0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTM4601HVIV#PBF

LTM4601HVIV#PBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    LGA118

  • 描述:

    非隔离 PoL 模块 直流转换器 1 输出 0.6 ~ 5V 12A 4.5V - 28V 输入

  • 数据手册
  • 价格&库存
LTM4601HVIV#PBF 数据手册
FEATURES n n n n n n n n n n n n n n n n n Complete Switch Mode Power Supply Wide Input Voltage Range: 4.5V to 28V 12A DC Typical, 14A Peak Output Current 0.6V to 5V Output Voltage Output Voltage Tracking and Margining Parallel Multiple µModule® Regulators for Current Sharing Differential Remote Sensing for Precision Regulation PLL Frequency Synchronization ±1.5% Regulation Current Foldback Protection (Disabled at Start-Up) RoHS Compliant with Pb-Free Finish, Gold Finish LGA (e4) or SAC 305 BGA (e1) Ultrafast Transient Response Current Mode Control Up to 95% Efficiency at 5VIN, 3.3VOUT Programmable Soft-Start Output Overvoltage Protection Small Footprint, Low Profile (15mm × 15mm × 2.82mm) Surface Mount LGA and (15mm × 15mm × 3.42mm) BGA Packages APPLICATIONS Telecom and Networking Equipment Servers n Industrial Equipment n Point of Load Regulation n LTM4601HV 12A 28VIN DC/DC µModule Regulator with PLL, Output Tracking and Margining DESCRIPTION The LTM®4601HV is a complete 12A step-down switch mode DC/DC power supply with onboard switching controller, MOSFETs, inductor and all support components. The µModule regulator is housed in small surface mount 15mm × 15mm × 2.82mm LGA and 15mm × 15mm × 3.42mm BGA packages. Operating over an input voltage range of 4.5V to 28V, the LTM4601HV supports an output voltage range of 0.6V to 5V as well as output voltage tracking and margining. The high efficiency design delivers 12A continuous current (14A peak). Only bulk input and output capacitors are needed to complete the design. The low profile and light weight package easily mounts in unused space on the back side of PC boards for high density point of load regulation. The µModule regulator can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase® operation for high load currents. A high switching frequency and adaptive on-time current mode architecture deliver a very fast transient response to line and load changes without sacrificing stability. An onboard differential remote sense amplifier can be used to accurately regulate an output voltage independent of load current. L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered trademarks and LTpowerCAD is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210. n TYPICAL APPLICATION Efficiency and Power Loss vs Load Current 2.5V/12A Power Supply with 4.5V to 28V Input 95 CLOCK SYNC TRACK/SS CONTROL ON/OFF CIN R1 392k 5% MARGIN RUN COMP INTVCC DRVCC MPGM SGND PLLIN TRACK/SS VOUT LTM4601HV PGND VFB MARG0 MARG1 VOUT 2.5V 12A 100pF MARGIN CONTROL COUT VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET 5 85 24VIN 80 70 4601HV TA01a 3 24VIN 65 12VIN 60 2 POWER LOSS 55 RSET 19.1k 4 EFFICIENCY 75 1 50 45 POWER LOSS (W) VIN PGOOD 6 12VIN 90 EFFICIENCY (%) VIN 4.5V TO 28V 0 2 8 6 4 10 LOAD CURRENT (A) 12 14 0 4601HV TA01b 4601hvfb 1 LTM4601HV ABSOLUTE MAXIMUM RATINGS (Note 1) INTVCC, DRVCC, VOUT_LCL, VOUT (VOUT ≤ 3.3V with Remote Sense Amp)..................................... –0.3V to 6V PLLIN, TRACK/SS, MPGM, MARG0, MARG1, PGOOD, fSET...............................–0.3V to INTVCC + 0.3V RUN.............................................................. –0.3V to 5V VFB, COMP................................................. –0.3V to 2.7V VIN.............................................................. –0.3V to 28V VOSNS+, VOSNS –...........................–0.3V to INTVCC + 0.3V Operating Temperature Range (Note 2)....–40°C to 85°C Junction Temperature............................................ 