0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC2600CGN#PBF

LTC2600CGN#PBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    SSOP16

  • 描述:

    IC DAC 16BIT V-OUT 16SSOP

  • 数据手册
  • 价格&库存
LTC2600CGN#PBF 数据手册
LTC2600/LTC2610/LTC2620 Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP DESCRIPTION FEATURES n n n n n n n n n n Smallest Pin-Compatible Octal DACs: LTC2600: 16 Bits LTC2610: 14 Bits LTC2620: 12 Bits Guaranteed 16-Bit Monotonic Over Temperature Wide 2.5V to 5.5V Supply Range Low Power Operation: 250μA per DAC at 3V Individual Channel Power-Down to 1μA, Max Ultralow Crosstalk Between DACs ( 1GΩ) when all eight DACs are powered down. Normal operation can be resumed by executing any command which includes a DAC update, as shown in Table 1. The selected DAC is powered up as its voltage output is updated. There is an initial delay as the DAC powers up before it begins its usual settling behavior. If less than eight DACs are in a powered-down state prior to the update command, the power-up delay is 5μs. If, on the other hand, all eight DACs are powered down, then the master bias generation circuit is also disabled and must be restarted. In this case, the power-up delay is greater: 12μs for VCC = 5V, 30μs for VCC = 3V. Load regulation is a measure of the amplifier’s ability to maintain the rated voltage accuracy over a wide range of load conditions. The measured change in output voltage per milliampere of forced load current change is expressed in LSB/mA. DC output impedance is equivalent to load regulation, and may be derived from it by simply calculating a change in units from LSB/mA to Ohms. The amplifiers’ DC output impedance is 0.025Ω when driving a load well away from the rails. When drawing a load current from either rail, the output voltage headroom with respect to that rail is limited by the 25Ω typical channel resistance of the output devices; e.g., when sinking 1mA, the minimum output voltage = 25Ω • 1mA = 25mV. See the graph Headroom at Rails vs Output Current in the Typical Performance Characteristics section. The amplifiers are stable driving capacitive loads of up to 1000pF. Board Layout The excellent load regulation and DC crosstalk performance of these devices is achieved in part by keeping “signal” and “power” grounds separated internally and by reducing shared internal resistance to just 0.005Ω. 2600fe 14 LTC2600/LTC2610/LTC2620 OPERATION The GND pin functions both as the node to which the reference and output voltages are referred and as a return path for power currents in the device. Because of this, careful thought should be given to the grounding scheme and board layout in order to ensure rated performance. The PC board should have separate areas for the analog and digital sections of the circuit. This keeps digital signals away from sensitive analog signals and facilitates the use of separate digital and analog ground planes which have minimal capacitive and resistive interaction with each other. Digital and analog ground planes should be joined at only one point, establishing a system star ground as close to the device’s ground pin as possible. Ideally, the analog ground plane should be located on the component side of the board, and should be allowed to run under the part to shield it from noise. Analog ground should be a continuous and uninterrupted plane, except for necessary lead pads