, low word Output, z-axis delta angle, high word Output, x-axis delta velocity, low word Output, x-axis delta velocity, high word Output, y-axis delta velocity, low word Output, y-axis delta velocity, high word Output, z-axis delta velocity, low word Output, z-axis delta velocity, high word Reserved Real-time clock: minutes/seconds Real-time clock: day/hour Real-time clock: year/month Output, product identification (16,489) Reserved Page identifier Reserved Calibration, scale, x-axis gyroscope Calibration, scale, y-axis gyroscope Calibration, scale, z-axis gyroscope Calibration, scale, x-axis accelerometer Calibration, scale, y-axis accelerometer Calibration, scale, z-axis accelerometer ADIS16489 Name XG_BIAS_LOW XG_BIAS_HIGH YG_BIAS_LOW YG_BIAS_HIGH ZG_BIAS_LOW ZG_BIAS_HIGH XA_BIAS_LOW XA_BIAS_HIGH YA_BIAS_LOW YA_BIAS_HIGH ZA_BIAS_LOW ZA_BIAS_HIGH Reserved BR_BIAS_LOW BR_BIAS_HIGH Reserved USER_SCR_1 USER_SCR_2 USER_SCR_3 USER_SCR_4 FLSHCNT_LOW FLSHCNT_HIGH PAGE_ID GLOB_CMD Reserved FNCTIO_CTRL GPIO_CTRL CONFIG DEC_RATE NULL_CNFG SLP_CNT Reserved FILTR_BNK_0 FILTR_BNK_1 Reserved ALM_CNFG_0 ALM_CNFG_1 ALM_CNFG_2 Reserved XG_ALM_MAGN YG_ALM_MAGN ZG_ALM_MAGN XA_ALM_MAGN YA_ALM_MAGN ZA_ALM_MAGN Reserved BR_ALM_MAGN Reserved FIRM_REV FIRM_DM FIRM_Y Reserved Data Sheet R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W N/A R/W R/W N/A R/W R/W R/W R/W R R R/W W N/A R/W R/W R/W R/W R/W W N/A R/W R/W N/A R/W R/W R/W N/A R/W R/W R/W R/W R/W R/W N/A R/W N/A R R R N/A Flash Backup Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes N/A Yes Yes N/A Yes Yes Yes Yes Yes Yes No No N/A Yes Yes Yes Yes Yes No N/A Yes Yes N/A Yes Yes Yes N/A Yes Yes Yes Yes Yes Yes N/A Yes N/A Yes Yes Yes N/A PAGE_ID 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03 Address 0x10, 0x11 0x12, 0x13 0x14, 0x15 0x16, 0x17 0x18, 0x19 0x1A, 0x1B 0x1C, 0x1D 0x1E, 0x1F 0x20, 0x21 0x22, 0x23 0x24, 0x25 0x26, 0x27 0x28 to 0x73 0x40, 0x41 0x42, 0x43 0x28 to 0x73 0x74, 0x75 0x76, 0x77 0x78, 0x79 0x7A, 0x7B 0x7C, 0x7D 0x7E, 0x7F 0x00, 0x01 0x02, 0x03 0x04, 0x05 0x06, 0x07 0x08, 0x09 0x0A, 0x0B 0x0C, 0x0D 0x0E, 0x0F 0x10, 0x11 0x12 to 0x15 0x16, 0x17 0x18, 0x19 0x1A to 0x1F 0x20, 0x21 0x22, 0x23 0x24, 0x25 0x26, 0x27 0x28, 0x29 0x2A, 0x2B 0x2C, 0x2D 0x2E, 0x2F 0x30, 0x31 0x32, 0x33 0x34 to 0x39 0x3A, 0x3B 0x3C to 0x77 0x78, 0x79 0x7A, 0x7B 0x7C, 0x7D 0x7E, 0x7F Default 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 N/A N/A 0x0000 N/A N/A 0x000D 0x00X0 1 0x00C0 0x0000 0x070A N/A N/A 0x0000 0x0000 N/A 0x0000 0x0000 0x0000 N/A 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 N/A 0x0000 N/A N/A N/A N/A N/A Rev. B | Page 14 of 40 Register Description Calibration, offset, gyroscope, x-axis, low word Calibration, offset, gyroscope, x-axis, high word Calibration, offset, gyroscope, y-axis, low word Calibration, offset, gyroscope, y-axis, high word Calibration, offset, gyroscope, z-axis, low word Calibration, offset, gyroscope, z-axis, high word Calibration, offset, accelerometer, x-axis, low word Calibration, offset, accelerometer, x-axis, high word Calibration, offset, accelerometer, y-axis, low word Calibration, offset, accelerometer, y-axis, high word Calibration, offset, accelerometer, z-axis, low word Calibration, offset, accelerometer, z-axis, high word Reserved Calibration, offset, barometer, low word Calibration, offset, barometer, high word Reserved User Scratch Register 1 User Scratch Register 2 User Scratch Register 3 User Scratch Register 4 Diagnostic, flash memory count, low word Diagnostic, flash memory count, high word Page identifier Control, global commands Reserved Control, I/O pins, functional definitions Control, I/O pins, general purpose Control, clock, and miscellaneous correction Control, output sample rate decimation Control, automatic bias correction configuration Control, power-down/sleep mode Reserved Filter selection Filter selection Reserved Alarm configuration Alarm configuration Alarm configuration Reserved Alarm configuration, x-axis gyroscope Alarm configuration, y-axis gyroscope Alarm configuration, z-axis gyroscope Alarm configuration, x-axis accelerometer Alarm configuration, y-axis accelerometer Alarm configuration, z-axis accelerometer Reserved Alarm configuration, barometer Reserved Firmware revision Firmware programming date: day/month Firmware programming date: year Reserved Data Sheet Name PAGE_ID Reserved PART_ID1 PART_ID2 PART_ID3 PART_ID4 Reserved PAGE_ID Reserved FIR_COEF_Axxx PAGE_ID Reserved FIR_COEF_Axxx PAGE_ID Reserved FIR_COEF_Bxxx PAGE_ID Reserved FIR_COEF_Bxxx PAGE_ID Reserved FIR_COEF_Cxxx PAGE_ID Reserved FIR_COEF_Cxxx PAGE_ID Reserved FIR_COEF_Dxxx PAGE_ID Reserved FIR_COEF_Dxxx 1 ADIS16489 R/W R/W N/A R R R R N/A R/W N/A R/W R/W N/A R/W R/W N/A R/W R/W N/A R/W R/W N/A R/W R/W N/A R/W R/W N/A R/W R/W N/A R/W Flash Backup No N/A N/A N/A N/A N/A N/A No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes PAGE_ID 0x04 0x04 0x04 0x04 0x04 0x04 0x04 0x05 0x05 0x05 0x06 0x06 0x06 0x07 0x07 0x07 0x08 0x08 0x08 0x09 0x09 0x09 0x0A 0x0A 0x0A 0x0B 0x0B 0x0B 0x0C 0x0C 0x0C Address 0x00, 0x01 0x02 to 0x1F 0x20, 0x21 0x22, 0x23 0x24, 0x25 0x26, 0x27 0x28 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F 0x00, 0x01 0x02 to 0x07 0x08 to 0x7F Default 0x0000 N/A N/A N/A N/A N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A 0x0000 N/A N/A The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting. Rev. B | Page 15 of 40 Register Description Page identifier Reserved Part Identification 1 Part Identification 2 Part Identification 3 Part Identification 4 Reserved Page identifier Reserved FIR Filter Bank A: Coefficient 0 through Coefficient 59 Page identifier Reserved FIR Filter Bank A: Coefficient 60 through Coefficient 119 Page identifier Reserved FIR Filter Bank B: Coefficient 0 through Coefficient 59 Page identifier Reserved FIR Filter Bank B: Coefficient 60 through Coefficient 119 Page identifier Reserved FIR Filter Bank C: Coefficient 0 through Coefficient 59 Page identifier Reserved FIR Filter Bank C: Coefficient 60 through Coefficient 119 Page identifier Reserved FIR Filter Bank D: Coefficient 0 through Coefficient 59 Page identifier Reserved FIR Filter Bank D: Coefficient 60 through Coefficient 119 ADIS16489 Data Sheet USER REGISTER DEFINTIONS PAGE 0 (PAGE_ID) Table 16. SYS_E_FLAG Bit Definitions Table 11. PAGE_ID Register Definition Bits 15 Page 0x00 Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No [14:13] 12 Table 12. PAGE_ID Bit Definitions Bits [15:0] Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 11 and Table 12) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. [11:10] 9 8 7 SAMPLE SEQUENCE COUNTER (SEQ_CNT) When using the internal sampling clock, the barometer output data registers (BAROM_LOW and BAROM_OUT, see Table 53 and Table 55) update at a rate of 51.25 SPS. When using the external clock, the barometers update at a rate that is 1/48th of the input clock frequency. Therefore, the update rates for the barometer does not change with the DEC_RATE register settings. SYS_E_FLAG[9] (see Table 16) offers a new data indicator bit that indicates new, unread data is in the barometer output data registers. The SEQ_CNT register provides a counter function to help determine when there is new data in the barometer registers. When SEQ_CNT = 0x0001, there is new data in the barometer output registers. When beginning a continuous read loop, read SEQ_CNT, then subtract this value from the maximum value of the range (depends on DEC_RATE setting; see Table 14) to predict the number of internal sample cycles until the next sample update in the barometer output data registers. Table 13. SEQ_CNT Register Definition Page 0x00 Addresses 0x06, 0x07 Default Not applicable Access R Flash Backup No 6 5 4 3 [2:1] 0 Table 14. SEQ_CNT Bit Definitions Bits [15:7] [6:0] Description Don’t care Binary counter: range = 1 to 48/(DEC_RATE + 1) SELF TEST ERROR FLAGS (DIAG_STS) Table 17. DIAG_STS Register Definition STATUS/ERROR FLAG INDICATORS (SYS_E_FLAG) Page 0x00 The SYS_E_FLAG register (see Table 15 and Table 16) provides various error flags. Reading this register causes all of its bits to return to 0, with the exception of Bit 7. If an error condition persists, its flag (bit) automatically returns to an alarm value of 1. Table 15. SYS_E_FLAG Register Definition Page 0x00 Addresses 0x08, 0x09 Default 0x0000 Access R Description Watch dog timer flag. A 1 indicates that the ADIS16489 automatically reset itself to clear an issue. Not used. Gyroscope saturation. A 1 indicates that the rate of rotation on one axis is equal to or greater than ±480°/sec (±1 % tolerance). Not used. Barometer sample update. A 1 indicates that BAROM_OUT (see Table 55) and BAROM_LOW (see Table 53) registers contain new data. Not used. Processing overrun. A 1 indicates the occurrence of a processing overrun. Initiate a reset to recover. Replace the ADIS16489 if this error persists. One possible cause of a processing overrun error is the VDDRTC pin not being connected to a 3.3 V power supply. Flash memory failure. A 1 indicates that the most recent flash memory test (GLOB_CMD[2], see Table 151) failed. Repeat test and replace the ADIS16489 if this error persists. Sensor failure. A 1 indicates the failure of at least one of the self-test processes: continuous or on demand. Run the ODST (GLOB_CMD, Bit 1, see Table 151) when the unit is in not in motion. Replace the ADIS16489 if the error persists. Overrange. A 1 indicates that the digital magnitude of at least one sensor has reached 99% of its maximum value. Initiate a reset to recover and replace the ADIS16489 if this error persists. SPI communication error. A 1 indicates that the total number of SCLK cycles is not equal to an integer multiple of 16. Repeat the previous communication sequence to recover. Persistence in this error may indicate a weakness in the SPI service from the master processor. Not used. Alarm status flag. A 1 indicates that one of the userprogrammable alarms is active. See the ALM_STS register for an indication of which alarm is active. Flash Backup No Rev. B | Page 16 of 40 Addresses 0x0A, 0x0B Default 0x0000 Access R Flash Backup No Data Sheet ADIS16489 The TEMP_OUT register (see Table 21 and Table 22) provides a coarse measurement of the temperature inside of the ADIS16489. This data is most useful for monitoring relative changes that influence the temperature inside of the ADIS16489. Table 18. DIAG_STS Bit Definitions Bits [15:12] 11 [10:6] 5 4 3 2 1 0 Description Not used Self test failure, barometer (1 = failure) Not used ODST failure, z-axis accelerometer (1 = failure) ODST failure, y-axis accelerometer (1 = failure) ODST failure, x-axis accelerometer (1 = failure) ODST failure, z-axis gyroscope (1 = failure) ODST failure, y-axis gyroscope (1 = failure) Self test failure, x-axis gyroscope (1 = failure) Table 23. TEMP_OUT Data Format Examples SYS_E_FLAG[5] (see Table 16) contains the pass and fail result (0 = pass) for on demand self test (ODST) operations, whereas the DIAG_STS register (see Table 17 and Table 18) contains pass and fail flags (0 = pass) for each inertial sensor. Reading the DIAG_STS register causes all of its bits to restore to 0. The bits in DIAG_STS return to 1 if the error conditions persists. ALARM ERROR FLAGS (ALM_STS) Table 19. ALM_STS Register Definition Page 0x00 Addresses 