0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP177GS

OP177GS

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC GP OPAMP 1 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
OP177GS 数据手册
Ultraprecision Operational Amplifier OP177 Data Sheet PIN CONFIGURATION Ultralow offset voltage TA = 25°C, 25 μV maximum Outstanding offset voltage drift 0.3 μV/°C maximum Excellent open-loop gain and gain linearity 12 V/μV typical CMRR: 130 dB minimum PSRR: 115 dB minimum Low supply current 2.0 mA maximum Fits industry-standard precision operational amplifier sockets VOS TRIM 1 OP177 –IN 2 +IN 3 V– 4 8 VOS TRIM 7 V+ 6 OUT TOP VIEW 5 NC (Not to Scale) NC = NO CONNECT 00289-001 FEATURES Figure 1. 8-Lead PDIP (P-Suffix), 8-Lead SOIC (S-Suffix) GENERAL DESCRIPTION This low noise, bipolar input operational amplifier is also a cost effective alternative to chopper-stabilized amplifiers. The OP177 provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors. The OP177 features one of the highest precision performance of any operational amplifier currently available. Offset voltage of the OP177 is only 25 μV maximum at room temperature. The ultralow VOS of the OP177 combines with the exceptional offset voltage drift (TCVOS) of 0.3 μV/°C maximum to eliminate the need for external VOS adjustment and increases system accuracy over temperature. The OP177 is offered in the −40°C to +85°C extended industrial temperature ranges. This product is available in 8-lead PDIP, as well as the space saving 8-lead SOIC. The OP177 open-loop gain of 12 V/μV is maintained over the full ±10 V output range. CMRR of 130 dB minimum, PSRR of 120 dB minimum, and maximum supply current of 2 mA are just a few examples of the excellent performance of this operational amplifier. The combination of outstanding specifications of the OP177 ensures accurate performance in high closed-loop gain applications. FUNCTIONAL BLOCK DIAGRAM V+ (OPTIONAL NULL) R2A* R2B* C1 R7 R1B R1A Q19 2B Q10 Q9 NONINVERTING INPUT INVERTING INPUT R3 Q3 Q5 Q11 Q8 Q6 Q4 Q1 R4 OUTPUT Q27 Q21 Q23 Q22 Q24 R9 Q12 Q26 C3 C2 Q17 R10 Q16 R5 Q20 Q25 Q15 Q2 Q18 Q14 Q13 V– *R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY. R6 R8 00289-002 Q7 Figure 2. Simplified Schematic Rev. H Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1995–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com OP177 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications Information .................................................................9 Pin Configuration ............................................................................. 1 Gain Linearity ................................................................................9 General Description ......................................................................... 1 Thermocouple Amplifier with Cold-Junction Compensation9 Functional Block Diagram .............................................................. 1 Precision High Gain Differential Amplifier ........................... 10 Revision History ............................................................................... 2 Isolating Large Capacitive Loads.............................................. 10 Specifications..................................................................................... 3 Bilateral Current Source ............................................................ 10 Electrical Characteristics ............................................................. 