125°C Storage Temperature Range................... –55°C to 125°C fSET VIN MARG0 MARG1 MARG1 DRVCC DRVCC VFB PGND PGOOD PGOOD SGND SGND VOSNS+ VOSNS+ VOUT_LCL DIFFVOUT VOUT VOUT_LCL – VOSNS– VOSNS BGA PACKAGE 118-LEAD (15mm × 15mm × 3.42mm) LGA PACKAGE 118-LEAD (15mm × 15mm × 2.82mm) TJMAX = 125°C, θJA = 15°C/W, θJC = 6°C/W, θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.7g MPGM COMP RUN fSET MARG0 DIFFVOUT VOUT TRACK/SS VIN VFB PGND PLLIN INTVCC MPGM COMP TOP VIEW RUN PLLIN INTVCC TOP VIEW TRACK/SS PIN CONFIGURATION TJMAX = 125°C, θJA = 15.5°C/W, θJC = 6.5°C/W, θJA DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS WEIGHT = 1.9g ORDER INFORMATION LEAD FREE FINISH TRAY PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LTM4601HVEV#PBF LTM4601HVEV#PBF LTM4601HVV 118-Lead (15mm × 15mm × 2.82mm) LGA –40°C to 85°C LTM4601HVIV#PBF LTM4601HVIV#PBF LTM4601HVV 118-Lead (15mm × 15mm × 2.82mm) LGA –40°C to 85°C LTM4601HVEY#PBF LTM4601HVEY#PBF LTM4601HVY 118-Lead (15mm × 15mm × 3.42mm) BGA –40°C to 85°C LTM4601HVIY#PBF LTM4601HVIY#PBF LTM4601HVY 118-Lead (15mm × 15mm × 3.42mm) BGA –40°C to 85°C Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ This product is only offered in trays. For more information go to: http://www.linear.com/packaging/ 2 4601hvfb LTM4601HV ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C to 85°C temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration, RSET = 40.2k. SYMBOL PARAMETER VIN(DC) Input DC Voltage VOUT(DC) Output Voltage (With Remote Sense Amp) CONDITIONS CIN = 10µF ×3, COUT = 200µF, RSET = 40.2k VIN = 12V, VOUT = 1.5V, IOUT = 0 MIN l 4.5 l 1.478 TYP MAX UNITS 28 V 1.5 1.522 V 4 V Input Specifications VIN(UVLO) Undervoltage Lockout Threshold IOUT = 0A 3.2 IINRUSH(VIN) Input Inrush Current at Startup IOUT = 0A. VOUT = 1.5V VIN = 5V VIN = 12V 0.6 0.7 A A IQ(VIN,NO LOAD) Input Supply Bias Current VIN = 12V, No Switching VIN = 12V, VOUT = 1.5V, Switching Continuous VIN = 5V, No Switching VIN = 5V, VOUT = 1.5V, Switching Continuous Shutdown, RUN = 0, VIN = 12V 3.8 38 2.5 42 22 mA mA mA mA µA IS(VIN) Input Supply Current VIN = 12V, VOUT = 1.5V, IOUT = 12A VIN = 12V, VOUT = 3.3V, IOUT = 12A VIN = 5V, VOUT = 1.5V, IOUT = 12A 1.81 3.63 4.29 A A A INTVCC VIN = 12V, RUN > 2V No Load 4.7 5 5.3 V 12 A Output Specifications IOUTDC Output Continuous Current Range VIN = 12V, VOUT = 1.5V (Note 5) ΔVOUT(LINE) VOUT Line Regulation Accuracy VOUT = 1.5V, IOUT = 0A, VIN from 4.5V to 28V l 0.3 % ΔVOUT(LOAD) VOUT Load Regulation Accuracy VOUT = 1.5V, IOUT = 0A to 12A, with RSA (Note 5) VIN = 5V VIN = 12V l l 0.25 0.25 % % VOUT(AC) Output Ripple Voltage IOUT = 0A, COUT = 2× 100µF X5R Ceramic VIN = 12V, VOUT = 1.5V VIN = 5V, VOUT = 1.5V 20 18 mVP-P mVP-P fS Output Ripple Voltage Frequency IOUT = 5A, VIN = 12V, VOUT = 1.5V 850 kHz ΔVOUT(START) Turn-On Overshoot COUT = 200µF, VOUT = 1.5V, IOUT = 0A, TRACK/SS = 10nF VIN = 12V VIN = 5V 20 20 mV mV COUT = 200µF, VOUT = 1.5V, TRACK/SS = Open, IOUT = 1A Resistive Load VIN = 12V VIN = 5V 0.5 0.5 ms ms Load: 0% to 50% to 0% of Full Load, COUT = 2 × 22µF Ceramic, 470µF 4V Sanyo POSCAP VIN = 12V VIN = 5V 35 35 mV mV 25 µs 17 17 A A tSTART ΔVOUTLS Turn-On Time Peak Deviation for Dynamic Load tSETTLE Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load VIN = 12V IOUTPK Output Current Limit COUT = 200µF Ceramic VIN = 12V, VOUT = 1.5V VIN = 5V, VOUT = 1.5V 0 4601hvfb 3 LTM4601HV ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C to 85°C temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration, RSET = 40.2k. SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Remote Sense Amp (Note 3) VOSNS+, VOSNS– Common Mode Input Voltage Range VIN = 12V, RUN > 2V CM Range INTVCC – 1 V 0 INTVCC – 1 V DIFFVOUT Range Output Voltage Range VOS Input Offset Voltage Magnitude AV Differential Gain 1 V/V GBP Gain Bandwidth