0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AMMC-6220

AMMC-6220

  • 厂商:

    AVAGO(博通)

  • 封装:

  • 描述:

    AMMC-6220 - 6 - 20 GHz Low Noise Amplifier - AVAGO TECHNOLOGIES LIMITED

  • 数据手册
  • 价格&库存
AMMC-6220 数据手册
AMMC - 6220 6 - 20 GHz Low Noise Amplifier Data Sheet Chip Size: 1700 x 800 µm (67 x 31.5 mils) Chip Size Tolerance: ± 10 µm (±0.4 mils) Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils) Pad Dimensions: 100 x 100 µm (4 ± 0.4 mils) Description Avago Technologies’ AMMC-6220 is a high gain, lownoise amplifier that operates from 6 GHz to 20 GHz. This LNA provides a wide-band solution for system design since it covers several bands, thus, reduces part inventory. The device has input / output match to 50 Ohm, is unconditionally stable and can be used as either primary or sub-sequential low noise gain stage. By eliminating the complex tuning and assembly processes typically required by hybrid (discrete-FET) amplifiers, the AMMC6220 is a cost-effective alternative in the 6 - 20 GHz communications receivers. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. It is fabricated in a PHEMT process to provide exceptional noise and gain performance. For improved reliability and moisture protection, the die is passivated at the active areas. Features • Wide frequency range: 6 - 20 GHz • High gain: 23 dB • Low 50 Ω Noise Figure: 2.0 dB • 50 Ω Input and Output Match • Single 3V Supply Bias Applications • Microwave Radio systems • Satellite VSAT, DBS Up/Down Link • LMDS & Pt-Pt mmW Long Haul • Broadband Wireless Access (including 802.16 and 802.20 WiMax) • WLL and MMDS loops AMMC-6220 Absolute Maximum Ratings[1] Symbol Vd Vg Id Pin Tch Tstg Tmax Parameters/Conditions Positive Drain Voltage Gate Supply Voltage Drain Current CW Input Power Operating Channel Temp. Storage Case Temp. Maximum Assembly Temp (60 sec max) Units V V mA dBm °C °C °C Min. Max. 7 NA 100 15 +150 -65 +150 +300 Note: 1. Operation in excess of any one of these conditions may result in permanent damage to this device Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure that an ESD approved carrier is used when dice are transported from one destination to another. Personal grounding is to be worn at all times when handling these devices AMMC-6220 DC Specifications/Physical Properties [1] Symbol Id Parameters and Test Conditions Drain Supply Current (under any RF power drive and temperature) (Vd=3.0 V) Gate Supply Operating Voltage (Id(Q) = 800 (mA)) Thermal Resistance[2] (Backside temperature, Tb = 25°C) Units mA Min. Typ. 55 Max. 70 Vg qch-b V °C/W NA 25 Notes: 1. Ambient operational temperature TA=25°C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (qch-b) = 26°C/W at Tchannel (Tc) = 34°C as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. AMMC-6220 RF Specifications [3, 4, 5] (TA= 25°C, Vd=3.0 V, Id(Q)=55 mA, Zo=50 Ω) Symbol Gain NF Parameters and Test Conditions Small-signal Gain[6] Noise Figure into 50 W Units dB dB Minimum 21 Typical 23 7-10 GHz = 2.1 10-16 GHz = 1.8 16-20 GHz = 2.0 +9 +19 -12 -16 -45 Maximum 8 GHz = 2.4 12 GHz = 2.2 18 GHz = 2.4 Sigma 0.30 0.10 P-1dB OIP3 RLin RLout Isol Output Power at 1dB Gain Compression Third Order Intercept Point; Df=100MHz; Pin=-35dBm Input Return Loss[6] Output Return Loss[6] Reverse Isolation[6] dBm dBm dB dB dB 0.87 1.20 -10 -10 0.31 0.68 0.50 Notes: 3. Small/Large -signal data measured in wafer form TA = 25°C. 4. 