3 Precision Absolute Value Amplifier ......................................... 10 Test Circuits................................................................................... 4 Precision Positive Peak Detector .............................................. 12 Absolute Maximum Ratings ............................................................ 5 Precision Threshold Detector/Amplifier ................................ 12 Thermal Resistance ...................................................................... 5 Outline Dimensions ....................................................................... 13 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 14 Typical Performance Characteristics ............................................. 6 REVISION HISTORY 4/16—Rev. G to Rev. H Changes to Figure 27 ........................................................................ 9 9/12—Rev. F to Rev. G Changes to Features and General Description Section ............... 1 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 3/09—Rev. E to Rev. F Added Figure 23, Renumbered Sequentially ................................ 8 Updated Outline Dimensions ....................................................... 13 5/06—Rev. D to Rev. E Changes to Figure 1 .......................................................................... 1 Change to Specifications Table 1 .................................................... 3 Changes to Specifications Table 2................................................... 4 Changes to Table 3 ............................................................................ 5 Changes to Figure 23 and Figure 24............................................... 9 Changes to Figure 32 ...................................................................... 12 Updated the Ordering Guide ........................................................ 14 4/06—Rev. C to Rev. D Change to Pin Configuration Caption ...........................................1 Changes to Features ..........................................................................1 Change to Table 2 ..............................................................................4 Change to Figure 2 ............................................................................4 Changes to Figure 10 and Figure 11 ...............................................6 Changes to Figure 12 through Figure 17 ........................................7 Changes to Figure 18 through Figure 22 ........................................8 Change to Figure 27 ....................................................................... 10 Changes to Figure 30 and Figure 31 ............................................ 11 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 13 1/05—Rev. B to Rev. C Edits to Features.................................................................................1 Edits to General Description ...........................................................1 Edits to Pin Connections ..................................................................1 Edits to Electrical Characteristics .............................................. 2, 3 Global deletion of references to OP177E ............................ 3, 4, 10 Edits to Absolute Maximum Ratings ..............................................5 Edits to Package Type .......................................................................5 Edits to Ordering Guide ...................................................................5 Edit to Outline Dimensions .......................................................... 