0x0C, 0x0D Default 0x0000 Access R Flash Backup No Temperature (°C) +85 +25 + 0.0113 +25 + 0.00565 +25 +25 − 0.00565 +25 − 0.0113 −40 Decimal +10,619 +2 +1 0 −1 −2 −11,504 Hex 0x297B 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0xD310 Binary 0010 1001 0111 1011 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1101 0011 0001 0000 GYROSCOPE DATA The gyroscopes in the ADIS16489 measure the angular rate of rotation around three orthogonal axes (x, y, and z). Figure 18 illustrates the orientation of each gyroscope axis, along with the direction of rotation that produces a positive response in each of their measurements. Z-AXIS ωZ Table 20. ALM_STS Bit Definitions Description Not used Barometer alarm flag (1 = alarm is active) Not used Z-axis accelerometer alarm flag (1 = alarm is active) Y-axis accelerometer alarm flag (1 = alarm is active) X-axis accelerometer alarm flag (1 = alarm is active) Z-axis gyroscope alarm flag (1 = alarm is active) Y-axis gyroscope alarm flag (1 = alarm is active) X-axis gyroscope alarm flag (1 = alarm is active) X-AXIS Y-AXIS ωY PIN 1 Each gyroscope has two output data registers. Figure 19 illustrates how these two registers combine to support a 32-bit, twos complement data format for the x-axis gyroscope measurements. This format also applies to the y- and z-axes as well. Table 21. TEMP_OUT Register Definition Default Not applicable Access R Flash Backup No Table 22. TEMP_OUT Bit Definitions Bits [15:0] X_GYRO_OUT 15 X_GYRO_LOW 0 15 0 X-AXIS GYROSCOPE DATA Figure 19. Gyroscope Output Data Structure X-Axis Gyroscope (X_GYRO_LOW, X_GYRO_OUT) Table 24. X_GYRO_LOW Register Definition INTERNAL TEMPERATURE (TEMP_OUT) Addresses 0x0E, 0x0F PIN 23 Figure 18. Gyroscope Axis and Polarity Assignments The ALM_STS register (see Table 19 and Table 20) contains the error flags for the alarm settings in the ALM_CNFG_0 (see Table 170) and ALM_CNFG_1 (see Table 172) registers. Reading the ALM_STS register causes all bits to restore to 0. If the alarm condition is persistent, its bit restores to a 1 in the next sample cycle. Page 0x00 15596-018 ωX 15596-019 Bits [15:12] 11 [10:6] 5 4 3 2 1 0 Description Temperature data; twos complement, 0.00565°C per LSB, 25°C = 0x0000 Page 0x00 Addresses 0x10, 0x11 Default Not applicable Access R Flash Backup No Table 25. X_GYRO_LOW Bit Definitions Bits [15:0] Description X-axis gyroscope data; low word Table 26. X_GYRO_OUT Register Definition Page 0x00 Rev. B | Page 17 of 40 Addresses 0x12, 0x13 Default Not applicable Access R Flash Backup No ADIS16489 Data Sheet Table 27. X_GYRO_OUT Bit Definitions Description X-axis gyroscope data; high word; twos complement, ±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec The X_GYRO_LOW (see Table 24 and Table 25) and X_GYRO_ OUT (see Table 26 and Table 27) registers contain the gyroscope data for the x-axis. Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT) Table 28. Y_GYRO_LOW Register Definition Page 0x00 Addresses 0x14, 0x15 Default Not applicable Access R Flash Backup No Table 29. Y_GYRO_LOW Bit Definitions Bits [15:0] Description Y-axis gyroscope data; low word Table 30. Y_GYRO_OUT Register Definition Page 0x00 Addresses 0x16, 0x17 Default Not applicable Access R Flash Backup No Table 31. Y_GYRO_OUT Bit Definitions Bits [15:0] Description Y-axis gyroscope data; high word; twos complement, ±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec The Y_GYRO_LOW (see Table 28 and Table 29) and Y_GYRO_ OUT (see Table 30 and Table 31) registers contain the gyroscope data for the y-axis. Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT) Table 36. 16-Bit Gyroscope Data Format Examples Rotation Rate (°/sec) +450 +0.04 +0.02 0 −0.02 −0.04 −450 Decimal +22,500 +2 +1 0 −1 −2 −22,500 Addresses 0x18, 0x19 Default Not applicable Access R Rotation Rate (°/sec) +450 +0.02/215 +0.02/216 0 −0.02/216 −0.02/215 −450 Decimal +1,474,560,000 +2 +1 0 −1 −2 −1,474,560,000 Hex 0x57E40000 0x00000002 0x00000001 0x00000 0xFFFFFFFF 0xFFFFFFFE 0x73600000 ACCELERATION DATA The accelerometers in the ADIS16489 measure both dynamic and static (response to gravity) acceleration along three orthogonal axes (x, y, and z). Figure 20 illustrates the orientation of each accelerometer axis, along with the direction of acceleration that produces a positive response in each of their measurements. Z-AXIS aZ Flash Backup No X-AXIS Table 33. Z_GYRO_LOW Bit Definitions Bits [15:0] Binary 0101 0111 1110 0100 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1010 1000 0001 1100 Table 37. 32-Bit Gyroscope Data Format Examples Table 32. Z_GYRO_LOW Register Definition Page 0x00 Hex 0x57E4 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0xA81C Y-AXIS Description Z-axis gyroscope data; additional resolution bits aX aY 15596-020 Bits [15:0] PIN 23 PIN 1 Table 34. Z_GYRO_OUT Register Definition Addresses 0x1A, 0x1B Default Not applicable Access R Flash Backup No Table 35. Z_GYRO_OUT Bit Definitions Bits [15:0] Description Z-axis gyroscope data; high word; twos complement, ±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec Each accelerometer has two output data registers. Figure 21 illustrates how these two registers combine to support a 32-bit, twos complement data format for the x-axis accelerometer measurements. This format also applies to the y- and z-axes as well. The Z_GYRO_LOW (see Table 32 and Table 33) and Z_GYRO_ OUT (see Table 34 and Table 35) registers contain the gyroscope data for the z-axis. Gyroscope Resolution Table 36 and Table 37 offer various numerical examples that demonstrate the format of the angular rate (gyroscopes) data in both 16-bit and 32-bit formats. Rev. B | Page 18 of 40 X_ACCL_OUT 15 X_ACCL_LOW 0 15 X-AXIS ACCELEROMETER DATA Figure 21. Accelerometer Output Data Structure 0 15596-021 Page 0x00 Figure 20. Accelerometer Axis and Polarity Assignments Data Sheet ADIS16489 X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT) Table 49. Z_ACCL_OUT Bit Definitions Table 38. X_ACCL_LOW Register Definition Bits [15:0] Page 0x00 Addresses 0x1C, 0x1D Default Not applicable Access R Flash Backup No Table 39. X_ACCL_LOW Bit Definitions Bits [15:0] Description X-axis accelerometer data; low word Addresses 0x1E, 0x1F Default Not applicable Access R The Z_ACCL_LOW (see Table 46 and Table 47) and Z_ACCL_ OUT (see Table 48 and Table 49) registers contain the accelerometer data for the z-axis. Accelerometer Resolution Table 40. X_ACCL_OUT Register Definition Page 0x00 Description Z-axis accelerometer data, high word; twos complement, ±18 g range; 0 g = 0x0000, 1 LSB = 0.8 mg Flash Backup No Table 50 and Table 51 offer various numerical examples that demonstrate the format of the linear acceleration data in both 16-bit and 32-bit formats. Table 50. 16-Bit Accelerometer Data Format Examples Table 41. X_ACCL_OUT Definitions Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT) Acceleration +18 g +1.6 mg +0.8 mg 0 mg −0.8 mg −1.6 mg −18 g Table 42. Y_ACCL_LOW Register Definition Table 51. 32-Bit Accelerometer Data Format Examples Description X-axis accelerometer data, high word; twos complement, ±18 g range; 0 g = 0x0000, 1 LSB = 0.8 mg The X_ACCL_LOW (see Table 38 and Table 39) and X_ACCL_ OUT (see Table 40 and Table 41) registers contain the accelerometer data for the x-axis. Page 0x00 Addresses 0x20, 0x21 Default Not applicable Access R Flash Backup No Table 43. Y_ACCL_LOW Bit Definitions Bits [15:0] Description Y-axis accelerometer data; low word Table 44. Y_ACCL_OUT Register Definition Page 0x00 Addresses 0x22, 0x23 Default Not applicable Access R Flash Backup No Table 45. Y_ACCL_OUT Bit Definitions Bits [15:0] Description Y-axis accelerometer data; twos complement, ±18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg The Y_ACCL_LOW (see Table 42 and Table 43) and Y_ACCL_ OUT (see Table 44 and Table 45) registers contain the accelerometer data for the x-axis. Acceleration (g) +18 +0.0008/215 +0.0008/216 0 −0.0008/216 −0.0008/215 −18 Default Not applicable Access R Flash Backup No Description Z-axis accelerometer data; low word Addresses 0x26, 0x27 Default Not applicable Access R Hex 0x4E200000 0x00000002 0x00000001 0x00000000 0xFFFFFFFF 0xFFFFFFFE 0xB1E00000 The barometer measures the atmospheric pressure. The barometer has two output data registers: BAROM_LOW and BAROM_OUT. Figure 22 illustrates how these two registers combine to support 32-bit, twos complement data format for the pressure measurements. BAROM_OUT 15 BAROM_LOW 0 15 0 Barometer (BAROM_LOW, BAROM_OUT) Table 52. BAROM_LOW Register Definition Page 0x00 Addresses 0x2E, 0x2F Default Not applicable Access R Table 53. BAROM_LOW Bit Definitions Table 48. Z_ACCL_OUT Register Definition Page 0x00 Decimal +1,310,720,000 +2 +1 0 −1 −2 −1,310,720,000 Figure 22. Barometer Output Data Structure Table 47. Z_ACCL_LOW Bit Definitions Bits [15:0] Binary 0100 1110 0010 0000 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1011 0001 1110 0000 BAROMETER DATA Table 46. Z_ACCL_LOW Register Definition Addresses 0x24, 0x25 Hex 0x4E20 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0xB1E0 BAROMETER DATA Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT) Page 0x00 Decimal +20,000 +2 +1 0 −1 −2 −20,000 15596-100 Bits [15:0] Flash Backup No Bits [15:0] Rev. B | Page 19 of 40 Description Barometer data; low word Flash Backup No ADIS16489 Data Sheet Table 54. BAROM_OUT Register Definition Addresses 0x30, 0x31 Default Not applicable Access R Flash Backup No 1 D −1 ∆θ x , n D = × ∑ ω x, n D + d + ω x, n D + d −1 2 fS d =0 ( Table 55. BAROM_OUT Bit Definitions Bits [15:0] Description Barometer data; high word; twos complement, ±1.31 range; 0 bar = 0x0000, 1 LSB = 40μbar where: D is the decimation rate = DEC_RATE + 1 (see Table 159). fS is the sample rate. d is the incremental variable in the summation formula. ωx is the x-axis rate of rotation (gyroscope). n is the sample time, prior to the decimation filter. The BAROM_LOW (see Table 52 and Table 53) and BAROM_ OUT (see Table 54 and Table 55) registers contain the barometer data. Barometer Resolution When using the internal sample clock, fS is equal to 2460 SPS. When using the external clock option, fS is equal to the frequency of the external clock. The external clock frequency must be at least 700 Hz to prevent overflow in the delta angle data registers at high rotation rates. Table 56 and Table 57 offer various numerical examples that demonstrate the format of the pressure (barometer) data in both 16-bit and 32-bit formats. Table 56. 16-Bit Barometer Data Format Examples Pressure +1.31068 bar +80 μbar +40 μbar 0 −40 μbar −80 μbar −1.31072 Decimal +32767 +2 +1 0 −1 −2 −32768 Hex 0x3FFF 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0x4000 ) Binary 0111 1111 1111 1111 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 Each axis of the delta angle measurements has two output data registers. Figure 24 illustrates how these two registers combine to support a 32-bit, twos complement data format for the x-axis delta angle measurements. This format also applies to the yand x-axes as well. X_DELTANG_OUT 15 X_DELTANG_LOW 0 15 0 X-AXIS DELTA ANGLE DATA Table 57. 