100% on-wafer RF test is done at frequency = 8, 12, and 18 GHz. 5. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching. 6. As derived from measured s-parameters LSL USL USL    1. 1.8 1.9 -11. -11. -11 -10. -10. -10.1 -9.8 -9. Gain at 12 GHz Noise Figure at 12 GHz Return Loss at 12 GHz Typical distribution of Small Signal Gain, Noise Figure, and Return Loss. Based on 1500 part sampled over several production lots.  AMMC-6220 Typical Performances ( TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50 Ω unless otherwise stated) NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.Figure 1. Typical Gain  0 0 0 -10 - -0 Isolation (dB) Input Return Loss(dB) Gain (dB) 1 -0 -10 10 -0  -1 -0 -0  8 10 1 1 Frequency (GHz) 1 18 0 0  8 10 1 1 1 18 0 Frequency (GHz) -0  8 10 1 1 Frequency (GHz) 1 18 0 Figure 1. Typical Gain 0 Figure 2. Typical Isolation .0 . Figure 3 Typical Input Return Loss   0 0 Output Return Loss (dB) .0 Noise Figure [dB] -10 OP1dB (dBm) .0 1. 1.0 0. -0 10 10   -0  8 10 1 1 1 Frequency (GHz) 18 0 0.0 0  8 10 1 1 1 Frequency [GHz] 18 0  8 10 1 1 1 Frequency [GHz] 18 0 0 Figure 4. Typical Output Return Loss Figure 5. Typical Noise Figure into a 50 W load. Figure 6. Typical Output P-1dB and 3rd Order Intercept Pt. 0  0 S1 (dB) S1 (dB) 0 -10 -0 -0 -0 degC -0degC +8degC degC -0degC +8degC 0 degC -0degC +8degC - 1 10  0   8 10 1 1 1 18 0  Frequency (GHz) S11 (dB) -10 -1 -0 -0   8 10 1 1 1 18 0  -0 Frequency (GHz)   8 10 1 1 1 Frequency (GHz) 18 0 Figure 7. Typical Gain (s21) over temperature Figure 8. Typical Isolation (s12) over temperature Figure 9. Typical Input Return Loss (s11) over temperature  OIP (dBm) . 1 1  AMMC-6220 Typical Performances ( TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50Ω unless otherwise stated) NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching. 0 - -10 S (dB) -1 -0 - -0 degC -0degC +8degC  .  .  Idd (mA) -0degC degC +8degC  0 8    0  -0degC +degC +8degC NF (dB) 1. 1 0.   8 10 1 1 1 Frequency (GHz) 18 0  0  8 10 1 1 1 Frequency (GHz) 18 0 .  Vdd (V) .  Figure 10. Typical Output Return Loss over Temperature 0  0 S1 (dB) Figure 11. Typical Noise Figure over Temperature 0 -10 -0 S1 (dB) -0 -0 -0 -0 Figure 12. Typical Total Idd over Temperature V V V V V V 0 V V V - 1 10  0 S11 (dB)   8 10 1 1 Frequency (GHz) 1 18 0 -10 -1   8 10 1 1 Frequency (GHz) 1 18 0 -0   8 10 1 1 Frequency (GHz) 1 18 0 Figure 13. Typical Gain over Vdd (supply voltage.) Figure 14. Typical Isolation over Vdd (supply voltage) Figure 15. Typical Input Return Loss over Vdd (supply voltage) 0 - -10 S (dB) V V V .00 .0 .00 1.0 1.00 V V V 1 10 8 OP1dB (dBm)    -0 - -0 - NF (dB) -1 0.0 0.00   8 10 1 1 Frequency (GHz) 1 18 0  8 10 1 1 1 Frequency (GHz) 18 0 0 V V V  8 10 1 1 1 Frequency (GHz) 18 0 Figure 16. Typical Output Return Loss over Vdd (supply voltage) Figure 17. Typical Noise Figure over Vdd (supply voltage.) Figure 18. Typical OP-1dB over Vdd (supply voltage.)  