11 11/95—Rev. 0: Initial Version Rev. H | Page 2 of 16 Data Sheet OP177 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At VS = ±15 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT OFFSET VOLTAGE LONG-TERM INPUT OFFSET 1 Voltage Stability INPUT OFFSET CURRENT INPUT BIAS CURRENT INPUT NOISE VOLTAGE INPUT NOISE CURRENT INPUT RESISTANCE Differential Mode 3 INPUT RESISTANCE COMMON MODE INPUT VOLTAGE RANGE 4 COMMON-MODE REJECTION RATIO POWER SUPPLY REJECTION RATIO LARGE SIGNAL VOLTAGE GAIN OUTPUT VOLTAGE SWING Symbol VOS ΔVOS/time IOS IB en in RIN RINCM IVR CMRR PSRR AVO VO SLEW RATE2 CLOSED-LOOP BANDWIDTH2 OPEN-LOOP OUTPUT RESISTANCE POWER CONSUMPTION SR BW RO PD SUPPLY CURRENT OFFSET ADJUSTMENT RANGE ISY Test Conditions/Comments Min OP177F Typ 10 Max 25 −0.2 0.3 0.3 +1.2 118 3 1.5 +2 150 8 fO = 1 Hz to 100 Hz fO = 1 Hz to 100 Hz2 2 26 VCM = ±13 V VS = ±3 V to ±18 V RL ≥ 2 kΩ, VO = ±10 V 5 RL ≥ 10 kΩ RL ≥ 2 kΩ RL ≥ 1 kΩ RL ≥ 2 kΩ AVCL = 1 VS = ±15 V, no load VS = ±3 V, no load VS = ±15 V, no load RP = 20 kΩ ±13 130 115 5000 ±13.5 ±12.5 ±12.0 0.1 0.4 45 200 ±14 140 125 12,000 ±14.0 ±13.0 ±12.5 0.3 0.6 60 50 3.5 1.6 ±3 Min −0.2 18.5 ±13 115 110 2000 ±13.5 ±12.5 ±12.0 0.1 0.4 60 4.5 2 OP177G Typ Max 20 60 0.4 0.3 +1.2 118 3 45 200 ±14 140 120 6000 ±14.0 ±13.0 ±12.5 0.3 0.6 60 50 3.5 1.6 ±3 2.8 +2.8 150 8 60 4.5 2 Unit μV μV/mo nA nA nV rms pA rms MΩ GΩ V dB dB V/mV V V V V/μs MHz Ω mW mW mA mV Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μV. 2 Sample tested. 3 Guaranteed by design. 4 Guaranteed by CMRR test condition. 5 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and –10 V ≤ VO ≤ +10 V. 1 Rev. H | Page 3 of 16 OP177 Data Sheet At VS = ±15 V, −40°C ≤ TA ≤ +85°C, unless otherwise noted. Table 2. Parameter INPUT Input Offset Voltage Average Input Offset Voltage Drift1 Input Offset Current Average Input Offset Current Drift2 Input Bias Current Average Input Bias Current Drift2 Input Voltage Range3 COMMON-MODE REJECTION RATIO POWER SUPPLY REJECTION RATIO LARGE-SIGNAL VOLTAGE GAIN4 OUTPUT VOLTAGE SWING POWER CONSUMPTION SUPPLY CURRENT Symbol VOS TCVOS IOS TCIOS IB TCIB IVR CMRR PSRR AVO VO PD ISY Test Conditions/Comments OP177F Typ Max Min −0.2 ±13 120 110 2000 ±12 VCM = ±13 V VS = ±3 V to ±18 V RL ≥ 2 kΩ, VO = ±10 V RL ≥ 2 kΩ VS = ±15 V, no load VS = ±15 V, no load 15 0.1 0.5 1.5 +2.4 8 ±13.5 140 120 6000 ±13 60 20 1 Min 40 0.3 2.2 40 +4 40 ±13 110 106 1000 ±12 75 2.5 OP177G Typ Max 20 0.7 0.5 1.5 +2.4 15 ±13.5 140 115 4000 ±13 60 2 TCVOS is sample tested. Guaranteed by endpoint limits. 3 Guaranteed by CMRR test condition. 4 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and −10 V ≤ VO ≤ +10 V. 2 TEST CIRCUITS 200kΩ 50Ω – OP177 VOS = VO 00289-003 + VO 4000 Figure 3. Typical Offset Voltage Test Circuit 20kΩ V+ – – INPUT OUTPUT OP177 VOS TRIM RANGE IS TYPICALLY ±3.0mV V– Figure 4. Optional Offset Nulling Circuit 20kΩ +20V – OP177 + –20V Figure 5. Burn-In Circuit Rev. H | Page 4 of 16 00289-005 PINOUTS SHOWN FOR P AND Z PACKAGES 00289-004 + + 100 1.2 4.5 85 ±6 60 75 2.5 Unit μV μV/°C nA pA/°C nA pA/°C V dB dB V/mV V mW mA Data Sheet OP177 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Internal Power Dissipation1 Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 sec) DICE Junction Temperature (TJ) 1 Ratings ±22 V 500 mW ±30 V ±22 V Indefinite −65°C to +125°C −40°C to +85°C 300°C −65°C to +150°C θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for PDIP; θJA is specified for device soldered