Product 3 MHz SR Slew Rate 2 V/µs 20 kW 100 dB RIN Input Resistance CMRR Common Mode Rejection Mode VIN = 12V, DIFFVOUT Load = 100k 0 1.25 + to GND VOSNS mV Control Stage VFB Error Amplifier Input Voltage Accuracy IOUT = 0A, VOUT = 1.5V VRUN RUN Pin On/Off Threshold ITRACK/SS Soft-Start Charging Current VTRACK/SS = 0V tON(MIN) Minimum On Time (Note 4) tOFF(MIN) Minimum Off Time (Note 4) RPLLIN PLLIN Input Resistance IDRVCC Current into DRVCC Pin l 0.594 0.6 0.606 V 1 1.5 1.9 V –1.0 –1.5 –2.0 µA 50 100 ns 250 400 ns 50 VOUT = 1.5V, IOUT = 1A, DRVCC = 5V 60.098 kΩ 18 25 mA 60.4 60.702 kΩ RFBHI Resistor Between VOUT_LCL and VFB VMPGM Margin Reference Voltage 1.18 V VMARG0, VMARG1 MARG0, MARG1 Voltage Thresholds 1.4 V PGOOD Output ΔVFBH PGOOD Upper Threshold VFB Rising 7 10 13 % ΔVFBL PGOOD Lower Threshold VFB Falling –7 –10 –13 % ΔVFB(HYS) PGOOD Hysteresis VFB Returning Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. 4 1.5 % Note 2: The LTM4601HV is tested under pulsed load conditions such that TJ ≈ TA. The LTM4601HVE is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4601HVI is guaranteed over the –40°C to 85°C temperature range. Note 3: Remote sense amplifier recommended for ≤3.3V output. Note 4: 100% tested at wafer level only. Note 5: See output current derating curves for different VIN, VOUT and TA. 4601hvfb LTM4601HV TYPICAL PERFORMANCE CHARACTERISTICS 100 100 95 EFFICIENCY (%) EFFICIENCY (%) 90 85 80 75 0.6VOUT 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 70 65 60 0 5 95 95 90 90 85 85 80 80 75 70 0.6VOUT 1.2VOUT 1.5VOUT 2.5VOUT 3.3VOUT 5VOUT 65 60 55 10 50 15 Efficiency vs Load Current with 24VIN Efficiency vs Load Current with 12VIN EFFICIENCY (%) Efficiency vs Load Current with 5VIN (See Figures 19 and 20 for all curves) 0 LOAD CURRENT (A) 75 70 65 60 50 10 5 LOAD CURRENT (A) 4601HV G01 15 45 10 5 LOAD CURRENT (A) 0 4601HV G02 1.2V Transient Response 1.5V Transient Response 1.8V Transient Response VOUT 50mV/DIV VOUT 50mV/DIV 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 4601HV G04 20µs/DIV 1.5V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 2.5V Transient Response 4601HV G05 20µs/DIV 1.8V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 4601HV G06 3.3V Transient Response VOUT 50mV/DIV VOUT 50mV/DIV 0A TO 6A LOAD STEP 0A TO 6A LOAD STEP 20µs/DIV 2.5V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 15 4601HV G03 VOUT 50mV/DIV 20µs/DIV 1.2V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 1.5VOUT 2.5VOUT 3.3VOUT 5.0VOUT 55 4601HV G07 20µs/DIV 3.3V AT 6A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF 4601 G08 4601hvfb 5 LTM4601HV TYPICAL PERFORMANCE CHARACTERISTICS (See Figures 19 and 20 for all curves) Start-Up, IOUT = 12A (Resistive Load) Start-Up, IOUT = 0A VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 1A/DIV IIN 0.5A/DIV 5ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 2ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 4601HV G09 VIN to VOUT Step-Down Ratio Track, IOUT = 12A 5.5 3.3V OUTPUT WITH 130k FROM VOUT TO ION 5.0 OUTPUT VOLTAGE (V) 4.5 5V OUTPUT WITH 100k RESISTOR ADDED FROM fSET TO GND 4.0 3.5 3.0 2.0 5V OUTPUT WITH NO RESISTOR ADDED FROM fSET TO GND 1.5 2.5V OUTPUT 1.0 1.8V OUTPUT 0.5 1.5V OUTPUT 2.5 0 4601HV G10 TRACK/SS 0.5V/DIV VFB 0.5V/DIV VOUT 1V/DIV 2ms/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 4601HV G12 1.2V OUTPUT 0 2 4 6 8 10 12 14 16 18 20 22 24 INPUT VOLTAGE (V) 4601HV G11 Short-Circuit Protection, IOUT = 0A VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 1A/DIV IIN 1A/DIV 50µs/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 6 Short-Circuit Protection, IOUT = 12A 4601HV G13 50µs/DIV VIN = 12V VOUT = 1.5V COUT = 470µF, 3 × 22µF SOFT-START = 10nF 4601HV G14 4601hvfb LTM4601HV PIN FUNCTIONS (See Package