32-Bit Barometer Data Format Examples Pressure +1.31068 bar +80 μbar ÷ 216 +40 μbar ÷ 216 0 −40 μbar ÷ 216 −80 μbar ÷ 216 −1.31072 Decimal +4,294,967,295 +2 +1 0 −1 −2 −4,294,967,296 Figure 24. Delta Angle Output Data Structure Hex 0x3FFFFFFF 0x00000002 0x00000001 0x00000000 0xFFFFFFFF 0xFFFFFFFE 0x40000000 X-Axis Delta Angle (X_DELTANG_LOW, X_DELTANG_OUT) Table 58. X_DELTANG_LOW Register Definitions Page 0x00 Bits [15:0] In addition to the angular rate of rotation (gyroscope) measurements around each axis (x, y, and z), the ADIS16489 also provides delta angle measurements that represent a computation of angular displacement between each sample update. Z-AXIS ΔΘZ Y-AXIS Access R Flash Backup No Description X-axis delta angle data; low word Table 60. X_DELTANG_OUT Register Definitions Page 0x00 Addresses 0x42, 0x43 Default Not applicable Access R Flash Backup No Table 61. X_DELTANG_OUT Bit Definitions Bits [15:0] 15596-022 ΔΘX PIN 1 Default Not applicable Description X-axis delta angle data; twos complement, ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° The X_DELTANG_LOW (see Table 58 and Table 59) and X_DELTANG_OUT (see Table 60 and Table 61) registers contain the delta angle data for the x-axis. X-AXIS PIN 23 Addresses 0x40, 0x41 Table 59. X_DELTANG_LOW Bit Definitions DELTA ANGLES ΔΘY 15596-023 Page 0x00 The delta angle outputs represent an integration of the gyroscope measurements and use the following formula for all three axes (x-axis displayed): Figure 23. Delta Angle Axis and Polarity Assignments Rev. B | Page 20 of 40 Data Sheet ADIS16489 Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT) Table 62. Y_DELTANG_LOW Register Definitions Addresses 0x44, 0x45 Default Not applicable Access R Flash Backup No Table 63. Y_DELTANG_LOW Bit Definitions Bits [15:0] Description Y-axis delta angle data; low word Table 64. Y_DELTANG_OUT Register Definitions Page 0x00 Addresses 0x46, 0x47 Default Not applicable Access R Flash Backup No Table 65. Y_DELTANG_OUT Bit Definitions Bits [15:0] Description Y-axis delta angle data; twos complement, ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° Delta Angle (°) +720 × (231 − 1)/231 +720/230 +720/231 0 −720/231 −720/230 −720 Decimal +2,147,483,647 +2 +1 0 −1 −2 −2,147,483,648 DELTA VELOCITY In addition to the linear acceleration measurements along each axis (x, y, and z), the ADIS16489 also provides delta velocity measurements that represent a computation of linear velocity change between each sample update. Z-AXIS ΔVZ The Y_DELTANG_LOW (see Table 62 and Table 63) and Y_DELTANG_OUT (see Table 64 and Table 65) registers contain the delta angle data for the y-axis. X-AXIS Z-Axis Delta Angle (Z_DELTANG_LOW, Z_DELTANG_OUT) Y-AXIS ΔVX Addresses 0x48, 0x49 Default Not applicable Access R PIN 23 Flash Backup No Table 67. Z_DELTANG_LOW Bit Definitions Bits [15:0] Description Z-axis delta angle data; low word PIN 1 Figure 25. Delta Velocity Axis and Polarity Assignments The delta velocity outputs represent an integration of the acceleration measurements and use the following formula for all three axes (x-axis displayed): 1 D −1 ∆Vx , n D = × ∑ ax , n D + d + ax , n D + d −1 2 fS d =0 ( Table 68. Z_DELTANG_OUT Register Definitions Page 0x00 Addresses 0x4A, 0x4B Default Not applicable Access R Flash Backup No Table 69. Z_DELTANG_OUT Bit Definitions Bits [15:0] Description Z-axis delta angle data; twos complement, ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° The Z_DELTANG_LOW (see Table 66 and Table 67) and Z_DELTANG_OUT (see Table 68 and Table 69) registers contain the delta angle data for the z-axis. Delta Angle Resolution Table 70 and Table 71 offers various numerical examples that demonstrate the format of the delta-angle data in 16-bit and 32-bit formats. Table 70. 16-Bit Delta Angle Data Format Examples Delta Angle (°) +720 × (215 − 1)/215 +720/214 +720/215 0 −720/215 −720/214 −720 Decimal +32,767 +2 +1 0 −1 −2 −32,768 Hex 0x7FFF 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0x8000 15596-024 ΔVY Table 66. Z_DELTANG_LOW Register Definitions Page 0x00 Hex 0x7FFFFFFF 0x00000002 0x00000001 0x00000000 0xFFFFFFFF 0xFFFFFFFE 0x80000000 Binary 0111 1111 1110 1111 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 ) where: D is the decimation rate = DEC_RATE + 1 (see Table 159). fS is the sample rate. d is the incremental variable in the summation formula. ax is the x-axis acceleration (accelerometer). n is the sample time, prior to the decimation filter. When using the internal sample clock, fS is equal to 2460 SPS. When using the external clock option, fS is equal to the frequency of the external clock. The frequency external of the clock must be at least 700 Hz to prevent overflow in the delta velocity data registers at high acceleration levels. Each axis of the delta velocity measurements has two output data registers. Figure 26 illustrates how these two registers combine to support 32-bit, twos complement data format, for the x-axis delta velocity measurements. This format also applies to the y- and z-axes as well. Rev. B | Page 21 of 40 X_ DELTVEL_OUT 15 X_ DELTVEL_LOW 0 15 X-AXIS DELTA VELOCITY DATA Figure 26. Delta Angle Output Data Structure 0 15596-025 Page 0x00 Table 71. 32-Bit Delta Angle Data Format Examples ADIS16489 Data Sheet X-Axis Delta Velocity (X_DELTVEL_LOW, X_DELTVEL_OUT) Table 82. Z_DELTANG_OUT Register Definitions Table 72. X_DELTVEL_LOW Register Definitions Page 0x00 Page 0x00 Addresses 0x4C, 0x4D Default Not applicable Access R Flash Backup No Bits [15:0] Description X-axis delta angle data; low word Table 74. X_DELTVEL_OUT Register Definitions Page 0x00 Addresses 0x4E, 0x4F Default Not applicable Access R Flash Backup No Description X-axis delta velocity data; twos complement, ±200 m/sec range, 0 m/sec = 0x0000; 1 LSB = 200 m/sec ÷ 215 = ~6.104 mm/sec The X_DELTVEL_LOW (see Table 72 and Table 73) and X_DELTVEL_OUT (see Table 74 and Table 75) registers contain the delta velocity data for the x-axis. Y-Axis Delta Velocity (Y_DELTVEL_LOW, Y_DELTVEL_OUT) Table 76. Y_DELTVEL_LOW Register Definitions Page 0x00 Addresses 0x50, 0x51 Default Not applicable Access R Flash Backup No Table 77. Y_DELTVEL_LOW Bit Definitions Bits [15:0] Addresses 0x52, 0x53 Default Not applicable Access R Flash Backup No Table 79. Y_DELTVEL_OUT Bit Definitions Bits [15:0] Description Y-axis delta velocity data; twos complement, ±50 m/sec range, 0 m/sec = 0x0000; 1 LSB = 50 m/sec ÷ 215 = ~1.526 mm/sec The Y_DELTVEL_LOW (see Table 76 and Table 77) and Y_DELTVEL_OUT (see Table 78 and Table 79) registers contain the delta velocity data for the y-axis. Z-Axis Delta Velocity (Z_DELTVEL_LOW, Z_DELTVEL_OUT) Table 80. Z_DELTVEL_LOW Register Definitions Page 0x00 Addresses 0x54, 0x55 Default Not applicable Access R Table 81. Z_DELTVEL_LOW Bit Definitions Bits [15:0] Description Z-axis delta angle data; low word Flash Backup No Description Z-axis delta velocity data; twos complement, ±200 m/sec range, 0 m/sec = 0x0000; 1 LSB = 200 m/sec ÷ 215 = ~6.104 mm/sec The Z_DELTVEL_LOW (see Table 80 and Table 81) and Z_DELTVEL_OUT (see Table 82 and Table 83) registers contain the delta velocity data for the z-axis. Table 84 and Table 85 offer various numerical examples that demonstrate the format of the delta velocity data in both 16-bit and 32-bit formats. Table 84. 16-Bit Delta Velocity Data Format Examples Velocity (m/sec) +200 × (215 − 1)/215 +200/214 +200/215 0 −200/215 −200/214 −200 Decimal +32,767 +2 +1 0 −1 −2 −32,768 Hex 0x7FFF 0x0002 0x0001 0x0000 0xFFFF 0xFFFE 0x8000 Binary 0111 1111 1110 1111 0000 0000 0000 0010 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 Table 85. 32-Bit Delta Velocity Data Format Examples Description Y-axis delta velocity data; low word Table 78. Y_DELTVEL_OUT Register Definitions Page 0x00 Access R Delta Velocity Resolution Table 75. X_DELTVEL_OUT Bit Definitions Bits [15:0] Default Not applicable Table 83. Z_DELTVEL_OUT Bit Definitions Bits [15:0] Table 73. X_DELTVEL_LOW Bit Definitions Addresses 0x56, 0x57 Flash Backup No Velocity (m/sec) +200 × (231 − 1)/231 +200/230 +200/231 0 −200/231 −200/230 −200 Decimal +2,147,483,647 +2 +1 0 −1 −2 −2,147,483,648 Hex 0x7FFFFFFF 0x00000002 0x00000001 0x00000000 0xFFFFFFFF 0xFFFFFFFE 0x80000000 REAL-TIME CLOCK The VDDRTC power supply pin (see Table 6, Pin 23) provides a separate supply for the real-time clock (RTC) function. Connecting the VDDTC pin to its own 3.3 V supply enables the RTC to keep track of time, even when the main supply (VDD) is off. Configure the RTC function by selecting one of two modes in CONFIG[0] (see Table 157). The real-time clock data is available in the TIME_MS_OUT register (see Table 87), TIME_DH_OUT register (see Table 89), and TIME_YM_OUT register (see Table 91). When using the elapsed timer mode, the time data registers start at 0x0000 when the device starts up (or resets) and begin keeping time in a manner that is similar to a stopwatch. When using the clock/calendar mode, write the current time to the real-time registers in the following sequence: seconds (TIME_ MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]), hours (TIME_DH_OUT[5:0]), day (TIME_DH_OUT[12:8]), month (TIME_YM_OUT[3:0]), and year (TIME_YM_OUT[14:8]). Rev. B | Page 22 of 40 Data Sheet ADIS16489 The updates to the timer become active only after a write to the TIME_YM_OUT[14:8] byte is complete. The real-time clock registers reflect the newly updated values only after the next seconds tick of the clock that follows the write to TIME_YM_OUT[14:8] (year). Writing to TIME_YM_OUT[14:8] activates all timing values; therefore, always write to this location last when updating the timer, even if the year information does not require updating. Product Identification ( PROD_ID) Table 92. PROD_ID Register Definitions Page 0x00 Addresses 0x7E, 0x7F Default 0x4069 Access R Flash Backup Yes Table 93. PROD_ID Bit Definitions Bits [15:0] Description Product identification = 0x4069 Write the current time to each time data register after setting CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8AC1, DIN = 0x8B00). This sequence preserves the factory default for other bits in the CONFIG register. After configuring the CONFIG register, set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8204, DIN = 0x8300) to back up these settings in flash, and use a separate 3.3 V source to supply power to the VDDRTC function. While only VDDRTC needs to have power for time tracking, access to the time data in the TIME_xx_OUT registers requires normal operation (VDD = 3.3 V and full startup). The PROD_ID register (see Table 92 and Table 93) contains the numerical portion of the part number (16489). See Figure 17 for an example of how to use a looping read of this register to validate the integrity of the communication. Real-Time Clock: Minutes/Seconds (TIME_MS_OUT) Table 95. PAGE_ID Bit Assignments Table 86. TIME_MS_OUT Register Definitions Page 0x00 Addresses 0x78, 0x79 Default Not applicable Access R/W Flash Backup No Table 87. TIME_MS_OUT Bit Definitions Bits [15:14] [13:8] [7:6] [5:0] Description Not used Minutes, binary data, range = 0 to 59 Not used Seconds, binary data, range = 0 to 59 Table 88. TIME_DH_OUT Register Definitions Addresses 0x7A, 0x7B Default Not applicable Access R/W Flash Backup No Table 89. TIME_DH_OUT Bit Definitions Bits [15:13] [12:8] [7:6] [5:0] Description Not used Day, binary data, range = 1 to 31 Not used Hours, binary data, range = 0 to 23 Default Not applicable Access R/W Bits [15:0] Default 0x0000 Access R/W Flash Backup No Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 