to printed circuit board for SOIC package. Table 4. Thermal Resistance Package Type 8-Lead PDIP (P-Suffix) 8-Lead SOIC (S-Suffix) ESD CAUTION For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. H | Page 5 of 16 θJA 103 158 θJC 43 43 Unit °C/W °C/W OP177 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 20 TA = 25°C VS = ±15V RL = 10kΩ VS = ±15V ABSOLUTE CHANGE IN INPUT OFFSET VOLTAGE (µV) 25 1 0 –1 DEVICE IMMERSED IN 70° OIL BATH (20 UNITS) 30 35 40 –2 –10 0 OUTPUT VOLTAGE (V) –5 50 0 10 5 Figure 6. Gain Linearity (Input Voltage vs. Output Voltage) 30 20 40 TIME (Seconds) 50 60 70 25 TA = 25°C VS = ±15V OPEN-LOOP GAIN (V/µV) 20 10 15 10 1 20 10 30 TOTAL SUPPLY VOLTAGE, V+ TO V– (V) 0 0 –55 40 Figure 7. Power Consumption vs. Power Supply 00289-010 5 00289-007 POWER CONSUMPTION (mW) 10 Figure 9. Offset Voltage Change Due to Thermal Shock 100 –35 –15 5 25 45 65 TEMPERATURE (°C) 85 105 125 Figure 10. Open-Loop Gain vs. Temperature 5 16 TA = 25°C RL = 2kΩ 4 3 1 OPEN-LOOP GAIN (V/µV) LOT A LOT B LOT C LOT D 2 0 –1 –2 12 8 4 –4 –5 0 20 40 60 80 100 120 TIME (Seconds) 140 160 00289-011 –3 00289-008 VOS (µV) 00289-009 45 00289-006 INPUT VOLTAGE (µV) (NULLED TO 0mV @ VOUT = 0V) 2 0 180 0 ±10 ±5 ±15 POWER SUPPLY VOLTAGE (V) Figure 11. Open-Loop Gain vs. Power Supply Voltage Figure 8. Warm-Up VOS Drift (Normalized) Z Package Rev. H | Page 6 of 16 ±20 Data Sheet OP177 4 160 VS = ±15V TA = 25°C VS = ±15V OPEN-LOOP GAIN (dB) 3 2 120 100 80 60 40 1 0 0 50 TEMPERATURE (°C) –50 0 0.01 100 Figure 12. Input Bias Current vs. Temperature 00289-015 20 00289-012 INPUT BIAS CURRENT (nA) 140 0.1 1 100 10 1k FREQUENCY (Hz) 100k 10k 1M Figure 15. Open-Loop Frequency Response 2.0 150 VS = ±15V TA = 25°C 1.5 CMRR (dB) 130 1.0 110 90 –50 0 50 TEMPERATURE (°C) 00289-016 0 120 100 0.5 00289-013 INPUT OFFSET CURRENT (nA) 140 80 100 1 Figure 13. Input Offset Current vs. Temperature 1k 100 FREQUENCY (Hz) 10k 100k Figure 16. CMRR vs. Frequency 100 130 TA = 25°C VS = ±15V TA = 25°C 120 80 110 60 PSRR (dB) CLOSED-LOOP GAIN (dB) 10 40 100 90 20 80 0 –20 10 100 1k 100k 10k FREQUENCY (Hz) 1M 60 0.1 10M Figure 14. Closed-Loop Response for Various Gain Configurations 00289-017 00289-014 70 1 100 10 FREQUENCY (Hz) Figure 17. PSRR vs. Frequency Rev. H | Page 7 of 16 1k 10k OP177 Data Sheet 20 TA = 25°C VS = +15V VIN = ±10mV RS1 = RS2 = 200kΩ THERMAL NOISE OF SOURCE RESISTORS INCLUDED MAXIMUM OUTPUT (V) 100 EXCLUDED RS = 0 10 POSITIVE SWING 15 NEGATIVE SWING 10 1 1 00289-018 TA = 25°C VS = ±15V 10 100 00289-021 5 0 100 1k Figure 21. Maximum Output Voltage vs. Load Resistance Figure 18. Total Input Noise Voltage vs. Frequency 40 OUTPUT SHORT-CIRCUIT CURRENT (mA) 1 00289-019 RMS NOISE (µV) TA = 25°C VS = ±15V 1k 35 +ISC 30 25 –ISC 20 15 0 100k 10k TA = 25°C VS = ±15V 00289-022 10 0.1 100 1 2 3 TIME FROM OUTPUT BEING SHORTED (Minutes) BANDWIDTH (Hz) Figure 19. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated) 4 Figure 22. Output Short-Circuit Current vs. Time 32 1.50 TA = 25°C VS = ±15V TA = 25°C VS = ±15V 28 1.25 24 1.00 IB (nA) 20 16 0.75 12 IB1– (nA) IB2– (nA) IB3– (nA) IB1+ (nA) IB2+ (nA) IB3+ (nA) 0.50 8 0.25 4 0 1k 00289-020 PEAK-TO-PEAK AMPLITUDE (V) 10k 1k LOAD RESISTANCE TO GROUND (Ω) FREQUENCY (Hz) 10k 100k FREQUENCY (Hz) 0 –16 1M –14 –10 –6 –2 2 VCM (V) 6 10 00289-033 INPUT NOISE VOLTAGE (nV√Hz) 1000 14 Figure 23. Input Bias (IB) vs. Common-Mode Voltage (VCM) Figure 20. Maximum Output Swing vs. Frequency Rev. H | Page 8 of 16 Data Sheet OP177 APPLICATIONS INFORMATION GAIN