AMMC-6220 Typical Scattering Parameters[1] (Tc=25°C, VD1=VD2= 3 V, Zin = Zout = 50 Ω) Freq GHz 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500 11.000 11.500 12.000 12.500 13.000 13.500 14.000 14.500 15.000 15.500 16.000 16.500 17.000 17.500 18.000 18.500 19.000 19.500 20.000 20.500 21.000 21.500 22.000 S11 dB -0.146 -1.392 -0.823 -1.961 -5.151 -7.415 -10.150 -11.146 -11.953 -11.917 -11.731 -11.478 -11.328 -11.278 -11.184 -11.267 -11.033 -10.820 -10.768 -10.685 -10.672 -10.611 -10.629 -10.792 -11.118 -11.744 -12.571 -13.207 -14.063 -14.853 -14.720 -13.710 -12.221 -10.382 -8.701 -7.194 -5.883 S21 Phase 103.687 74.728 37.284 -3.456 -33.435 -53.353 -65.197 -71.056 -76.086 -79.875 -85.876 -93.111 -100.430 -107.107 -114.292 -119.551 -125.024 -130.580 -136.143 -140.774 -147.067 -151.974 -157.342 -164.023 -169.248 -173.681 -176.840 -179.413 -176.351 -172.040 -161.713 -153.813 -148.391 -147.276 -150.640 -156.785 -163.716 S12 Phase -128.237 118.600 39.967 -15.875 -59.866 -95.795 -126.279 -153.658 -179.298 156.812 133.712 111.612 90.667 70.398 50.874 31.947 14.018 -3.874 -20.953 -37.794 -54.252 -70.766 -86.927 -102.737 -119.061 -135.063 -151.033 -166.718 176.850 160.709 144.491 128.151 111.521 95.148 78.624 62.593 47.073 S22 Phase 103.896 29.720 -28.575 -45.938 -76.787 Mag 0.983 0.852 0.910 0.798 0.553 0.426 0.311 0.277 0.253 0.254 0.259 0.267 0.271 0.273 0.276 0.273 0.281 0.288 0.289 0.292 0.293 0.295 0.294 0.289 0.278 0.259 0.235 0.219 0.198 0.181 0.184 0.206 0.245 0.303 0.367 0.437 0.508 dB 9.033 21.862 23.130 23.710 23.699 23.622 23.557 23.641 23.761 23.793 23.908 24.000 24.071 23.989 23.915 23.867 23.786 23.724 23.620 23.568 23.459 23.351 23.287 23.184 23.119 22.973 22.847 22.728 22.548 22.336 22.122 21.797 21.451 20.983 20.472 19.879 19.198 Mag 2.829 12.391 14.338 15.328 15.310 15.174 15.060 15.207 15.419 15.475 15.681 15.849 15.979 15.829 15.695 15.607 15.464 15.354 15.170 15.081 14.891 14.707 14.600 14.428 14.320 14.082 13.879 13.689 13.409 13.086 12.767 12.298 11.819 11.198 10.558 9.862 9.118 dB Mag dB -4.132 -13.516 -16.564 -17.481 -17.158 -16.707 -16.549 -16.750 -16.835 -17.025 -17.310 -17.862 -18.509 -19.271 -19.908 -20.309 -20.177 -19.456 -18.642 -17.844 -17.088 -16.419 -15.782 -15.469 -15.429 -15.606 -16.000 -16.795 -17.791 -19.662 -22.604 -28.897 -35.137 -23.741 -18.636 -15.322 -12.780 Mag 0.621 0.211 0.149 0.134 0.139 0.146 0.149 0.145 0.144 0.141 0.136 0.128 0.119 0.109 0.101 0.097 0.098 0.106 0.117 0.128 0.140 0.151 0.163 0.168 0.169 0.166 0.158 0.145 0.129 0.104 0.074 0.036 0.018 0.065 0.117 0.171 0.230 Phase 171.001 141.837 168.028 -175.481 -166.821 -164.516 -165.262 -165.145 -165.958 -166.708 -167.942 -168.952 -168.793 -166.105 -161.607 -153.779 -146.759 -141.031 -137.531 -136.674 -136.397 -137.700 -140.788 -145.110 -150.386 -156.073 -160.598 -166.616 -173.574 178.090 169.680 148.784 31.294 -15.174 -26.892 -36.809 -45.747 -48.748 0.004 -115.810 -41.044 0.009 -44.986 0.006 -46.775 0.005 -50.848 0.003 -51.753 0.003 -52.284 0.002 -109.752 -52.173 0.002 -108.492 -51.490 0.003 -134.195 -50.677 0.003 -149.675 -50.500 0.003 -159.105 -50.296 0.003 -171.408 -48.911 0.004 -176.724 -49.083 0.004 -48.773 0.004 -47.506 0.004 -47.811 0.004 -46.361 0.005 -46.149 0.005 -45.536 0.005 -44.238 0.006 -44.824 0.006 -43.591 0.007 -42.101 0.008 -41.806 0.008 -40.650 0.009 -41.699 0.008 -40.813 0.009 -40.203 0.010 -39.642 0.010 -39.641 0.010 -39.632 0.010 -38.926 0.011 -39.251 0.011 -38.616 0.012 -38.726 0.012 -38.915 0.011 174.601 155.804 155.799 150.219 124.708 119.468 120.694 108.871 98.487 85.314 81.787 64.948 63.398 48.516 43.851 34.195 21.429 20.910 8.070 -7.980 -13.094 -25.399 -35.505 -38.784 Note: Data obtained from on-wafer measurements  AMMC-6220: Typical Scattering Parameters[1] Freq GHz 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 ( Tc=25°C, VD1=VD2= 5 V, Zin = Zout = 50 Ω) dB -0.673 -1.492 -0.635 -2.032 -4.747 -7.598 -10.093 -11.669 -12.300 -12.080 -11.733 -11.303 -11.062 -10.806 -10.685 -10.652 -10.584 -10.383 -10.495 -10.452 -10.610 -10.688 -10.967 -11.235 -11.633 -12.194 -13.128 -13.449 -13.681 -13.952 -13.377 -12.587 -11.593 -10.402 -9.292 -8.122 -7.019 S11 mag 0.925 0.842 0.929 0.791 0.579 0.417 0.313 0.261 0.243 0.249 0.259 0.272 0.280 0.288 0.292 0.293 0.296 0.303 0.299 0.300 0.295 0.292 0.283 0.274 0.262 0.246 0.221 0.213 0.207 0.201 0.214 0.235 0.263 0.302 0.343 0.393 0.446 phase 103.544 74.318 37.411 -3.432 -34.664 -55.144 -66.567 -72.043 -74.699 -78.056 -84.004 -91.544 -99.362 -106.223 -113.824 -120.486 -126.927 -133.049 -139.396 -144.569 -150.864 -155.580 -161.115 -166.831 -170.420 -173.577 -174.413 -173.665 -169.464 -166.852 -162.360 -158.579 -155.670 -156.118 -158.544 -161.368 -165.866 dB 8.514 21.395 22.845 23.951 24.262 24.334 24.292 24.333 24.406 24.422 24.477 24.511 24.549 24.467 24.397 24.282 24.165 24.037 23.885 23.757 23.582 23.400 23.239 23.018 22.817 22.522 22.241 21.974 21.613 21.241 20.881 20.458 20.070 19.610 19.157 18.767 18.255 S21 mag 2.665 11.742 13.875 15.759 16.335 16.471 16.392 16.468 16.606 16.639 16.744 16.810 16.883 16.724 16.590 16.372 16.152 15.916 15.641 15.412 15.104 14.792 14.519 14.154 13.831 13.369 12.944 12.552 12.041 11.536 11.067 10.541 10.080 9.561 9.075 8.677 8.180 phase 117.926 43.305 -11.567 -56.971 -94.487 dB -43.657 -45.849 -48.892 -49.740 -51.629 S12 mag 0.003 0.007 0.005 0.004 0.003 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.006 phase -109.410 103.138 43.526 -22.501 -50.634 -90.737 dB -3.600 -10.722 -13.626 -17.072 -20.223 -23.311 S22 mag 0.661 0.291 0.208 0.140 0.097 0.068 0.050 0.032 0.022 0.026 0.039 0.054 0.072 0.094 0.117 0.140 0.162 0.184 0.202 0.217 0.228 0.237 0.241 0.241 0.234 0.225 0.213 0.203 0.194 0.182 0.175 0.170 0.172 0.180 0.195 0.211 0.235 phase 170.277 137.294 140.892 136.619 138.857 145.708 152.950 167.732 -157.216 -119.404 -97.950 -87.835 -83.845 -82.739 -83.562 -86.634 -91.173 -95.581 -100.779 -106.161 -111.602 -116.032 -121.314 -126.026 -130.007 -132.934 -134.003 -134.954 -134.370 -132.741 -128.824 -124.591 -118.577 -112.117 -108.617 -105.366 -102.937 -130.371 -50.551 -126.702 -54.247 -155.390 -52.202 178.048 153.532 129.984 107.486 86.003 65.381 45.507 26.125 7.602 -10.789 -28.235 -45.463 -62.199 -79.220 -95.555 -51.151 -52.505 -51.516 -52.868 -51.015 -50.416 -50.539 -49.084 -49.630 -49.737 -47.563 -47.315 -48.035 -47.535 -46.791 -108.004 -26.096 -121.340 -29.853 -137.135 -33.106 -155.276 -31.608 -155.878 -28.205 -177.492 -25.326 175.740 