94 and Table 95) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. The signal chain of each inertial sensor (accelerometers, gyroscopes) includes application of unique correction formulas, which come from extensive characterization of bias, sensitivity, alignment, and response to linear acceleration (gyroscopes) over a temperature range of −40°C to +85°C for every single ADIS16489. These correction formulas are not accessible, but users do have the opportunity to adjust bias and scale factor, for each sensor individually, through user accessible registers. These correction factors follow immediately after the factory derived correction formulas in the signal chain, which processes at a rate of 2460 Hz when using the internal sample clock (see fS in Figure 33). Page 0x02 Flash Backup No Description Not used Year, binary data, range = 0 to 99, relative to 2000 A.D. Not used Month, binary data, range = 1 to 12 Addresses 0x04, 0x05 Default 0x0000 Access R/W Flash Backup Yes Table 97. X_GYRO_SCALE Bit Definitions Bits [15:0] Table 91. TIME_YM_OUT Bit Definitions Bits [15] [14:8] [7:4] [3:0] Addresses 0x00, 0x01 Table 96. X_GYRO_SCALE Register Definitions Table 90. TIME_YM_OUT Register Definitions Addresses 0x7C, 0x7D Page 0x02 Calibration, Gyroscope Scale (X_GYRO_SCALE) Real-Time Clock: Years/Months (TIME_YM_OUT) Page 0x00 Table 94. PAGE_ID Register Definition CALIBRATION Real-Time Clock: Days/Hours (TIME_DH_OUT) Page 0x00 PAGE 2 (PAGE_ID) Description X-axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% The X_GYRO_SCALE register (see Table 96 and Table 97) provides users with the opportunity to adjust the scale factor for the x-axis gyroscopes. See Figure 27 for an illustration of how this scale factor influences the x-axis gyroscope data. Rev. B | Page 23 of 40 ADIS16489 Data Sheet 1 + X_GYRO_SCALE X_GYRO_OUT XG_BIAS_HIGH X-AXIS ACCL X_GYRO_LOW XG_BIAS_LOW FACTORY CALIBRATION AND FILTERING X_ACCL_OUT XA_BIAS_HIGH Figure 27. User Calibration Signal Path, Gyroscopes X_ACCL_LOW 15596-027 FACTORY CALIBRATION AND FILTERING 15596-026 X-AXIS GYRO 1 + X_ACCL_SCALE XA_BIAS_LOW Figure 28. User Calibration Signal Path, Accelerometers Calibration, Gyroscope Scale (Y_GYRO_SCALE) Calibration, Accelerometer Scale (Y_ACCL_SCALE) Table 98. Y_GYRO_SCALE Register Definitions Table 104. Y_ACCL_SCALE Register Definitions Page 0x02 Addresses 0x06, 0x07 Default 0x0000 Access R/W Flash Backup Yes Page 0x02 Table 99. Y_GYRO_SCALE Bit Definitions Bits [15:0] Description Y-axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% Addresses 0x0C, 0x0D Default 0x0000 Access R/W Flash Backup Yes Table 105. Y_ACCL_SCALE Bit Definitions Bits [15:0] Description Y-axis accelerometer scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% The Y_GYRO_SCALE register (see Table 98 and Table 99) allows users to adjust the scale factor for the y-axis gyroscopes. This register influences the y-axis gyroscope measurements in the same manner that X_GYRO_SCALE influences the x-axis gyroscope measurements (see Figure 27). The Y_ACCL_SCALE register (see Table 104 and Table 105) allows users to adjust the scale factor for the y-axis accelerometers. This register influences the y-axis accelerometer measurements in the same manner that the X_ACCL_SCALE influences the x-axis accelerometer measurements (see Figure 28). Calibration, Gyroscope Scale (Z_GYRO_SCALE) Calibration, Accelerometer Scale (Z_ACCL_SCALE) Table 100. Z_GYRO_SCALE Register Definitions Table 106. Z_ACCL_SCALE Register Definitions Page 0x02 Addresses 0x08, 0x09 Default 0x0000 Access R/W Flash Backup Yes Page 0x02 Table 101. Z_GYRO_SCALE Bit Definitions Bits [15:0] Description Z-axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% Addresses 0x0E, 0x0F Default 0x0000 Access R/W Flash Backup Yes Table 107. Z_ACCL_SCALE Bit Definitions Bits [15:0] Description Z-axis accelerometer scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% The Z_GYRO_SCALE register (see Table 100 and Table 101) allows users to adjust the scale factor for the z-axis gyroscopes. This register influences the z-axis gyroscope measurements in the same manner that X_GYRO_SCALE influences the x-axis gyroscope measurements (see Figure 27). The Z_ACCL_SCALE register (see Table 106 and Table 107) allows users to adjust the scale factor for the z-axis accelerometers. This register influences the z-axis accelerometer measurements in the same manner that the X_ACCL_SCALE influences the x-axis accelerometer measurements (see Figure 28). Calibration, Accelerometer Scale (X_ACCL_SCALE) Calibration, Gyroscope Bias (XG_BIAS_LOW, XG_BIAS_HIGH) Table 102. X_ACCL_SCALE Register Definitions Page 0x02 Addresses 0x0A, 0x0B Default 0x0000 Access R/W Flash Backup Yes Table 108. XG_BIAS_LOW Register Definitions Page 0x02 Table 103. X_ACCL_SCALE Bit Definitions Bits [15:0] Description X-axis accelerometer scale correction; twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% The X_ACCL_SCALE register (see Table 102 and Table 103) allows users to adjust the scale factor for the x-axis accelerometers. See Figure 28 for an illustration of how this scale factor influences the x-axis accelerometer data. Addresses 0x10, 0x11 Default 0x0000 Access R/W Flash Backup Yes Table 109. XG_BIAS_LOW Bit Definitions Bits [15:0] Description X-axis gyroscope offset correction, low word Table 110. XG_BIAS_HIGH Register Definitions Page 0x02 Addresses 0x12, 0x13 Default 0x0000 Access R/W Flash Backup Yes Table 111. XG_BIAS_HIGH Bit Definitions Bits [15:0] Rev. B | Page 24 of 40 Description X-axis gyroscope offset correction, high word twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec Data Sheet ADIS16489 The XG_BIAS_LOW (see Table 108 and Table 109) and XG_ BIAS_HIGH (see Table 110 and Table 111) registers combine to allow users to adjust the bias of the x-axis gyroscopes. Table 36 and Table 37 offer numerous examples of this data format, in both 16-bit and 32-bit formats. See Figure 27 for an illustration of how these two registers combine and influence the x-axis gyroscope measurements. Calibration, Gyroscope Bias (YG_BIAS_LOW, YG_BIAS_HIGH) Addresses 0x14, 0x15 Default 0x0000 Access R/W Bits [15:0] Addresses 0x16, 0x17 Default 0x0000 Access R/W Page 0x02 Bits [15:0] Description Y-axis gyroscope offset correction, high word; twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec The YG_BIAS_LOW (see Table 112 and Table 113) and YG_ BIAS_HIGH (see Table 114 and Table 115) registers combine to allow users to adjust the bias of the y-axis gyroscopes. Table 36 and Table 37 offer numerous examples of this data format, in both 16-bit and 32-bit formats. See Figure 27 for an illustration of how these two registers combine and influence the y-axis gyroscope measurements. Calibration, Gyroscope Bias (ZG_BIAS_LOW, ZG_BIAS_HIGH) Addresses 0x18, 0x19 Default 0x0000 Access R/W Default 0x0000 Access R/W Default 0x0000 Access R/W Flash Backup Yes Description X-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg Table 124. YA_BIAS_LOW Register Definitions Page 0x02 Addresses 0x20, 0x21 Default 0x0000 Access R/W Flash Backup Yes Description Y-axis accelerometer offset correction, low word Addresses 0x22, 0x23 Default 0x0000 Access R/W Flash Backup Yes Table 127. YA_BIAS_HIGH Bit Definitions Flash Backup Yes Bits [15:0] Table 119. ZG_BIAS_HIGH Bit Definitions Bits [15:0] Addresses 0x1E, 0x1F Table 126. YA_BIAS_HIGH Register Definitions Description Z-axis gyroscope offset correction, low word Addresses 0x1A, 0x1B Description X-axis accelerometer offset correction, low word Calibration, Accelerometer Bias (YA_BIAS_LOW, YA_BIAS_HIGH) Bits [15:0] Table 118. ZG_BIAS_HIGH Register Definitions Page 0x02 Flash Backup Yes Table 125. YA_BIAS_LOW Bit Definitions Flash Backup Yes Table 117. ZG_BIAS_LOW Bit Definitions Bits [15:0] Access R/W The XA_BIAS_LOW (see Table 120 and Table 121) and XA_ BIAS_HIGH (see Table 122 and Table 123) registers combine to allow users to adjust the bias of the x-axis accelerometers. Table 50 and Table 51 offer numerous examples of data format, in both 16-bit and 32-bit formats. See Figure 28 for an illustration of how these two registers combine and influence the x-axis accelerometer measurements. Page 0x02 Table 116. ZG_BIAS_LOW Register Definitions Page 0x02 Default 0x0000 Table 123. XA_BIAS_HIGH Bit Definitions Flash Backup Yes Table 115. YG_BIAS_HIGH Bit Definitions Bits [15:0] Addresses 0x1C, 0x1D Table 122. XA_BIAS_HIGH Register Definitions Description Y-axis gyroscope offset correction, low word Table 114. YG_BIAS_HIGH Register Definitions Page 0x02 Table 120. XA_BIAS_LOW Register Definitions Table 121. XA_BIAS_LOW Bit Definitions Flash Backup Yes Table 113. YG_BIAS_LOW Bit Definitions Bits [15:0] Calibration, Accelerometer Bias (XA_BIAS_LOW, XA_BIAS_HIGH) Page 0x02 Table 112. YG_BIAS_LOW Register Definitions Page 0x02 and Table 37 offer numerous examples of this data format, in both 16-bit and 32-bit formats. See Figure 27 for an illustration of how these two registers combine and influence the z-axis gyroscope measurements. Description Z-axis gyroscope offset correction, high word twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec The ZG_BIAS_LOW (see Table 116 and Table 117) and ZG_ BIAS_HIGH (see Table 118 and Table 119) registers combine to allow users to adjust the bias of the z-axis gyroscopes. Table 36 Description Y-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg The YA_BIAS_LOW (see Table 124 and Table 125) and YA_ BIAS_HIGH (see Table 126 and Table 127) registers combine to allow users to adjust the bias of the y-axis accelerometers. Table 50 and Table 51 offer numerous examples of data format, in both 16-bit and 32-bit formats. See Figure 28 for an illustration Rev. B | Page 25 of 40 ADIS16489 Data Sheet of how these two registers combine and influence the y-axis accelerometer measurements. Table 135. BR_BIAS_HIGH Bit Definitions Bits [15:0] Calibration, Accelerometer Bias (ZA_BIAS_LOW, ZA_BIAS_HIGH) Table 128. ZA_BIAS_LOW Register Definitions Page 0x02 Addresses 0x24, 0x25 Default 0x0000 Access R/W The digital format examples in Table 56 also apply to the BR_ BIAS_HIGH register and the digital format examples in Table 57 apply to the 32-bit number that comes from combining BR_ BIAS_LOW and BR_BIAS_HIGH. Flash Backup Yes Table 129. ZA_BIAS_LOW Bit Definitions Bits [15:0] SCRATCH REGISTERS (USER_SCR_x) Description Z-axis accelerometer offset correction, low word Table 136. USER_SCR_1 Register Definitions Page 0x02 Table 130. ZA_BIAS_HIGH Register Definitions Page 0x02 Addresses 0x26, 0x27 Default 0x0000 Access R/W Flash Backup Yes Bits [15:0] Description Z-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg Calibration, Barometer Bias (BR_BIAS_LOW, BR_BIAS_HIGH) BAROM_LOW BR_BIAS_LOW Figure 29. User Calibration Signal Path, Accelerometers Table 132. BR_BIAS_LOW Register Definitions Page 0x02 Addresses 0x40, 0x41 Default 0x0000 Access R/W Flash Backup Yes Table 133. BR_BIAS_LOW Bit Definitions Bits [15:0] Bits [15:0] Default 0x0000 Access R/W Addresses 0x76, 0x77 Default 0x0000 Access R/W Flash Backup Yes Description User defined Table 140. USER_SCR_3 Register Definitions Bits [15:0] Addresses 0x78, 0x79 Default 0x0000 Access R/W Flash Backup Yes Description User defined Table 142. USER_SCR_4 Register Definitions Page 0x02 Bits [15:0] Addresses 