Description for Pin Assignment) VIN (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between VIN pins and PGND pins. VOUT (Bank 3): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing output decoupling capacitance directly between these pins and PGND pins. See Figure 17. PGND (Bank 2): Power ground pins for both input and output returns. VOSNS– (Pin M12): (–) Input to the Remote Sense Amplifier. This pin connects to the ground remote sense point. The remote sense amplifier is used for VOUT ≤3.3V. Tie to INTVCC if not used. VOSNS+ (Pin J12): (+) Input to the Remote Sense Amplifier. This pin connects to the output remote sense point. The remote sense amplifier is used for VOUT ≤3.3V. Tie to ground if not used. DIFFVOUT (Pin K12): Output of the Remote Sense Amplifier. This pin connects to the VOUT_LCL pin. Leave floating if remote sense amplifier is not used. DRVCC (Pin E12): This pin normally connects to INTVCC for powering the internal MOSFET drivers. This pin can be biased up to 6V from an external supply with about 50mA capability, or an external circuit as shown in Figure 18. This improves efficiency at the higher input voltages by reducing power dissipation in the module. TRACK/SS (Pin A9): Output Voltage Tracking and SoftStart Pin. When the module is configured as a master output, then a soft-start capacitor is placed on this pin to ground to control the master ramp rate. A soft-start capacitor can be used for soft-start turn on of a stand alone regulator. Slave operation is performed by putting a resistor divider from the master output to ground, and connecting the center point of the divider to this pin. See the Applications Information section. MPGM (Pin A12): Programmable Margining Input. A resistor from this pin to ground sets a current that is equal to 1.18V/R. This current multiplied by 10kΩ will equal a value in millivolts that is a percentage of the 0.6V reference voltage. See Applications Information. To parallel LTM4601HVs, each requires an individual MPGM resistor. Do not tie MPGM pins together. fSET (Pin B12): Frequency Set Internally to 850kHz. An external resistor can be placed from this pin to ground to increase frequency. See the Applications Information section for frequency adjustment. VFB (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to VOUT_LCL pin with a 60.4k precision resistor. Different output voltages can be programmed with an additional resistor between VFB and SGND pins. See the Applications Information section. INTVCC (Pin A7): This pin is for additional decoupling of the 5V internal regulator. MARG0 (Pin C12): This pin is the LSB logic input for the margining function. Together with the MARG1 pin it will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See the Applications Information section. PLLIN (Pin A8): External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50k resistor. Apply a clock with a high level above 2V and below INTVCC. See the Applications Information section. MARG1 (Pin D12): This pin is the MSB logic input for the margining function. Together with the MARG0 pin it will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See the Applications Information section. 4601hvfb 7 LTM4601HV PIN FUNCTIONS (See Package Description for Pin Assignment) SGND (Pin H12): Signal Ground. This pin connects to PGND at output capacitor point. See Figure 17. COMP (Pin A11): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.7V corresponding to zero sense voltage (zero current). PGOOD (Pin G12): Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within ±10% of the regulation point, after a 25µs power bad mask timer expires. 