169.269 161.489 140.732 129.430 117.272 112.685 114.739 101.112 89.549 88.406 82.235 65.758 65.253 52.243 40.428 41.677 28.636 18.417 17.829 7.552 4.072 2.016 -6.903 -4.490 -22.836 -20.540 -18.620 -17.073 -15.819 -14.698 -13.888 -13.275 -12.824 -12.509 -12.349 -12.368 -12.610 -12.974 -13.422 -13.851 -14.243 -14.790 -15.145 -15.378 -15.265 -14.896 -14.201 -13.518 -12.580 -111.710 -45.741 -128.090 -45.071 -144.087 -46.403 -159.749 -44.636 -175.168 -44.918 169.124 154.065 139.077 124.370 109.618 95.315 81.210 66.820 53.298 -44.953 -44.297 -44.325 -44.648 -44.290 -43.949 -44.129 -43.714 -43.878 Note: Data obtained from on-wafer measurements  Biasing and Operation The AMMC-6220 is normally biased with a single positive drain supply connected to both VD1 and VD2 bond pads through the 2 bypass capacitors as shown in Figure 20. The recommended supply voltage is 3 V. It is important to have 2 separate 100pF bypass capacitors, and these two capacitors should be placed as close to the die as possible. The AMMC-6220 does not require a negative gate voltage to bias any of the three stages. No ground wires are needed because all ground connections are made with plated through-holes to the backside of the device. Refer the Absolute Maximum Ratings table for allowed DC and thermal conditions The location of the RF bond pads is shown in Figure 12. Note that all the RF input and output ports are in a Ground-Signal-Ground configuration. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally sufficient for signal connections, however double bonding with 0.7 mil gold wire or use of gold mesh is recommended for best performance, especially near the high end of the frequency band. Thermosonic wedge bonding is preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams and a ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. The guided wedge at an untrasonic power level of 64 dB can be used for 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2 °C. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is 100um thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). This MMIC is also static sensitive and ESD precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Eutectic attach is not recommended and may jeopardize reliability of the device. Assembly Techniques The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy[1,2] For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plate metal shim (same length and width as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip and/or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plan should be free of any residue that may jeopardize electrical or mechanical attachment. Vcc Out In Figure 19. AMMC-6220 Schematic  VD1 0 800 705 700 870 VD2 1045 1700 800 330 RFin 330 RFout 0 0 90 1600 0 1700 Figure 20. AMMC-6220 Bonding pad locations To VDD DC supply 100 pF Capacitors VD1 VD2 RF OUTPUT RF INPUT AMMC-6220 Gold Plated Shim (Optional) Figure 21. AMMC-6220 Assembly diagram Ordering Information: AMMC-6220-W10 = 10 devices per tray AMMC-6220-W50 = 50 devices per tray For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0218EN AV02-1287EN - June 23, 2008
AMMC-6220 价格&库存

很抱歉,暂时无法提供与“AMMC-6220”相匹配的价格&库存,您可以联系我们找货

免费人工找货