0x7A, 0x7B Default 0x0000 Access R/W Flash Backup Yes Description User defined The USER_SCR_1 (see Table 136 and Table 137), USER_ SCR_2 (see Table 138 and Table 139), USER_SCR_3 (see Table 140 and Table 141), and USER_SCR_4 (see Table 142 and Table 143) registers provide four locations for users to store information. Description Barometric pressure bias correction factor, low word Addresses 0x42, 0x43 Description User defined Table 139. USER_SCR_2 Bit Definitions Table 134. BR_BIAS_HIGH Register Definitions Page 0x02 Flash Backup Yes Table 143. USER_SCR_4 Bit Definitions 15596-101 BR_BIAS_HIGH Access R/W Table 141. USER_SCR_3 Bit Definitions The BR_BIAS_LOW (see Table 132 and Table 133) and BR_ BIAS_HIGH (see Table 134 and Table 135) registers provide a user configurable, bias correction function for the barometer measurement. See Figure 29 for the location and influence that this correction factor has in the barometer signal chain. BAROM_OUT Page 0x02 Page 0x02 BAROMETERS FACTORY CALIBRATION AND FILTERING Default 0x0000 Table 138. USER_SCR_2 Register Definitions The ZA_BIAS_LOW (see Table 128 and Table 129) and ZA_ BIAS_HIGH (see Table 130 and Table 131) registers combine to allow users to adjust the bias of the z-axis accelerometers. Table 50 and Table 51 offer numerous examples of data format, in both 16-bit and 32-bit formats. See Figure 28 for an illustration of how these two registers combine and influence the z-axis accelerometer measurements. BAROMETER Addresses 0x74, 0x75 Table 137. USER_SCR_1 Bit Definitions Table 131. ZA_BIAS_HIGH Bit Definitions Bits [15:0] Description Barometric pressure bias correction factor, high word, twos complement, ±1.3 bar measurement range, 0 bar = 0x0000, 1 LSB = 40 µbar Flash Backup Yes Rev. B | Page 26 of 40 Data Sheet ADIS16489 FLASH MEMORY ENDURANCE COUNTER (FLSHCNT_LOW, FLSHCNT_HIGH) for the page assignments associated with each user accessible register. Table 144. FLSHCNT_LOW Register Definitions GLOBAL COMMANDS (GLOB_CMD) Page 0x02 Addresses 0x7C, 0x7D Default Not applicable Access R Flash Backup Yes Table 145. FLSHCNT_LOW Bit Definitions Bits [15:0] Description Flash memory write counter, low word Addresses 0x7E, 0x7F Default Not applicable Access R Flash Backup Yes Table 147. FLSHCNT_HIGH Bit Definitions Bits [15:0] Description Flash memory write counter, high word The FLSHCNT_LOW (see Table 144 and Table 145) and FLSHCNT_HIGH (see Table 146 and Table 147) registers combine to provide a 32-bit, binary counter that tracks the number of flash memory write cycles. In addition to the number of write cycles, the flash memory has a finite service lifetime, which depends on the junction temperature. Figure 30 provides some guidance for estimating the retention life for the flash memory at specific junction temperatures. The junction temperature is approximately 7°C above the case temperature. 600 RETENTION (Years) Page 0x03 Addresses 0x02, 0x03 Default Not applicable Access W Flash Backup No Table 151. GLOB_CMD Bit Definitions Table 146. FLSHCNT_HIGH Register Definitions Page 0x02 Table 150. GLOB_CMD Register Definitions Bits [15:8] 7 6 [5:4] 3 2 1 0 Description Not used Software reset Factory calibration restore Not used Flash memory update Flash memory test (checksum) Self test Bias correction update The GLOB_CMD register (see Table 150 and Table 151) provides trigger bits for several operations. Write a 1 to the appropriate bit in GLOB_CMD to start a particular function. Software Reset Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1 (DIN = 0x8280, DIN = 0x8300) to initiate a reset in the operation of the ADIS16489. This reset removes all data, initializes all registers from their flash settings, and restarts data sampling and processing. This function provides a firmware alternative to providing a low pulse on the RST pin (see Table 6, Pin 8). Factory Calibration Restore 450 300 0 30 55 40 70 85 100 125 135 150 JUNCTION TEMPERATURE (°C) 15596-028 150 Figure 30. Flash Memory Retention Flash Memory Update PAGE 3 (PAGE_ID) Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[3] = 1 (DIN = 0x8208, DIN = 0x8300) to initiate a manual flash update. SYS_E_FLAG[6] (see Table 16) identifies success (0) or failure (1) in completing this process. Table 148. PAGE_ID Register Definition Page 0x03 Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No Flash Memory Test Table 149. PAGE_ID Bit Assignments Bits [15:0] Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[6] = 1 (DIN = 0x8240, DIN = 0x8300) to initiate restoration of the factory calibration. This restoration writes 0x0000 to the following registers: X_GYRO_SCALE, Y_GYRO_SCALE, Z_GYRO_SCALE, X_ACCL_SCALE, Y_ACCL_SCALE, Z_ACCL_SCALE, XG_BIAS_LOW, XG_BIAS_HIGH, YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW, ZG_BIAS_ HIGH, XA_BIAS_LOW, XA_BIAS_HIGH, YA_BIAS_LOW, YA_BIAS_HIGH, ZA_BIAS_LOW, and ZA_BIAS_HIGH. Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 148 and Table 149) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[2] = 1 (DIN = 0x8204, DIN = 0x8300) to initiate a checksum test on the flash memory bank. SYS_E_FLAG[6] = 0 (see Table 16) indicates a passing condition, which means that the most recent checksum value is the same as the checksum value, which came from the configuration of the units at the factory. Rev. B | Page 27 of 40 ADIS16489 Data Sheet Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1 (DIN = 0x8202, then DIN = 0x8300) to run the ODST routine, which executes the following steps: 1. 2. 3. 4. 5. 6. 7. Measure the output on each sensor. Activate an internal force on the mechanical elements of each sensor, which simulates the force associated with actual inertial motion. Measure the output response on each sensor. Deactivate the internal force on each sensor. Calculate the difference between the force on and normal operating conditions (force off). Compare the difference with internal pass/fail criteria. Report the pass/fail results for each sensor in DIAG_STS (see Table 18) and the overall pass/fail flag in SYS_E_FLAG[5] (see Table 16). When using an external clock, the self test execution times may vary from the 12 ms listed in Table 1. Also, false positive results are possible when the executing the ODST while the device is in motion. Bias Correction Update Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[0] = 1 (DIN = 0x8201, then DIN = 0x8300) to update the user offset registers with the correction factors of the continuous bias estimator (CBE). Ensure that the inertial platform is stable during the entire average time for optimal bias estimates. The FNCTIO_CTRL register (see Table 152 and Table 153) provides configuration control for each input/output pin (DIO1, DIO2, DIO3, and DIO4). Each DIOx pin supports only one function at a time. In cases where a single pin has two assignments, the enable bit for the lower priority function automatically resets to zero (disabling the lower priority function). The order of priority is as follows, from highest priority to lowest priority: data ready, sync clock input, alarm indicator, and general purpose. Changing the FNCTIO_ CTRL[5:4] bit settings requires an execution time of 75 ms, whereas changing the settings of the remaining bits in the FNCTIO_CTRL register only takes 3 ms. During this execution time (75 ms or 3 ms), the operational state and the contents of the register remain unchanged, but the SPI interface supports normal communication (for accessing other registers). Data Ready Indicator The FNCTIO_CTRL[3:0] bits provide three configuration options for the data ready function: on/off, polarity, and DIOx line. The primary purpose this signal is to drive the interrupt control line of an embedded processor, which can help synchronize data collection and minimize latency. The factory default assigns DIO2 as a positive polarity data ready signal, which means that the data in the output registers is valid when the DIO2 line is high (see Figure 31). This configuration works well when DIO2 drives an interrupt service pin that activates on a low to high pulse. DIO2 AUXILIARY I/O LINE CONFIGURATION (FNCTIO_CTRL) Table 152. FNCTIO_CTRL Register Definitions Page 0x03 Addresses 0x06, 0x07 Default 0x000D Access R/W Flash Backup Yes Table 153. FNCTIO_CTRL Bit Definitions Bits Description [15:12] 11 10 [9:8] Not used Alarm indicator: 1 = enabled, 0 = disabled Alarm indicator polarity: 1 = positive, 0 = negative Alarm indicator line selection: 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 Sync clock input enable: 1 = enabled, 0 = disabled Sync clock input polarity: 1 = rising edge, 0 = falling edge Sync clock input line selection: 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 Data ready enable: 1 = enabled, 0 = disabled Data ready polarity: 1 = positive, 0 = negative Data ready line selection: 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 7 6 [5:4] 3 2 [1:0] ACTIVE INACTIVE 15596-129 On Demand Self Test (ODST) Figure 31. Data Ready, When FNCTIO_CTRL[3:0] = 1101 (default) Use the following sequence to change this assignment to DIO1 with a negative polarity: 1. 2. Turn to Page 3 (DIN = 0x8003). Set FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN = 0x8700). The timing jitter on the pulse width of the data ready signal is typically ±1.4 µs. Input Sync/Clock Control FNCTIO_CTRL[7:4] provide configuration options for using one of the DIOx lines as an input synchronization signal for sampling inertial sensor data. For example, use the following sequence to establish DIO4 as a positive polarity input clock pin and keep the factory default setting for the data ready function: 1. 2. 3. Turn to Page 3 (DIN = 0x8003). Set FNCTIO_CTRL[7:0] = 0xFD (DIN = 0x86FD). Set FNCTIO_CTRL[15:8] = 0x00 (DIN = 0x8700). This command also disables the internal sampling clock. Therefore, no data sampling occurs if no input clock signal is present. The best performance is available when using an input clock frequency of 2400 Hz. Rev. B | Page 28 of 40 Data Sheet ADIS16489 Alarm Indicator MISCELLANEOUS CONFIGURATION (CONFIG) FNCTIO_CTRL[11:8] provide three configuration options for using one of the DIOx lines as an alarm indicator: on/off, polarity, and DIOx line. The primary purpose this signal is to provide an output signal that activates when a bit in the SYS_ E_FLAG register = 1 (see Table 16). For example, use the following sequence to establish DIO3 as a negative polarity alarm indicator, while preserving the factory default setting for the data ready function: Turn to Page 3 (DIN = 0x8003) Set FNCTIO_CTRL[7:0] = 0x0D (DIN = 0x860D). Set FNCTIO_CTRL[15:8] = 0x0A (DIN = 0x870A). GENERAL-PURPOSE I/O CONTROL (GPIO_CTRL) Page 0x03 1 Addresses 0x08, 0x09 Default 0x00X0 Access R/W Bits [15:8] 7 6 [5:2] 1 0 Flash Backup Yes The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting. 2 1 0 1 Access R/W Flash Backup Yes Description Not used Linear g compensation for gyroscopes (1 = enabled) Point of percussion alignment (1 = enabled) Not used Real-time clock, daylight savings time (1: enabled, 0: disabled) Real-time clock control (1: relative/elapsed timer mode, 0: calendar mode) The CONFIG register (see Table 156 and Table 157) provides configuration options for the linear g compensation in the gyroscopes (on/off), point of percussion alignment for the accelerometers (on/off), and the