LINEARITY The actual open-loop gain of most monolithic operational amplifiers varies at different output voltages. This nonlinearity causes errors in high closed-loop gain circuits. It is important to know that the manufacturer’s AVO specification is only a part of the solution because all automated testers use endpoint testing and, therefore, show only the average gain. For example, Figure 24 shows a typical precision operational amplifier with a respectable open-loop gain of 650 V/mV. However, the gain is not constant through the output voltage range, causing nonlinear errors. An ideal operational amplifier shows a horizontal scope trace. Figure 25 shows the OP177 output gain linearity trace with the truly impressive average AVO of 12,000 V/mV. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. Analog Devices, Inc., also performs additional testing to ensure consistent high open-loop gain at various output voltages. Figure 26 is a simple open-loop gain test circuit. VX 0V An example of a precision circuit is a thermocouple amplifier that must accurately amplify very low level signals without introducing linearity and offset errors to the circuit. In this circuit, an S-type thermocouple with a Seebeck coefficient of 10.3 μV/°C produces 10.3 mV of output voltage at a temperature of 1000°C. The amplifier gain is set at 973.16, thus, it produces an output voltage of 10.024 V. Extended temperature ranges beyond 1500°C are accomplished by reducing the amplifier gain. The circuit uses a low cost diode to sense the temperature at the terminating junctions and, in turn, compensates for any ambient temperature change. The OP177, with the high openloop gain plus low offset voltage and drift, combines to yield a precise temperature sensing circuit. Circuit values for other thermocouple types are listed in Table 5. Table 5. Thermocouple Type K J S Seebeck Coefficient 39.2 μV/°C 50.2 μV/°C 10.3 μV/°C R2 5.76 kΩ 4.02 kΩ 20.5 kΩ R7 102 kΩ 80.6 kΩ 392 kΩ 2 REF01 2.2µF 00289-023 AVO ≥ 650V/mV RL = 2kΩ 10.000V 6 4 R9 1.07MΩ 0.05% R7 392kΩ 1% R3 47kΩ 1% + Figure 24. Typical Precision Operational amplifier +15V 10µF 0.1µF + VY – VX 0V R2 20.5kΩ 1% R8 1.0kΩ 0.05% COPPER R5 100Ω (ZERO ADJUSTMENT) ISOTHERMAL COLDJUNCTIONS TYPES + COPPER +10V 00289-024 ISOTHERMAL BLOCK AVO ≥ 12000V/mV RL = 2kΩ COLD-JUNCTION COMPENSATION R1 100Ω 1% R4 50Ω 1% 10µF – OP177 + 10µF 10µF 0.1µF –15V ANALOG GROUND Figure 25. Output Gain Linearity Trace VY 10kΩ VIN = ±10V ANALOG GROUND 10kΩ Figure 27. Thermocouple Amplifier with Cold Junction Compensation 1MΩ VX – 10Ω R9 269 kΩ 200 kΩ 1.07 MΩ +10V +15V –10V R1 110 Ω 100 Ω 100 Ω OP177 RL 00289-025 + Figure 26. Open-Loop Gain Linearity Test Circuit Rev. H | Page 9 of 16 VOUT 00289-026 –10V THERMOCOUPLE AMPLIFIER WITH COLDJUNCTION COMPENSATION OP177 Data Sheet PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER ISOLATING LARGE CAPACITIVE LOADS The high gain, gain linearity, CMRR, and low TCVOS of the OP177 make it possible to obtain performance not previously available in single stage, very high gain amplifier applications. See Figure 28. The circuit shown in Figure 29 reduces maximum slew rate but allows driving capacitive loads of any size without instability. Because the 100 Ω resistor is inside the feedback loop, the effect on output impedance is reduced to insignificance by the high open loop gain of the OP177. R1 R3 must equal R2 R4 RF 10pF In this example, with a 10 mV differential signal, the maximum errors are listed in Table 6. +15V