8 RUN (Pin A10): Run Control Pin. A voltage above 1.9V will turn on the module, and when below 1V, will turn off the module. A programmable UVLO function can be accomplished by connecting to a resistor divider from VIN to ground. See Figure 1. This pin has a 5.1V Zener to ground. Maximum pin voltage is 5V. Limit current into the RUN pin to less than 1mA. VOUT_LCL (Pin L12): VOUT connects directly to this pin to bypass the remote sense amplifier, or DIFFVOUT connects to this pin when remote sense amplifier is used. 4601hvfb LTM4601HV SIMPLIFIED BLOCK DIAGRAM VOUT_LCL VIN R1 UVLO FUNCTION >1.9V = ON 4.8V use 4.8V • Do not put vias directly on pads unless they are capped. tOFF = t – tON, where t = 1/Frequency • Use a separated SGND copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit. Duty Cycle = tON/t or VOUT/VIN Figure 17 gives a good example of the recommended layout. VIN CIN CIN GND SIGNAL GND COUT COUT VOUT 4601HV F17 Figure 17. Recommended Layout (LGA and BGA PCB Layouts Are Identical with the Exception of Circle Pads for BGA. See Package Description.) 20 LTM4601HV minimum off-time = 400ns Equations for setting frequency: IfSET = (VIN /(3 • RfSET)), for 28V operation, IfSET = 238µA, tON = ((4.8 • 10pF)/IfSET), tON = 202ns, where the internal RfSET is 39.2k. Frequency = (VOUT/(VIN • tON)) = (5V/(28 • 202ns)) ~ 884kHz. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. This is noted in the Typical Inductor Ripple Current vs Duty Cycle graph (Figure 3) where IL ≈ 10A at 20% duty cycle. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from fSET to ground to increase the switching frequency. A 7A ripple current is chosen, and the total peak current is equal to 1/2 of the 7A ripple current plus the output current. The 5V output current is limited to 8A, so the total peak current is less than 11.5A. This is below the 14A peak specified value. A 100k resistor is placed from fSET to ground, and the parallel combination of 100k and 39.2k equates to 28k. The IfSET calculation with 28k and 28V input voltage equals 333µA. This equates to a tON of 144ns. This will increase the switching frequency from ~884kHz to ~1.24MHz for the 28V to 5V conversion. 4601hvfb LTM4601HV APPLICATIONS INFORMATION The minimum on-time is above 100ns at 28V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 10V for the 1.24MHz operation due to the 400ns minimum off-time. Equation: tON = (VOUT/VIN) • (1/Frequency) equates to a 400ns on-time, and a 400ns off-time. The “VIN to VOUT Step-Down Ratio Curve” reflects an operating range of 10V to 28V for 1.24MHz operation with a 100k resistor to ground as shown in Figure 18, and an 8V to 16V operation for fSET floating. These modifications are made to provide wider input voltage ranges for the 5V output designs while limiting the inductor ripple current, and maintaining the 400ns minimum off-time. off-time are within specification at 139ns and 1037ns. The 4.5V minimum input for converting 3.3V output will not meet the minimum off-time specification of 400ns. tON = 868ns, Frequency = 850kHz, tOFF = 315ns. Solution Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off-time at 4.5V input voltage. The off-time should be about 500ns, which includes a 100ns guard band. The duty cycle for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/tOFF or (1 – 0.73)/500ns = 540kHz. The switching frequency needs to be lowered to 540kHz at 4.5V input. tON = DC/ frequency, or 1.35µs. The fSET pin voltage compliance is 1/3 of VIN, and the IfSET current equates to 38µA with the internal 39.2k. The IfSET current needs to be 24µA for 540kHz operation. As shown in Figure 19, a resistor can be placed from VOUT to fSET to lower the effective IfSET current out of the fSET pin to 24µA. The fSET pin is 4.5V/3 =1.5V and VOUT = 3.3V, therefore 130k will source 14µA into the fSET node and lower the IfSET current to 24µA. This enables the 540kHz operation and the 4.5V to 28V input