real-time clock function. Point of Percussion Table 155. GPIO_CTRL Bit Definitions1 Bits [15:8] 7 6 5 4 3 Default 0x00C0 Table 157. CONFIG Bit Definitions Table 154. GPIO_CTRL Register Definitions1 Page 0x03 Addresses 0x0A, 0x0B CONFIG[6] offers a point of percussion alignment function that maps the accelerometer sensors to the corner of the package identified in Figure 32. To activate this feature, turn to Page 3 (DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40, DIN = 0x8B00). Description Don’t care General-Purpose I/O Line 4 (DIO4) data level General-Purpose I/O Line 3 (DIO3) data level General-Purpose I/O Line 2 (DIO2) data level General-Purpose I/O Line 1 (DIO1) data level General-Purpose I/O Line 4 (DIO4) direction control (1 = output, 0 = input) General-Purpose I/O Line 3 (DIO3) direction control (1 = output, 0 = input) General-Purpose I/O Line 2 (DIO2) direction control (1 = output, 0 = input) General-Purpose I/O Line 1 (DIO1) direction control (1 = output, 0 = input) PIN 23 PIN 1 POINT OF PERCUSSION ALIGNMENT REFERENCE POINT. SEE CONFIG[6]. The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting. When FNCTIO_CTRL does not configure a DIOx pin, GPIO_ CTRL provides register controls for general-purpose use of the pin. GPIO_CTRL[3:0] provide input/output assignment controls for each line. When the DIOx lines are inputs, monitor their level by reading GPIO_CTRL[7:4]. When the DIOx lines are used as outputs, set their level by writing to GPIO_CTRL[7:4]. For example, use the following sequence to set DIO1 and DIO3 as high and low output lines, respectively, and set DIO2 and DIO4 as input lines. Turn to Page 3 (DIN = 0x8003) and set GPIO_ CTRL[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900). 15596-029 1. 2. 3. Table 156. CONFIG Register Definitions Figure 32. Point of Percussion Reference Point Linear Acceleration on Effect on Gyroscope Bias The ADIS16489 includes first-order compensation for the linear g effect in the gyroscopes, which uses the following model:  ω  LG11 LG12 LG13   A X  ω  XC       XPC   ω YC  = LG 21 LG 22 LG 23  ×  AY  +  ω YPC  ω  LG LG32 LG33   AZ  ω ZPC     ZC   31 The linear g correction factors, LGXY, apply correction for linear acceleration in all three directions to the data path of each gyroscope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples (2460 SPS when using the internal clock). CONFIG[7] provides an on/off control for this compensation. The factory default value for this bit activates this compensation. To turn it off, turn to Page 3 (DIN = 0x8003) and set CONFIG[7] = 0 (DIN = 0x8A40, DIN = 0x8B00). This command sequence also preserves the default setting for the point of percussion alignment function (on). Rev. B | Page 29 of 40 ADIS16489 Data Sheet DECIMATION FILTER (DEC_RATE) Table 161. NULL_CNFG Bit Definitions Bits [15:14] 13 12 11 10 9 8 [7:4] [3:0] Table 158. DEC_RATE Register Definitions Addresses 0x0C, 0x0D Default 0x0000 Access R/W Flash Backup Yes Table 159. DEC_RATE Bit Definitions Bits [15:11] [10:0] Description Don’t care Decimation rate, binary format, maximum = 2047, see Figure 33 for the impact on sample rate The DEC_RATE register (see Table 158 and Table 159) provides user control for the final filter stage (see Figure 33), which averages and decimates the accelerometers and gyroscopes data, while also extending the time that the delta angle and delta velocity track between each update. The output sample rate is equal to 2460/(DEC_RATE + 1). When using the external clock option (Bit 7 and Bits[5:4] of the FNCTIO_CTRL register, see Figure 33), replace the 2460 number in this relationship with the input clock frequency. For example, turn to Page 3 (DIN = 0x8003), and set DEC_RATE = 0x18 (DIN = 0x8C18, then DIN = 0x8D00) to reduce the output sample rate to 98.4 SPS (2460 ÷ 25). The NULL_CNFG register (see Table 160 and Table 161) provides the configuration controls for the CBE, which associates with the bias correction update command in GLOB_CMD[0] (see Table 151). NULL_CNFG[3:0] establish the total average time (tA) for the bias estimates and NULL_ CNFG[13:8] provide on/off controls for each sensor. The factory default configuration for NULL_CNFG enables the bias null command for the gyroscopes, disables the bias null command for the accelerometers, and sets the average time to ~26.64 sec. This calculation assumes that the internal sample clock (fS = 2460 SPS) is used. If the user is supplying an external clock by setting Bit 7 of the FNCTIO_ CRTL register to 1 (see Table 152 and Table 153), fS is the IMU sample rate before decimation. CONTINUOUS BIAS ESTIMATION (NULL_CNFG) Table 160. NULL_CNFG Register Definitions Page 0x03 Addresses 0x0E, 0x0F Default 0x070A Access R/W Flash Backup Yes When a sensor bit in NULL_CNFG is active (equal to 1), setting GLOB_CMD[0] = 1 (DIN sequence: 0x8003, 0x8201, 0x8300) causes its bias correction register to automatically update with a value that corrects for its present bias error (from the CBE). For example, setting NULL_CNFG[8] equal to 1 causes an update in the XG_BIAS_LOW (see Table 109) and XG_BIAS_HIGH (see Table 111) registers. fs MEMS SENSOR ADC 330Hz GYROSCOPE 2-POLE: 404Hz, 757Hz ACCELEROMETER 1-POLE: 330Hz INTERNAL CLOCK 9.84kHz fs 1 4 4 FIR FILTER BANK ÷4 4× AVERAGE DECIMATION FILTER 1 D D ÷D SELECTABLE AVERAGE/DECIMATION FILTER FIR FILTER BANK D = DEC_RATE, BITS[10:0] + 1 FILTR_BNK_0 FILTR_BNK_1 DIOx OPTIONAL INPUT CLOCK FNCTIO_CTRL, BIT 7 = 1 fs < 2400Hz NOTES 1. WHEN FNCTIO_CTRL, BIT 7 = 1, fs IS THE EXTERNAL INPUT CLOCK, AND EACH CLOCK PULSE ON THE DESIGNATED DIOx LINE (FNCTIO_CTRL, BITS[5:4]) STARTS A 4-SAMPLE BURST, AT A SAMPLE RATE OF 9.84 kHz. THESE FOUR SAMPLES FEED INTO THE 4× AVERAGE/DECIMATION FILTER, WHICH PRODUCES A DATA RATE THAT IS EQUAL TO THE INPUT CLOCK FREQUENCY. 2. WHEN FNCTIO_CTRL, BIT 7 = 0, fs IS THE INTERNALLY GENERATED 2.46 kHz SAMPLE CLOCK. Figure 33. Sampling and Frequency Response Signal Flow Rev. B | Page 30 of 40 15596-030 Page 0x03 Description Not used. Z-axis acceleration bias correction enable (1 = enabled). Y-axis acceleration bias correction enable (1 = enabled). X-axis acceleration bias correction enable (1 = enabled). Z-axis gyroscope bias correction enable (1 = enabled). Y-axis gyroscope bias correction enable (1 = enabled). X-axis gyroscope bias correction enable (1 = enabled). Not used. Time base control (TBC), range is 0 to 13 (default = 10), time base (tB) = 2TBC/fS, where fS is the IMU sample rate before decimation and is 2460 SPS if the factory default internal clock is used. The total average time (tA) required for autonull = 64 × tB. Data Sheet ADIS16489 POWER MANAGEMENT (SLP_CNT) FIR FILTER CONTROL (FILTR_BNK_0, FILTR_BNK_1) Table 162. SLP_CNT Register Definitions Page 0x03 Addresses 0x10, 0x11 Default Not applicable Access W Table 165. FILTR_BNK_0 Register Definitions Flash Backup No Page 0x03 Addresses 0x16, 0x17 Default 0x0000 Access R/W Table 163. SLP_CNT Bit Definitions Table 166. FILTR_BNK_0 Bit Definitions Bits [15:10] 9 8 [7:0] Bits 15 14 [13:12] Description Not used Power-down mode Normal sleep mode Programmable time bits; 1 sec/LSB; 0x00 = indefinite The SLP_CNT register (see Table 162 and Table 163) provides controls for both power-down mode and sleep modes. The trade-off between power-down mode and sleep mode is idle power and recovery time. Power-down mode offers the best power consumption but requires the most time to recover. In addition, all volatile settings are lost during power-down, whereas sleep mode preserves these settings. To initiate a sleep mode for a specific period of time, turn to Page 3 (DIN = 0x8003), write the amount of sleep time to SLP_ CNT[7:0] and then set SLP_CNT[8] = 1 (DIN = 0x9101) to start the sleep period. Sleep mode begins when the CS line goes high, after setting SLP_CNT[8] = 1. See Table 164 for a command sequence example to place the ADIS16489 into sleep mode for 100 sec. Table 164. Command Sequence, Timed Sleep Mode Example DIN 0x8003 0x9064 0x9101 Description Turn to Page 3 SLP_CNT[7:0] = 0x64, 100 sec sleep time SLP_CNT[8] = 1, start sleep mode 8 [7:6] 5 [4:3] 2 [1:0] Description Don’t care Y-axis accelerometer filter enable (1 = enabled) Y-axis accelerometer filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D X-axis accelerometer filter enable (1 = enabled) X-axis accelerometer filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D Z-axis gyroscope filter enable (1 = enabled) Z-axis gyroscope filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D Y-axis gyroscope filter enable (1 = enabled) Y-axis gyroscope filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D X-axis gyroscope filter enable (1 = enabled) X-axis gyroscope filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D Table 167. FILTR_BNK_1 Register Definitions Page 0x03 Addresses 0x18, 0x19 Default 0x0000 Access R/W Flash Backup Yes Table 168. FILTR_BNK_1 Bit Definitions To initiate an indefinite sleep mode, set SLP_CNT[7:0] = 0x00 (DIN = 0x9000), then set SLP_CNT[8] = 1 (DIN = 0x9101). To initiate a power-down period of 100 sec, use the configuration sequence in Table 164, with one exception: set SLP_CNT[9] = 1 (DIN = 0x9102) instead of setting SLP_CNT[8] = 1 (DIN = 0x9101). To initiate an indefinite power-down, set SLP_CNT[7:0] = 0x00 first, and then set SLP_CNT[9] = 1 (DIN = 0x9102). To wake the device from sleep or power-down mode, use one of the following options to restore normal operation: • • • 11 [10:9] Flash Backup Yes Assert CS from high to low. Pulse RST low, then high again. Cycle the power. If the sleep mode and power-down mode bits are both set high, the normal sleep mode bit (SLP_CNT[8]) takes precedence. Bits [15:3] 2 [1:0] Description Don’t care Z-axis accelerometer filter enable (1 = enabled) Z-axis accelerometer filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D The FILTR_BNK_0 (see Table 165 and Table 166) and FILTR_ BNK_1 (see Table 167 and Table 168) registers provide the configuration controls for the FIR filter bank in the signal chain of each sensor (see Figure 33). These registers provide on/off control for the FIR bank for each inertial sensor, along with the FIR bank (A, B, C, D) that each sensor uses. ALARM CONFIGURATION (ALM_CNFG_0, ALM_CNFG_1, ALM_CFG_2) The ALM_CNFG_0 (see Table 169 and Table 170), ALM_ CNFG_1 (see Table 171 and Table 172) and ALM_CNFG_2 (see Table 173 and Table 174) registers provide three configuration control options for the alarm functions of each inertial sensor and the barometer: on/off, polarity, and mode of operation (static/dynamic). Table 169. ALM_CNFG_0 Register Definitions Page 0x03 Rev. B | Page 31 of 40 Addresses 0x20, 0x21 Default 0x0000 Access R/W Flash Backup Yes ADIS16489 Data Sheet Solving for ΔX_ACCL_OUT, ΔZ_GYRO_OUT, ΔY_GYRO_OUT, and ΔX_GYRO_OUT Use Equation 1 to Equation 4 to solve for ΔX_ACCL_OUT, ΔZ_GYRO_OUT, ΔY_GYRO_OUT, and ΔX_GYRO_OUT, which the following bits provide user control for in the ALM_CFG_0 register (see Table 170) in Bits[13:12], Bits[9:8], Bits[5:4], and Bits[1:0]. 