and vias, with signal traces on another layer. The GND pin of the part should be connected to analog ground. Resistance from the GND pin to system star ground should be as low as possible. Resistance here will add directly to the effective DC output impedance of the device (typically 0.025Ω), and will degrade DC crosstalk. Note that the LTC2600/LTC2610/LTC2620 are no more susceptible to these effects than other parts of their type; on the contrary, they allow layout-based performance improvements to shine rather than limiting attainable performance with excessive internal resistance. Rail-to-Rail Output Considerations In any rail-to-rail voltage output device, the output is limited to voltages within the supply range. Since the analog outputs of the device cannot go below ground, they may limit for the lowest codes as shown in Figure 3b. Similarly, limiting can occur near full scale when the REF pin is tied to VCC. If VREF = VCC and the DAC full-scale error (FSE) is positive, the output for the highest codes limits at VCC as shown in Figure 3c. No full-scale limiting can occur if VREF is less than VCC – FSE. Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur. 2600fe 15 16 X X SDI SDO SCK CS/LD 1 X X 2 X X 3 X 4 X X X DON’T CARE 5 C3 SDI C2 2 C1 3 X X 6 X X 7 C3 C2 10 C1 11 C2 C1 COMMAND WORD 9 C3 A1 7 ADDRESS WORD A2 6 A0 8 D15 9 D14 10 D12 12 D11 13 D10 14 24-BIT INPUT WORD D13 11 D9 15 D7 17 DATA WORD D8 16 D6 18 D5 C0 C0 A3 A3 A2 14 A1 15 A2 A1 ADDRESS WORD 13 A0 A0 16 17 D15 D15 PREVIOUS 32-BIT INPUT WORD 12 D14 D14 18 t2 t8 D9 D9 t4 23 PREVIOUS D15 t3 17 D10 D10 22 SDO t1 D11 D11 21 D15 D12 D12 20 SDI SCK D13 D13 19 25 18 D7 PREVIOUS D14 D14 D8 DATA WORD D6 D5 D4 D3 D2 D2 30 YYYY F02a 29 D3 24 D0 28 D4 23 D1 27 D5 22 D2 26 D6 21 D3 D7 20 D4 24 D8 19 Figure 2a. LTC2600 24-Bit Load Sequence (Minimum Input Word). LTC2610 SDI Data Word: 14-Bit Input Code + 2 Don’t-Care Bits; LTC2620 SDI Data Word: 12-Bit Input Code + 4 Don’t-Care Bits A3 5 D1 D1 31 YYYY F02b CURRENT 32-BIT INPUT WORD D0 D0 32 OPERATION Figure 2b. LTC2600 32-Bit Load Sequence (Required for Daisy-Chain Operation). LTC2610 SDI/SDO Data Word: 14-Bit Input Code + 2 Don’t-Care Bits; LTC2620 SDI/SDO Data Word: 12-Bit Input Code + 4 Don’t-Care Bits X X 4 C0 8 COMMAND WORD 1 SCK CS/LD LTC2600/LTC2610/LTC2620 2600fe LTC2600/LTC2610/LTC2620 OPERATION VREF = VCC VREF = VCC POSITIVE FSE OUTPUT VOLTAGE OUTPUT VOLTAGE INPUT CODE (c) OUTPUT VOLTAGE 0 0V NEGATIVE OFFSET 32, 768 INPUT CODE (a) 65, 535 INPUT CODE (b) 2600 F03 Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for Codes Near Zero-Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale PACKAGE DESCRIPTION GN Package 16-Lead Plastic SSOP (Narrow .150 Inch) (Reference LTC DWG # 05-08-1641) .189 – .196* (4.801 – 4.978) .045 ±.005 16 15 14 13 12 11 10 9 .254 MIN .009 (0.229) REF .150 – .165 .229 – .244 (5.817 – 6.198) .0165 ± .0015 .150 – .157** (3.810 – 3.988) .0250 BSC RECOMMENDED SOLDER PAD LAYOUT 1 .015 ± .004 × 45° (0.38 ± 0.10) .007 – .0098 (0.178 – 0.249) .0532 – .0688 (1.35 – 1.75) 2 3 4 5 6 7 8 .004 – .0098 (0.102 – 0.249) 0° – 8° TYP .016 – .050 (0.406 – 1.270) NOTE: 1. CONTROLLING DIMENSION: INCHES INCHES 2. DIMENSIONS ARE IN (MILLIMETERS) .008 – .012 (0.203 – 0.305) TYP .0250 (0.635) BSC GN16 (SSOP) 0204 3. DRAWING NOT TO SCALE *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 2600fe 17 LTC2600/LTC2610/LTC2620 