operation for down converting to 3.3V output. The frequency will scale from 540kHz to 1.1 MHz over this input range. This provides for an effective output current of 8A over the input range. Example for 3.3V Output LTM4601HV minimum on-time = 100ns tON = ((VOUT • 10pF)/IfSET) LTM4601HV minimum off-time = 400ns tOFF = t – tON, where t = 1/Frequency Duty Cycle (DC) = tON /t or VOUT/VIN Equations for setting frequency: IfSET = (VIN /(3 • RfSET)), for 28V operation, IfSET = 238µA, tON = ((3.3 • 10pF)/I fSET), tON = 138.7ns, where the internal RfSET is 39.2k. Frequency = (VOUT /(VIN • tON)) = (3.3V/(28 • 138.7ns)) ~ 850kHz. The minimum on-time and minimum VOUT VIN 10V TO 28V R2 100k TRACK/SS CONTROL R4 100k MPGM RUN COMP INTVCC DRVCC 5% MARGIN C2 10µF 35V VIN PGOOD R1 392k 1% C1 10µF 35V SGND PLLIN TRACK/SS VOUT LTM4601HV PGND REVIEW TEMPERATURE DERATING CURVE + VFB MARG0 MARG1 VOUT_LCL DIFFVOUT VOSNS+ VOSNS– C3 100µF 6.3V SANYO POSCAP VOUT 5V 8A 22µF 6.3V REFER TO TABLE 2 fSET RfSET 100k RSET 8.25k MARGIN CONTROL IMPROVE EFFICIENCY FOR ≥12V INPUT SOT-323 DUAL CMSSH-3C3 4601HV F18 Figure 18. 5V at 8A Design Without Differential Amplifier 4601hvfb 21 LTM4601HV APPLICATIONS INFORMATION VOUT VIN 4.5V TO 16V R2 100k R4 100k PGOOD C2 10µF 25V ×3 TRACK/SS CONTROL VIN PGOOD MPGM RUN COMP INTVCC DRVCC LTM4601HV R1 392k SGND REVIEW TEMPERATURE DERATING CURVE PLLIN TRACK/SS VOUT + VOUT_LCL DIFFVOUT VOSNS+ VOSNS– RfSET 130k fSET PGND 5% MARGIN VFB MARG0 MARG1 MARGIN CONTROL VOUT 3.3V 10A 22µF 6.3V C3 100µF 6.3V SANYO POSCAP RSET 13.3k 4601HV F19 Figure 19. 3.3V at 10A Design CLOCK SYNC C5 0.01µF VOUT VIN 22V TO 28V R2 100k R4 100k PGOOD ON/OFF CIN BULK OPT + CIN 10µF 35V ×3 CER VIN PGOOD MPGM RUN COMP INTVCC DRVCC PLLIN TRACK/SS VOUT LTM4601HV R1 392k 5% MARGIN SGND PGND VFB MARG0 MARG1 VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET REVIEW TEMPERATURE DERATING CURVE C3 100pF COUT1 100µF 6.3V MARGIN CONTROL RfSET 175k VIN RSET 40.2k 4601HV F20 + COUT2 470µF 6.3V VOUT 1.5V 10A REFER TO TABLE 2 FOR DIFFERENT OUTPUT VOLTAGE Figure 20. Typical 22V to 28V, 1.5V at 10A Design, 500kHz 22 4601hvfb LTM4601HV APPLICATIONS INFORMATION VOUT VIN 6V TO 28V 118k 1% R2 100k + C1 0.1µF LTC6908-1 1 2 3 V+ OUT1 GND OUT2 SET MOD 6 5 4 CLOCK SYNC 0° PHASE C5* 100µF 35V C2 10µF 35V ×2 R4 100k MPGM RUN COMP INTVCC DRVCC R1 392k PLLIN TRACK/SS VOUT VIN PGOOD LTM4601HV SGND PGND 5% MARGIN 2-PHASE OSCILLATOR VFB MARG0 MARG1 TRACK/SS CONTROL C6 220pF VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET 60.4k + R SET N RSET N = NUMBER OF PHASES VOUT = 0.6V C3 22µF 6.3V C4 470µF 6.3V VOUT 3.3V 20A + REFER TO TABLE 2 RSET 6.65k 100pF MARGIN CONTROL CLOCK SYNC 180° PHASE TRACK/SS CONTROL C7 0.033µF VIN PGOOD PGOOD MPGM RUN COMP INTVCC DRVCC C8 10µF 35V ×2 PLLIN TRACK/SS VOUT LTM4601HV 392k SGND PGND C3 22µF 6.3V VFB MARG0 MARG1 + C4 470µF 6.3V REFER TO TABLE 2 VOUT_LCL DIFFVOUT VOSNS+ VOSNS– fSET 4601HV F21 *C5 OPTIONAL TO REDUCE ANY LC RINGING. NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION Figure 21. 2-Phase Parallel, 3.3V at 20A Design 4601hvfb 23 LTM4601HV TYPICAL APPLICATIONS LTC6908-1 2-PHASE OSCILLATOR C8 0.1µF R1 118k V+ OUT1 GND OUT2 SET MOD 3.3V VIN 6V TO 28V C1 10µF 35V R3 100k R4 100k VIN 0° PHASE 180° PHASE PLLIN VOUT PGOOD VFB RUN VOUT_LCL COMP DIFFVOUT INTVCC LTM4601HV DRVCC VOSNS+ MPGM VOSNS– MARG0 fSET TRACK/SS MARG1 R2 392k C3 0.15µF 3.3V SGND R1 13.3k C2 100µF 6.3V VOUT1 3.3V C4 10A 150µF 6.3V 3.3V TRACK MARGIN CONTROL R7 100k R8 100k C5 10µF 35V R16 60.4k R6 392k R15 19.1k PGND VIN PLLIN VOUT PGOOD VFB RUN VOUT_LCL COMP DIFFVOUT INTVCC LTM4601HV DRVCC VOSNS+ MPGM VOSNS– MARG0 fSET TRACK/SS MARG1 SGND R5 19.1k C6 100µF 6.3V VOUT2 2.5V C7 10A 150µF 6.3V MARGIN CONTROL PGND 4601HV F22 Figure 22. Dual Outputs (3.3V and 2.5V) with Coincident