7  1 7 ΔX_ACCL_OUT =  ∑ X A (n ) − ∑ X A (n − 112 )   8  n = 0 n=0  Table 171. ALM_CNFG_1 Register Definitions Page 0x03 (2) 7  1  7 YG (n ) − ∑ YG (n − 112 )  ∑   8 n = 0 n=0  Default 0x0000 Access R/W 7  1 7 ΔZ_ACCL_OUT =  ∑ Z A (n ) − ∑ Z A (n − 112 )    8 n = 0 n=0  7  1 7 ΔY_ACCL_OUT =  ∑ Y A (n ) − ∑ Y A (n − 112 )    8 n = 0 n=0  (4) where YA = Y_ACCL_OUT. Table 170. ALM_CNFG_0 Bit Definitions Table 172. ALM_CNFG_1 Bit Definitions 11 10 [9:8] 7 6 [5:4] 3 (5) where ZA = Z_ACCL_OUT. where XG = X_GYRO_OUT. Bits 15 14 [13:12] Flash Backup Yes Solving for ΔZ_ACCL_OUT and ΔY_ACCL_OUT (3) where YG = Y_GYRO_OUT. 7  1 7 ΔX_GYRO_OUT =  ∑ X G (n ) − ∑ X G (n − 112 )    8 n = 0 n=0  Addresses 0x22, 0x23 Use Equation 5 and Equation 6 to solve for ΔZ_ACCL_OUT and ΔY_ACCL_OUT in Bits[5:4] and Bits[1:0] in Table 172. where ZG = Z_GYRO_OUT. ΔY_GYRO_OUT = Description Not used X-axis gyroscope polarity and mode settings; select one of the four options for the condition that triggers the alarm flag (ALM_STS[0] = 1, see Table 20) 00: X_GYRO_OUT < XG_ALM_MAGN 01: ΔX_GYRO_OUT < XG_ALM_MAGN (see Equation 4) 10: X_GYRO_OUT > XG_ALM_MAGN 11: ΔX_GYRO_OUT > XG_ALM_MAGN (see Equation 4) (1) where XA = X_ACCL_OUT. 7  1 7 ΔZ_GYRO_OUT =  ∑ Z G (n ) − ∑ Z G (n − 112 )   8  n = 0 n=0  Bits 2 1:0 Description X-axis accelerometer; 0: alarm is off, 1: alarm is on Not used X-axis accelerometer polarity and mode settings; select one of the four options for the condition that triggers the alarm (ALM_STS[3] = 1, see Table 20) 00: X_ACCL_OUT < XA_ALM_MAGN 01: ΔX_ACCL_OUT < XA_ALM_MAGN (see Equation 1) 10: X_ACCL_OUT > XA_ALM_MAGN 11: ΔX_ACCL_OUT > XA_ALM_MAGN (see Equation 1) Z-axis gyroscope; 0: alarm is off, 1: alarm is on Not used Z-axis gyroscope polarity and mode settings; select one of the four options for the condition that triggers the alarm (ALM_STS[2] = 1, see Table 20) 00: Z_GYRO_OUT < ZG_ALM_MAGN 01: ΔZ_GYRO_OUT < ZG_ALM_MAGN (see Equation 2) 10: Z_GYRO_OUT > ZG_ALM_MAGN 11: ΔZ_GYRO_OUT > ZG_ALM_MAGN (see Equation 2) Y-axis gyroscope; 0: alarm is off, 1: alarm is on Not used Y-axis gyroscope polarity and mode settings. Select one of the four options for the condition that triggers the alarm (ALM_STS[1] = 1, see Table 20) 00: Y_GYRO_OUT < YG_ALM_MAGN 01: ΔY_GYRO_OUT < YG_ALM_MAGN (see Equation 3) 10: Y_GYRO_OUT > YG_ALM_MAGN 11: ΔY_GYRO_OUT > YG_ALM_MAGN (see Equation 3) X-axis gyroscope; 0: alarm is off, 1: alarm is on Bits [15:8] 7 6 [5:4] 4 3 2 [1:0] Description Not used Z-axis accelerometer; 0: alarm is off, 1: alarm is on Not used Z-axis accelerometer polarity and mode settings; select one of the four options for the condition that triggers the alarm (ALM_STS[5] = 1, see Table 20) 00: Z_ACCL_OUT < ZA_ALM_MAGN 01: ΔZ_ACCL_OUT < ZA_ALM_MAGN (see Equation 5) 10: Z_ACCL_OUT > ZA_ALM_MAGN 11: ΔZ_ACCL_OUT > ZA_ALM_MAGN (see Equation 5) Z-axis accelerometer mode, 0: static, 1: dynamic Y-axis accelerometer; 0: alarm is off, 1: alarm is on Not used Y-axis accelerometer polarity and mode settings; select one of the four options for the condition that triggers the alarm (ALM_STS[4] = 1, see Table 20) 00: Y_ACCL_OUT < YA_ALM_MAGN 01: ΔY_ACCL_OUT < YA_ALM_MAGN (see Equation 6) 10: Y_ACCL_OUT > YA_ALM_MAGN 11: ΔY_ACCL_OUT > YA_ALM_MAGN (see Equation 6) Table 173. ALM_CNFG_2 Register Definitions Page 0x03 Rev. B | Page 32 of 40 (6) Addresses 0x24, 0x25 Default 0x0000 Access R/W Flash Backup Yes Data Sheet ADIS16489 Z-AXIS GYROSCOPE ALARM (ZG_ALM_MAGN) Table 174. ALM_CNFG_2 Bits [15:8] 7 6 5 4 [3:0] Description Not used Barometer alarm (1 = enabled) Not used Barometer alarm polarity (1 = greater than) Barometer dynamic enable (1 = enabled) Not used Table 180. ZG_ALM_MAGN Register Definitions Page 0x03 Bits [15:0] Default 0x0000 Access R/W Flash Backup Yes Table 176. XG_ALM_MAGN Bit Definitions Bits [15:0] Description X-axis gyroscope alarm threshold settings, twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec The XG_ALM_MAGN register (see Table 175 and Table 176) contains the alarm threshold for the x-axis gyroscope, when ALM_CNFG_0[3] = 1 (see Table 170). This alarm is associated with the alarm flag in ALM_STS[0] (see Table 20). Alarm Example Table 177 provides a list of commands that configure the x-axis gyroscopes alarm to be active (ALM_STS[0] = 1) when the rate of rotation around the x-axis exceeds 100°/sec. The value for the XG_ALM_MAGN register is 0x1388, as follows: 100°/sec ÷ 0.02°/sec/LSB = 5000 LSB = 0x1388 Description Turn to page 3 XG_ALM_MAGN[7:0] = 0x88 XG_ALM_MAGN[15:8] = 0x13 ALM_CNFG_1[7:0] = 0x0C ALM_CNFG_1[15:8] = 0x00 Default 0x0000 Access R/W Table 182. XA_ALM_MAGN Register Definitions Page 0x03 Addresses 0x2E, 0x2F Default 0x0000 Access R/W Flash Backup Yes Table 183. XA_ALM_MAGN Bit Definitions Bits [15:0] Description X-axis accelerometer alarm threshold settings, twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg The XA_ALM_MAGN register (see Table 182 and Table 183) contains the alarm threshold for the x-axis accelerometer, when ALM_CNFG_0[15] = 1 (see Table 170). This alarm is associated with the alarm flag in ALM_STS[3] (see Table 20). Addresses 0x30, 0x31 Default 0x0000 Access R/W Flash Backup Yes Table 185. YA_ALM_MAGN Bit Definitions Bits [15:0] Flash Backup Yes Table 179. YG_ALM_MAGN Bit Definitions Bits [15:0] X-AXIS ACCELEROMETER ALARM (XA_ALM_MAGN) Page 0x03 Table 178. YG_ALM_MAGN Register Definitions Addresses 0x2A, 0x2B Description Z-axis gyroscope alarm threshold settings, twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec Table 184. YA_ALM_MAGN Register Definitions Y-AXIS GYROSCOPE ALARM (YG_ALM_MAGN) Page 0x03 Flash Backup Yes Y-AXIS ACCELEROMETER ALARM (YA_ALM_MAGN) Table 177. Configuration Commands, Alarm Example DIN 0x8003 0xA888 0xA913 0xA00C 0xA100 Access R/W The ZG_ALM_MAGN register (see Table 180 and Table 181) contains the alarm threshold for the z-axis gyroscope, when ALM_CNFG_0[11] = 1 (see Table 170). This alarm is associated with the alarm flag in ALM_STS[2] (see Table 20). Table 175. XG_ALM_MAGN Register Definitions Addresses 0x28, 0x29 Default 0x0000 Table 181. ZG_ALM_MAGN Bit Definitions X-AXIS GYROSCOPE ALARM (XG_ALM_MAGN) Page 0x03 Addresses 0x2C, 0x2D Description Y-axis gyroscope alarm threshold settings, twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec Description Y-axis accelerometer alarm threshold settings, twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg The YA_ALM_MAGN register (see Table 184 and Table 185) contains the alarm threshold for the y-axis accelerometer, when ALM_CNFG_1[3] = 1 (see Table 172). This alarm is associated with the alarm flag in ALM_STS[4] (see Table 20). The YG_ALM_MAGN register (see Table 178 and Table 179) contains the alarm threshold for the y-axis gyroscope, when ALM_CNFG_0[7] = 1 (see Table 170). This alarm is associated with the alarm flag in ALM_STS[1] (see Table 20). Rev. B | Page 33 of 40 ADIS16489 Data Sheet Z-AXIS ACCELEROMETER ALARM (ZA_ALM_MAGN) Table 186. ZA_ALM_MAGN Register Definitions Page 0x03 Addresses 0x32, 0x33 Default 0x0000 Access R/W Table 192. FIRM_DM Register Definitions Flash Backup Yes Page 0x03 Table 187. ZA_ALM_MAGN Bit Definitions Bits [15:0] Bits [15:12] BAROMETER ALARM (BR_ALM_MAGN) Default 0x0000 Access R/W Flash Backup Yes Table 189. BR_ALM_MAGN Bit Definitions Bits [15:0] Description Barometer alarm threshold settings, twos complement, 0 g = 0x0000, 1 LSB = 40 μbar The BR_ALM_MAGN register (see Table 188 and Table 189) contains the alarm threshold for barometer, when ALM_ CNFG_2[7] = 1 (see Table 174). This alarm is associated with the alarm flag in ALM_STS[11] (see Table 20). FIRMWARE REVISION (FIRM_REV) Addresses 0x78, 0x79 Default Not applicable Access R Flash Backup Yes Table 191. FIRM_REV Bit Definitions Bits [15:12] [11:8] [7:4] [3:0] [7:4] Default Not applicable Access R Flash Backup Yes Description Firmware revision binary coded decimal (BCD) code, tens digit, numerical format = 4-bit binary, range = 0 to 9 Firmware revision BCD code, ones digit, numerical format = 4-bit binary, range = 0 to 9 Firmware revision BCD code, tenths digit, numerical format = 4-bit binary, range = 0 to 9 Firmware revision BCD code, hundredths digit, numerical format = 4-bit binary, range = 0 to 9 The FIRM_REV register (see Table 190 and Table 191) provides the firmware revision for the internal firmware. This register uses a BCD format, where each nibble represents a digit. For example, if FIRM_REV = 0x1234, the firmware revision is 12.34. Description Factory configuration month BCD code, tens digit, numerical format = 4-bit binary, range = 0 to 2 Factory configuration month BCD code, ones digit, numerical format = 4-bit binary, range = 0 to 9 Factory configuration day BCD code, tens digit, numerical format = 4-bit binary, range = 0 to 3 Factory configuration day BCD code, ones digit, numerical format = 4-bit binary, range = 0 to 9 The FIRM_DM register (see Table 192 and Table 193) contains the month and day of the factory configuration date. FIRM_ DM[15:12] and FIRM_DM[11:8] contain digits that represent the month of the factory configuration in a BCD format. For example, November is the 11th month in a year and is represented by FIRM_DM[15:8] = 0x11. FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent the day of factory configuration in a BCD format. For example, the 27th day of the month is represented by FIRM_DM[7:0] = 0x27. FIRMWARE REVISION YEAR (FIRM_Y) Table 194. FIRM_Y Register Definitions Page 0x03 Table 190. FIRM_REV Register Definitions Page 0x03 [11:8] [3:0] Table 188. BR_ALM_MAGN Register Definitions Addresses 0x3A, 0x3B Addresses 0x7A, 0x7B Table 193. FIRM_DM Bit Definitions Description Z-axis accelerometer alarm threshold settings, twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg The ZA_ALM_MAGN register (see Table 186 and Table 187) contains the alarm threshold for the z-axis accelerometer, when ALM_ CNFG_1[7] = 1 (see Table 172). This alarm is associated with the alarm flag in ALM_STS[5] (see Table 20). Page 0x03 FIRMWARE REVISION DAY AND MONTH (FIRM_DM) Addresses 0x7C, 0x7D Default Not applicable Access R Flash Backup Yes Table 195. FIRM_Y Bit Definitions Bits [15:12] [11:8] [7:4] [3:0] Description Factory configuration year BCD code, thousands digit, numerical format = 4-bit binary, range = 0 to 9 Factory configuration year BCD code, hundreds digit, numerical format = 4-bit binary, range = 0 to 9 Factory configuration year BCD code, tens digit, numerical format = 4-bit binary, range = 0 to 3 Factory configuration year BCD code, ones digit, numerical format = 4-bit binary, range = 0 to 9 The FIRM_Y register (see Table 194 and Table 195) contains the year of the factory configuration date. For example, the year, 2013, is represented by FIRM_Y = 0x2013. PAGE 4 (PAGE_ID) Table 196. PAGE_ID Register Definition Page 0x04 Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No Table 197. PAGE_ID Bit Assignments Bits [15:0] Rev. B | Page 34 of 40 Description Page number, binary numerical format Data Sheet ADIS16489 The contents in the PAGE_ID register (see Table 196 and Table 197) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. PART IDENTIFICATION NUMBERS (PART_ID1, PART_ID2, PART_ID3, PART_ID4) Table 198. PART_ID1 Register Definitions Page 0x04 Addresses 0x20, 0x21 Default Not applicable Access R Flash Backup Not applicable Table 199. PART_ID1 Bit Definitions Bits [15:0] Description Part Identification 1 Addresses 0x22, 0x23 Default Not applicable Access R Flash Backup Not applicable Table 201. PART_ID2 Bit Definitions Bits [15:0] Description Part Identification 2 Table 202. PART_ID3 Register Definitions Page 0x04 Addresses 0x24, 0x25 Default Not applicable Access R Flash Backup Not applicable Table 203. PART_ID3 Bit Definitions Bits [15:0] Description Part Identification 3 Table 204. PART_ID4 Register Definitions Page 0x04 Addresses 0x26, 0x27 Default Not applicable Access R Flash Backup Not applicable Table 205. PART_ID4 Bit Definitions Bits [15:0] Page 5, Page 6 (PAGE_ID) Table 206. PAGE_ID Register Definition Page 0x05. 