R2 1MΩ 0.1µF +15V RS INPUT 2 0.1µF 3 2 R3 1kΩ 3 OP177 + R4 1MΩ 4 –15V Figure 29. Isolating Capacitive Loads 0.1µF –15V BILATERAL CURRENT SOURCE The current sources shown in Figure 30 supply both positive and negative currents into a grounded load. Figure 28. Precision High Gain Differential Amplifier Note that Table 6. High Gain Differential Amplifier Performance Type Common-Mode Voltage Gain Linearity, Worst Case TCVOS TCIOS OUTPUT CLOAD 6 OP177 + 100Ω 6 4 0.1µF 7 – 00289-027 R1 1kΩ 7 – 00289-028 For best CMR, Amount 0.1%/V 0.02% 0.0003%/°C 0.008%/°C R4 R5  1 R2   ZO  R5  R4 R3  R2 R1 and that for ZO to be infinite R5  R4 R2 must  R3 R1 PRECISION ABSOLUTE VALUE AMPLIFIER The high gain and low TCVOS assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the operational amplifiers (for details, see Figure 31). BASIC CURRENT SOURCE 100mA CURRENT SOURCE R3 1kΩ R3 +15V R2 100kΩ 2 3 – OP177 + R4 990Ω VIN 6 R1 R2 2 3 R5 10Ω – OP177 + 2N2222 2N2907 R4 IOUT ≤ 15mA 6 50Ω R5 –15V IOUT ≤ 100mA IOUT = VIN R3 R1 × R5 GIVEN R3 = R4 + R5, R1 = R2 Figure 30. Bilateral Current Source Rev. H | Page 10 of 16 00289-029 VIN R1 100kΩ Data Sheet OP177 1kΩ 1kΩ +15V +15V 0.1µF C1 30pF D1 1N4148 2 2 VIN 3 7 – 3 6 OP177 7 – 4 R3 2kΩ 4 0.1µF VOUT 0 < VOUT < 10V + 2N4393 + 6 OP177 0.1µF 00289-030 0.1µF –15V –15V Figure 31. Precision Absolute Value Amplifier 1kΩ +15V +15V 0.1µF VIN 1kΩ 3 NC 7 2 – OP177 6 2N930 1kΩ + 4 0.1µF CH –15V 7 – AD820 3 + 4 6 VOUT 0.1µF –15V RESET 1kΩ 00289-031 2 0.1µF 1N4148 Figure 32. Precision Positive Peak Detector Rev. H | Page 11 of 16 OP177 Data Sheet CC PRECISION POSITIVE PEAK DETECTOR RF 100kΩ In Figure 32, CH must be polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the AD820. 0.1µF RS 1kΩ VTH In Figure 33, when VIN < VTH, amplifier output swings negative, reverse biasing diode D1. VOUT = VTH if RL = ∞. When VIN ≥ VTH, the loop closes.  R  VOUT = VTH + (VIN − VTH )1 + F  RS   VIN R1 2kΩ 2 3 – 7 OP177 + 6 D1 1N4148 VOUT 4 0.1µF –15V Figure 33. Precision Threshold Detector/Amplifier CC is selected to smooth the response of the loop. Rev. H | Page 12 of 16 00289-032 PRECISION THRESHOLD DETECTOR/AMPLIFIER +15V Data Sheet OP177 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 1 4 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.100 (2.54) BSC 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.115 (2.92) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX 0.005 (0.13) MIN 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) 070606-A COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 34. 8-Lead Plastic Dual In-Line Package (PDIP) P-Suffix (N-8) Dimensions show in inches and (millimeters) 5.00 (0.1968) 4.80 (0.1890) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 35. 8-Lead Standard Small Outline Package (SOIC_N) S-Suffix (R-8) Dimensions shown in millimeters and( inches) Rev. H | Page 13 of 16 012407-A 8 4.00 (0.1574) 3.80 (0.1497) OP177 Data Sheet ORDERING GUIDE Model 1 OP177FPZ OP177GPZ OP177FSZ OP177FSZ-REEL OP177FSZ-REEL7 OP177GS OP177GS-REEL OP177GS-REEL7 OP177GSZ OP177GSZ-REEL OP177GSZ-REEL7 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N Z = RoHS Compliant Part. Rev. H | Page 14 of 16 Package Option P-Suffix (N-8) P-Suffix (N-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) Data Sheet OP177 NOTES Rev. H | Page 15 of 16 OP177 Data Sheet NOTES ©1995–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00289-0-4/16(H) Rev. H | Page 16 of 16
OP177GS 价格&库存

很抱歉,暂时无法提供与“OP177GS”相匹配的价格&库存,您可以联系我们找货

免费人工找货