Tracking LTC6908-1 2-PHASE OSCILLATOR C8 0.1µF R1 182k V+ OUT1 GND OUT2 SET MOD 3.3V VIN 6V TO 28V C1 10µF 35V R3 100k R4 100k VIN 0° PHASE 180° PHASE PLLIN VOUT PGOOD VFB RUN VOUT_LCL COMP DIFFVOUT INTVCC LTM4601HV DRVCC VOSNS+ MPGM VOSNS– MARG0 fSET TRACK/SS MARG1 R2 392k C3 0.15µF SGND PGND 3.3V C8 47pF R1 30.1k MARGIN CONTROL C2 100µF 6.3V VOUT1 1.8V C4 10A 220µF 6.3V 3.3V TRACK R16 60.4k R15 40.2k R7 100k R8 100k C5 10µF 35V R6 392k VIN PLLIN VOUT PGOOD VFB RUN VOUT_LCL COMP DIFFVOUT INTVCC LTM4601HV DRVCC VOSNS+ MPGM VOSNS– MARG0 fSET TRACK/SS MARG1 SGND C9 47pF R5 40.2k C6 100µF 6.3V VOUT2 1.5V C7 10A 220µF 6.3V MARGIN CONTROL PGND 4601HV F23 Figure 23. Dual Outputs (1.8V and 1.5V) with Coincident Tracking 24 4601hvfb aaa Z 0.630 ±0.025 Ø 118x 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 PACKAGE TOP VIEW E 0.6350 0.0000 0.6350 4 1.9050 PIN “A1” CORNER 6.9850 5.7150 4.4450 4.4450 5.7150 6.9850 Y 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D 2.45 – 2.55 aaa Z SYMBOL A A1 A2 b b1 D E e F G aaa bbb ccc ddd eee NOM 3.42 0.60 2.82 0.75 0.63 15.0 15.0 1.27 13.97 13.97 DIMENSIONS 0.15 0.10 0.20 0.30 0.15 MAX 3.62 0.70 2.92 0.90 0.66 NOTES DETAIL B PACKAGE SIDE VIEW A2 TOTAL NUMBER OF BALLS: 118 MIN 3.22 0.50 2.72 0.60 0.60 DETAIL A b1 0.27 – 0.37 SUBSTRATE A1 ddd M Z X Y eee M Z DETAIL B MOLD CAP ccc Z Øb (118 PLACES) // bbb Z A (Reference LTC DWG # 05-08-1903 Rev A) BGA Package 118-Lead (15mm × 15mm × 3.42mm) Z e b L K J G G F e E PACKAGE BOTTOM VIEW H D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 TRAY PIN 1 BEVEL BGA 118 0112 REV A PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule 6. SOLDER BALL COMPOSITION IS 96.5% Sn/3.0% Ag/0.5% Cu 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b M DETAIL A 1 2 3 4 5 6 7 8 9 10 11 12 PIN 1 LTM4601HV PACKAGE DESCRIPTION Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. 25 4601hvfb aaa Z 0.630 ±0.025 Ø 118x E PACKAGE TOP VIEW 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 4 0.6350 0.0000 0.6350 PIN “A1” CORNER 1.9050 Y 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D aaa Z 0.27 2.45 MIN 2.72 0.60 NOM 2.82 0.63 15.00 15.00 1.27 13.97 13.97 0.32 2.50 DIMENSIONS 0.37 2.55 0.15 0.10 0.05 MAX 2.92 0.66 NOTES DETAIL B PACKAGE SIDE VIEW TOTAL NUMBER OF LGA PADS: 118 SYMBOL A b D E e F G H1 H2 aaa bbb eee H1 SUBSTRATE eee S X Y DETAIL A 0.630 ±0.025 SQ. 118x DETAIL B H2 MOLD CAP A (Reference LTC DWG # 05-08-1801 Rev A) bbb Z 26 Z LGA Package 118-Lead (15mm × 15mm × 2.82mm) e b L K J G G F e E PACKAGE BOTTOM VIEW H D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 TRAY PIN 1 BEVEL LGA 118 1011 REV A PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b M DETAIL A 1 2 3 4 5 6 7 8 9 C(0.30) PAD 1 10 11 12 LTM4601HV PACKAGE DESCRIPTION Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. 4601hvfb 6.9850 5.7150 4.4450 4.4450 5.7150 6.9850 LTM4601HV PACKAGE DESCRIPTION Table 5. Pin Assignment (Arranged by Pin Number) PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION A1 VIN B1 VIN C1 VIN D1 PGND E1 PGND F1 PGND A2 VIN B2 VIN C2 VIN D2 PGND E2 PGND F2 PGND A3 VIN B3 VIN C3 VIN D3 PGND E3 PGND F3 PGND A4 VIN B4 VIN C4 VIN D4 PGND E4 PGND F4 PGND A5 VIN B5 VIN C5 VIN D5 PGND E5 PGND F5 PGND A6 VIN B6 VIN C6 VIN D6 PGND E6 PGND F6 PGND A7 INTVCC B7 – C7 – D7 – E7 PGND F7 PGND A8 PLLIN B8 – C8 – D8 – E8 – F8 PGND A9 TRACK/SS B9 – C9 – D9 – E9 – F9 PGND A10 RUN B10 – C10 – D10 – E10 – F10 – A11 COMP B11 – C11 – D11 – E11 – F11 – A12 MPGM B12 fSET C12 MARG0 D12 MARG1 E12 DRVCC F12 VFB PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION G1 PGND H1 PGND J1 VOUT K1 VOUT L1 VOUT M1 VOUT G2 PGND H2 PGND J2 VOUT K2 VOUT L2 VOUT M2 VOUT G3 PGND H3 PGND J3 VOUT K3 VOUT L3 VOUT M3 VOUT G4 PGND H4 PGND J4 VOUT K4 VOUT L4 VOUT M4 VOUT G5 PGND