0x06, Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No Table 207. PAGE_ID Bit Assignments Table 200. PART_ID2 Register Definitions Page 0x04 Table 168) registers (see Figure 33). Each FIR filter bank (A, B, C, D) has 120 taps that consume two pages of memory. The coefficient associated with each tap in each filter bank has its own dedicated register that uses a 16-bit, twos complement format. The FIR filter has unity-gain when the sum of all of the coefficients is equal to 32,768. For filter designs that require fewer than 120 taps, ensure that the non-zero taps are in the lower-numbered coefficients and write 0x0000 to all unused taps to eliminate the latency associated with that particular tap. Description Part Identification 4 FIR FILTERS The ADIS16489 has four user configurable FIR filter banks. The sample rate of the FIR filters is identical to the inertial measurement unit (IMU) sample rate. Because decimation occurs after the FIR filters, the FIR sample rate is independent of the decimation rate and is not affected by the setting of the DEC_RATE register. If the user selects the internally generated sample clock (which is the default setting), the nominal IMU sample rate (and FIR sample rate) is 2460 SPS. If the user is supplying an external clock by setting Bit 7 of the FNCTIO_ CRTL register to 1 (see Table 152 and Table 153), the FIR sample rate is the same as the ADIS16489 sample rate. The user can individually configure and select one of the four FIR filter banks for each individual inertial sensor using the FILTR_ BNK_0 (see Table 166) and FILTR_BNK_1 (see Bits [15:0] Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 206 and Table 207) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. FIR Filter Bank A (FIR_COEF_A000 to FIR_COEF_A119) Table 208. FIR Filter Bank A Memory Map Page 5 5 5 5 5 PAGE_ID 0x05 0x05 0x05 0x05 0x05 Addresses 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 5 6 6 6 6 6 0x05 0x06 0x06 0x06 0x06 0x06 0x7E, 0x7F 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 6 0x06 0x7E, 0x7F Register PAGE_ID Not used FIR_COEF_A000 FIR_COEF_A001 FIR_COEF_A002 to FIR_COEF_A058 FIR_COEF_A059 PAGE_ID Not used FIR_COEF_A060 FIR_COEF_A061 FIR_COEF_A062 to FIR_COEF_A118 FIR_COEF_A119 Table 209 and Table 210 offer detailed register and bit definitions for one of the FIR coefficient registers in Bank A, FIR_COEF_ A071. Table 211 provides a configuration example, which sets this register to a decimal value of −169 (0xFF57). Table 209. FIR_COEF_A071 Register Definitions Page 0x06 Addresses 0x1E, 0x1F Default Not applicable Access R/W Flash Backup Yes Table 210. FIR_COEF_A071 Bit Definitions Bits [15:0] Rev. B | Page 35 of 40 Description FIR Bank A, Coefficient 71, twos complement ADIS16489 Data Sheet Table 211. Configuration Example, FIR Coefficient FIR Filter Bank C (FIR_COEF_C000 to FIR_COEF_C119) DIN 0x8006 Description Turn to Page 6 Table 217. Filter Bank C Memory Map 0x9E57 0x9FFF FIR_COEF_A071[7:0] = 0x57 FIR_COEF_A071[15:8] = 0xFF Page 7, Page 8 (PAGE_ID) Table 212. PAGE_ID Register Definition Page 0x07. 0x08, Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No Table 213. PAGE_ID Bit Assignments Bits [15:0] Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 212 and Table 213) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. FIR Filter Bank B (FIR_COEF_B000 to FIR_COEF_B119) Table 214. Filter Bank B Memory Map Page 7 7 7 7 7 PAGE_ID 0x07 0x07 0x07 0x07 0x07 Addresses 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 7 8 8 8 8 8 0x07 0x08 0x08 0x08 0x08 0x08 0x7E, 0x7F 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 8 0x08 0x7E, 0x7F Default 0x0000 Access R/W 9 10 10 10 10 10 0x09 0x0A 0x0A 0x0A 0x0A 0x0A 0x7E, 0x7F 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 10 0x0A 0x7E, 0x7F Register PAGE_ID Not used FIR_COEF_C000 FIR_COEF_C001 FIR_COEF_C002 to FIR_COEF_C058 FIR_COEF_C059 PAGE_ID Not used FIR_COEF_C060 FIR_COEF_C061 FIR_COEF_C062 to FIR_COEF_C118 FIR_COEF_C119 Page 11, Page 12 (PAGE_ID) Table 218. PAGE_ID Register Definition Page 0x0B, 0x0C, Addresses 0x00, 0x01 Default 0x0000 Access R/W Flash Backup No Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 218 and Table 219) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. FIR Filter Bank D (FIR_COEF_D000 to FIR_COEF_D119) Table 220. Filter Bank D Memory Map Flash Backup No Table 216. PAGE_ID Bit Assignments Bits [15:0] Addresses 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D Bits [15:0] Table 215. PAGE_ID Register Definition Addresses 0x00, 0x01 PAGE_ID 0x09 0x09 0x09 0x09 0x09 Table 219. PAGE_ID Bit Assignments Register PAGE_ID Not used FIR_COEF_B000 FIR_COEF_B001 FIR_COEF_B002 to FIR_COEF_B058 FIR_COEF_B059 PAGE_ID Not used FIR_COEF_B060 FIR_COEF_B061 FIR_COEF_B062 to FIR_COEF_B118 FIR_COEF_B119 Page 9, Page 10 (PAGE_ID) Page 0x09. 0x0A, Page 9 9 9 9 9 Description Page number, binary numerical format The contents in the PAGE_ID register (see Table 215 and Table 216) contain the current page setting, and provide a control for selecting another page for SPI access. For example, set DIN = 0x8002 to select Page 2 for SPI-based user access. See Table 10 for the page assignments associated with each user accessible register. Page 11 11 11 11 11 PAGE_ID 0x0B 0x0B 0x0B 0x0B 0x0B Addresses 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 11 12 12 12 12 12 0x0B 0x0C 0x0C 0x0C 0x0C 0x0C 0x7E, 0x7F 0x00, 0x01 0x02 to 0x07 0x08, 0x09 0x0A, 0x0B 0x0C to 0x7D 12 0x0C 0x7E, 0x7F Rev. B | Page 36 of 40 Register PAGE_ID Not used FIR_COEF_D000 FIR_COEF_D001 FIR_COEF_D002 to FIR_COEF_D058 FIR_COEF_D059 PAGE_ID Not used FIR_COEF_D060 FIR_COEF_D061 FIR_COEF_D062 to FIR_COEF_D118 FIR_COEF_D119 Data Sheet ADIS16489 Default Filter Performance 0 FIR Filter Bank A B C D Taps 120 120 32 32 –20 −3 dB Frequency (Hz) 310 55 275 63 B D A NO FIR FILTERING C –30 –40 –50 –60 –70 –80 –90 –100 0 200 400 600 800 1000 FREQUENCY (Hz) Figure 34. FIR Filter Frequency Response Curves Rev. B | Page 37 of 40 1200 15596-031 Table 221. FIR Filter Descriptions, Default Configuration –10 MAGNITUDE (dB) The FIR filter banks have factory programmed filter designs. They are all low-pass filters that have unity dc gain. Table 221 provides a summary of each filter design, and Figure 34 shows the frequency response characteristics. The phase delay is equal to ½ of the total number of taps. ADIS16489 Data Sheet APPLICATIONS INFORMATION MOUNTING BEST PRACTICES MOUNTING SCREWS M2 × 0.4mm, 4× WASHERS (OPTIONAL) M2, 4× ADIS16489 SPACERS/WASHERS SUGGESTED, 4× PCB MATING CONNECTOR CLM-112-02 PASSTHROUGH HOLES DIAMETER ≥ 2.85mm 15596-032 WASHERS (OPTIONAL) M2, 4× NUTS M2 × 0.4mm, 4× Figure 35. Mounting Example For best performance, follow these simple rules when installing the ADIS16489 into a system: These three rules help prevent irregular force profiles, which can warp the package and introduce bias errors in the sensors. Figure 35 provides an example that leverages washers to set the package off the mounting surface and uses 2.85 mm passthrough holes and backside washers/nuts for attachment. Figure 36 and Figure 37 provide details for mounting hole and connector alignment pin drill locations. DIAMETER OF THE HOLE MUST ACCOMODATE DIMENSIONAL TOLERANCE BETWEEN THE CONNECTOR AND HOLES. DEVICE OUTLINE 0.560 BSC 2× ALIGNMENT HOLES FOR MATING SOCKET 5 BSC 5 BSC NOTES 1. ALL DIMENSIONS IN mm UNITS. 2. IN THIS CONFIGURATION, THE CONNECTOR IS FACING DOWN AND ITS PINS ARE NOT VISIBLE. For more information on mounting the ADIS16489, see the AN-1295 Application Note. Rev. B | Page 38 of 40 Figure 36. Suggested PCB Layout Pattern, Connector Down 15596-033 • PASSTHROUGH HOLE FOR MOUNTING SCREWS 42.600 • Eliminate opportunity for translational force (x- and y-axis direction, per Figure 20) application on the electrical connector. Isolate the mounting force to the four corners on the portion of the package surface that surrounds the mounting holes. Use uniform mounting forces on all four corners. The suggested torque setting is 40 inch ounces (0.285 Nm). 21.300 BSC 1.642 BSC • 39.600 BSC 19.800 BSC Data Sheet ADIS16489 0.4334 [11.0] 0.019685 [0.5000] (TYP) T VDD 0.0240 [0.610] 1 0.054 [1.37] 0.0394 [1.00] 15596-034 0.022± DIA (TYP) 0.022 DIA THRU HOLE (TYP) NONPLATED NONPLATED THRU HOLE THRU HOLE 2× 0.1800 [4.57] CURRENT 4 Figure 37. Suggested Layout and Mechanical Design When Using Samtec CLM-112-02-G-D-A for the Mating Connector CH1 2.00V CH4 100mA Ω EVALUATION TOOLS Breakout Board, ADIS16IMU1/PCBZ 15596-035 0.0394 [1.00] 100ms/DIV Figure 38. Transient Current Demand, Startup The ADIS16IMU1/PCBZ (sold separately) provides a breakout board function for the ADIS16489, which means that it provides access to the ADIS16489 through larger connectors that support standard 1 mm ribbon cabling. It also provides four mounting holes for attachment of the ADIS16489 to the breakout board. T PC-Based Evaluation, EVAL-ADIS2 CURRENT The EVAL-ADIS2 provides the system support PC-based evaluation of the ADIS16489. POWER SUPPLY CONSIDERATIONS 4 CH4 100mA Ω 1ms/DIV 15596-036 The VDD power supply must charge 24 µF of capacitance (inside of the ADIS16489, across the VDD and GND pins) during its initial ramp and settling process. When VDD reaches 2.85 V, the ADIS16489 begins its internal start-up process, which generates additional transient current demand. See Figure 38 for a typical current profile during the start-up process. The first peak in Figure 38 relates to charging the 24 µF capacitor bank, whereas the second peak (~360 ms after the first peak) relates to the initialization process of the ADIS16489. See Figure 39 for a close view of the current profile associated with the second peak in Figure 38. Figure 39. Transient Current Demand, Peak Demand X-RAY SENSITIVITY Exposure to high dose rate X-rays, such as those in production systems that inspect solder joints in electronic assemblies, can affect accelerometer bias errors. For optimal performance, avoid exposing the ADIS16489A to this type of inspection. Rev. B | Page 39 of 40 ADIS16489 Data Sheet PACKAGING AND ORDERING INFORMATION OUTLINE DIMENSIONS 44.254 44.000 43.746 Ø 2.40 BSC (4 PLACES) 39.854 39.600 39.346 20.10 19.80 19.50 15.00 BSC 2.20 BSC (8 PLACES) DETAIL A PIN 1 1.942 1.642 1.342 8.25 BSC 42.854 42.600 42.346 1.00 BSC 47.254 47.000 46.746 DETAIL A BOTTOM VIEW 14.254 14.000 13.746 DETAIL B FRONT VIEW 6.50 BSC 3.454 3.200 2.946 5.50 BSC 5.50 BSC 1.00 BSC PITCH 0.30 SQ BSC DETAIL B 12-07-2012-E 2.84 BSC Figure 40. 24-Lead Module with Connector Interface [MODULE] (ML-24-6) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADIS16489BMLZ-P 1 Temperature Range −40°C to +105°C Package Description 24-Lead Module with Connector Interface [MODULE] Z = RoHS Compliant Part. ©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15596-8/20(B) Rev. B | Page 40 of 40 Package Option ML-24-6
ADIS16489BMLZ-P 价格&库存

很抱歉,暂时无法提供与“ADIS16489BMLZ-P”相匹配的价格&库存,您可以联系我们找货

免费人工找货