PACKAGE DESCRIPTION UFD Package 20-Lead Plastic QFN (4mm × 5mm) (Reference LTC DWG # 05-08-1711 Rev B) 0.70 p0.05 4.50 p 0.05 1.50 REF 3.10 p 0.05 2.65 p 0.05 3.65 p 0.05 PACKAGE OUTLINE 0.25 p0.05 0.50 BSC 2.50 REF 4.10 p 0.05 5.50 p 0.05 RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED 4.00 p 0.10 (2 SIDES) 0.75 p 0.05 PIN 1 NOTCH R = 0.20 OR C = 0.35 1.50 REF R = 0.05 TYP 19 20 0.40 p 0.10 PIN 1 TOP MARK (NOTE 6) 1 2 5.00 p 0.10 (2 SIDES) 2.50 REF 3.65 p 0.10 2.65 p 0.10 (UFD20) QFN 0506 REV B 0.200 REF 0.00 – 0.05 R = 0.115 TYP 0.25 p 0.05 0.50 BSC BOTTOM VIEW—EXPOSED PAD NOTE: 1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X). 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 2600fe 18 LTC2600/LTC2610/LTC2620 REVISION HISTORY (Revision history begins at Rev D) REV DATE DESCRIPTION PAGE NUMBER D 03/10 Revise GN Part Markings in Order Information E 05/10 Changed “No Connect” pins to “Do Not Connect” in Pin Configuration and Pin Functions sections 2 2, 10 2600fe Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LTC2600/LTC2610/LTC2620 TYPICAL APPLICATION Schematic for LTC2600 Demonstration Circuit DC579. The Outputs Are Measured by an Onboard LTC2428 1 4 3 2 1 VSS SDA A2 SCL A1 WP A0 VCC VREF VCC 1 TP1 TP2 5 R1, R3, R4 R1 are 4.99k, 1% 6 R3 R2 7.5k R4 11 7 C3 0.1μF 8 C2 0.1μF 6 REF CLR VCC VOUTA U1 24LC025 VOUTB 14 12 10 8 6 4 2 5V VCC C1 0.1μF + + + + + + + + + + + + + + 13 11 9 7 5 3 1 SCK 8 CS 7 9 10 MOSI MISO VOUTC SCK VOUTD LS/LD VOUTE VOUTF SDI VOUTG SDO VOUTH 16 2 1 TP16 VIN TP3 DAC A 1 TP14 GND 4 1 TP4 DAC B 1 TP15 GND 1 TP5 DAC C 1 TP6 DAC D 1 TP7 DAC E 1 TP8 DAC F 1 TP9 DAC G 5 12 13 14 15 GND 1 1 3 U2 LTC2600CGN J1 HD2X7 1 VIN TP10 DAC H VREF VOUT VIN 6 9 1 C6 0.1μF 1 5V 4.096V 2 3 JP2 TP11 VREF C7 4.7μF 6.3V VREF U5 LT1461ACS8-4 2 3 C9 0.1μF VIN VOUT 6 VCC 1 SHDN GND 4 C5 0.1μF R8 22Ω C10 100pF 7 4 MUXOUT ADCIN 3 3 2 2 8 1 JP1 ON/OFF DISABLE ADC VCC VCC FSSET VREF GND 4 VCC C4 0.1μF R5 7.5k U4 LT1236ACS8-5 2 VCC 1 5VREF C8 REGULATOR 1μF 16V 2 3 JP3 1 VCC TP12 VCC TP13 GND CH0 10 CH1 11 CH2 12 CH3 13 CH4 14 CH5 15 CH6 17 CH7 5 ZSSET CSADC CSMUX 4-/8-CHANNEL MUX + 20-BIT ADC SCK CLK DIN – LTC2424/LTC2428 SD0 FO GND GND GND GND GND GND GND 1 U3 LTC2428CG 6 16 18 22 27 28 23 20 R6 7.5k CS 25 19 SCK 21 24 26 R7 7.5k 5V RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1458/LTC1458L Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality LTC1458: VCC = 4.5V to 5.5V, VOUT = 0V to 4.096V LTC1458L: VCC = 2.7V to 5.5V, VOUT = 0V to 2.5V LTC1654 Dual 14-Bit Rail-to-Rail VOUT DAC Programmable Speed/Power, 3.5μs/750μA, 8μs/450μA LTC1655/LTC1655L Single 16-Bit VOUT DAC with Serial Interface in SO-8 VCC = 5V(3V), Low Power, Deglitched LTC1657/LTC1657L Parrallel 5V/3V 16-Bit VOUT DAC Low Power, Deglitched, Rail-to-Rail VOUT LTC1660/LTC1665 Octal 10/8-Bit VOUT DAC in 16-Pin Narrow SSOP VCC = 2.7V to 5.5V, Micropower, Rail-to-Rail Output LTC1821 Parallel 16-Bit Voltage Output DAC Precision 16-Bit Settling in 2μs for 10V Step 2600fe 20 Linear Technology Corporation LT 0510 REV E • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2003
LTC2600CGN#PBF 价格&库存

很抱歉,暂时无法提供与“LTC2600CGN#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LTC2600CGN#PBF
  •  国内价格 香港价格
  • 1+311.848801+37.82820
  • 10+274.7609010+33.32940
  • 50+274.6754050+33.31900
  • 100+250.59690100+30.39820
  • 200+239.08860200+29.00220

库存:0