H5 PGND J5 VOUT K5 VOUT L5 VOUT M5 VOUT G6 PGND H6 PGND J6 VOUT K6 VOUT L6 VOUT M6 VOUT G7 PGND H7 PGND J7 VOUT K7 VOUT L7 VOUT M7 VOUT G8 PGND H8 PGND J8 VOUT K8 VOUT L8 VOUT M8 VOUT G9 PGND H9 PGND J9 VOUT K9 VOUT L9 VOUT M9 VOUT G10 – H10 – J10 VOUT K10 VOUT L10 VOUT M10 VOUT G11 – H11 – J11 – K11 VOUT L11 VOUT M11 VOUT G12 PGOOD H12 SGND J12 VOSNS+ K12 DIFFVOUT L12 VOUT_LCL M12 VOSNS– 4601hvfb 27 LTM4601HV PACKAGE DESCRIPTION Table 6. Pin Assignment (Arranged by Pin Function) PIN NAME PIN NAME A1 A2 A3 A4 A5 A6 VIN VIN VIN VIN VIN VIN D1 D2 D3 D4 D5 D6 PGND PGND PGND PGND PGND PGND B1 B2 B3 B4 B5 B6 VIN VIN VIN VIN VIN VIN C1 C2 C3 C4 C5 C6 VIN VIN VIN VIN VIN VIN E1 E2 E3 E4 E5 E6 E7 PGND PGND PGND PGND PGND PGND PGND F1 F2 F3 F4 F5 F6 F7 F8 F9 PGND PGND PGND PGND PGND PGND PGND PGND PGND G1 G2 G3 G4 G5 G6 G7 G8 G9 PGND PGND PGND PGND PGND PGND PGND PGND PGND H1 H2 H3 H4 H5 H6 H7 H8 H9 PGND PGND PGND PGND PGND PGND PGND PGND PGND 28 PIN NAME PIN NAME J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT A7 A8 A9 A10 A11 A12 INTVCC PLLIN TRACK/SS RUN COMP MPGM B12 fSET C12 MARG0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT D12 MARG1 E12 DRVCC F12 VFB G12 PGOOD H12 SGND J12 VOSNS+ K12 DIFFVOUT L12 VOUT_LCL L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT M12 VOSNS– M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT PIN NAME B7 B8 B9 B10 B11 - C7 C8 C9 C10 C11 - D7 D8 D9 D10 D11 - E8 E9 E10 E11 - F10 F11 - G10 G11 - H10 H11 - J11 - 4601hvfb LTM4601HV REVISION HISTORY (Revision history begins at Rev B) REV DATE DESCRIPTION PAGE NUMBER B 03/12 Revised entire data sheet to include the BGA package. 1–30 4601hvfb Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 29 LTM4601HV PACKAGE PHOTOS 2.82mm 15mm 3.42mm 15mm 15mm 15mm RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTM4628 26V, Dual 8A, DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 26.5V, 0.6V ≤ VOUT ≤ 5V, Remote Sense Amplifier, Internal Temperature Sensing Output, 15mm × 15mm × 4.32mm LGA LTM4627 20V, 15A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, VOUT Tracking, Remote Sense Amplifier, 15mm × 15mm × 4.32mm LGA LTM4611 1.5VIN(MIN), 15A DC/DC Step-Down μModule Regulator 1.5V ≤ VIN ≤ 5.5V, 0.8V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking, 15mm × 15mm × 4.32mm LGA LTM4613 8A EN55022 Class B DC/DC Step-Down μModule Regulator 5V ≤ VIN ≤ 36V, 3.3V ≤ VOUT ≤ 15V, PLL Input, VOUT Tracking and Margining, 15mm × 15mm × 4.32mm LGA LTM4601AHV 28V, 12A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 28V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or 15mm × 15mm × 3.42mm BGA LTM4601A 20V, 12A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL Input, Remote Sense Amplifier, VOUT Tracking and Margining, 15mm × 15mm × 2.82mm LGA or 15mm × 15mm × 3.42mm BGA LTM8027 60V, 4A DC/DC Step-Down μModule Regulator 4.5V ≤ VIN ≤ 60V, 2.5V ≤ VOUT ≤ 24V, CLK Input, 15mm × 15mm × 4.32mm LGA LTM8032 36V, 2A EN55022 Class B DC/DC Step-Down μModule Regulator 3.6V ≤ VIN ≤ 36V, 0.8V ≤ VOUT ≤ 10V, Synchronizable, 9mm × 15mm × 2.82mm LGA or 9mm × 15mm × 3.42mm BGA LTM8061 32V, 2A Step-Down μModule Battery Charger with Programmable Input Current Limit Compatible with Single Cell or Dual Cell Li-Ion or Li-Poly Battery Stacks (4.1V, 4.2V, 8.2V, or 8.4V), 4.95V ≤ VIN ≤ 32V, C/10 or Adjustable Timer Charge Termination, NTC Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA This product contains technology licensed from Silicon Semiconductor Corporation. 30 Linear Technology Corporation ® 4601hvfb LT 0312 REV B • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 l FAX: (408) 434-0507 l www.linear.com  LINEAR TECHNOLOGY CORPORATION 2007
LTM4601HVIV#PBF 价格&库存

很抱歉,暂时无法提供与“LTM4601HVIV#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货