0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
7700B

7700B

  • 厂商:

    BITECH

  • 封装:

  • 描述:

    7700B - Power Factor Correction Power Module - Bi technologies

  • 数据手册
  • 价格&库存
7700B 数据手册
MODEL 7700 SERIES Power Factor Correction Power Module NEW HIGHER POWER VERSION MODELS/RANGE 7700B 7700-2A FEATURES AND BENEFITS 1,500 Watts / 3,000 Watts 2,000 Watts / 4,000 Watts • Module contains all power components necessary to provide power factor correction in a switching power supply. - Rectifier bridge with SCRs for inrush current limiting - Ultrafast platinum output diode - 500V .1Ω Max. FET (7700B) - Low gate charge, 500V, .0675Ω max. FET (7700-2A) • Provides optimum use of available line current • Allows power supply to meet harmonic requirement • Module design reduces cost of heat sink • Saves significant space and assembly time • Low cost • Internal temperature sensing • Replaces up to 10 each TO-220 or TO-247 discrete power semiconductors • Custom module versions available to meet specific requirements such as: - Motor drives - Power servo amplifiers - Solenoid drivers - Solid state relays - 3 phase rectifier bridges APPLICATIONS 7 Designed to optimally facilitate a boost type power factor correction (PFC) system for designs with up to 36A rms input current. Specifications subject to change without notice. Standard applications include switching power supplies from 1,000 watts to 4,000 watts with line voltages up to 300 V rms. 7-19 Model 7700 Series ELECTRICAL CHARACTERISTICS Parameter MOS FET Continuous Drain Current Symbol ID Conditions1 TC = 25°C TC = 100°C Model B -2A B -2A B -2A B -2A B -2A B -2A B, -2A B, -2A B -2A B, -2A B, -2A B B B -2A -2A -2A B -2A B -2A B -2A B -2A B -2A B -2A B, -2A B -2A Min. Typ. Max. 56 80 34.8 48 224 320 760 960 19 28 8.7 20 ±30 100 2.8 2.7 4.0 ±400 600 80 320 480 128 196 56 80 224 320 1.4 1.8 810 860 28.8 39.6 Units A A A A A A mJ mJ mJ mJ A A V µA V V V nA nC nC nC nC nC nC A A A A V V ns ns ns ns Ω Ω °C °C/W °C/W Pulsed Drain Current IDM Single Pulse Avalanche Energy EAS Repetitive Avalanche Energy Avalanche Current Gate to Source Voltage Leakage Current Drain to Source ON Voltage Gate Threshold Voltage Gate Leakage Current Total Gate Charge Gate Source Charge Gate Drain (Miller) Charge Total Gate Charge Gate Source Charge Gate Drain (Miller) Charge Continous Source Current (Body Diode) Pulsed Source Current (Body Diode) Body Diode Forward Voltage Reverse Recovery Time (Body Diode) Reverse Recovery Charge (Body Diode) Internal Gate Resistor Junction Temperature Thermal Resistance EAR IAR VGS IDSS VDS(ON) VGS(TH) IGSS Qg Qgs Qgd Qg Qgs Qgd IS ISM VSD trr Qrr RG TJ RTHJC IS IS IF IF IF IF = 56A, VGS = 0V = 80A, VGS = 0V = 56A, di/dt = 400Aµs = 80A, di/dt = 400Aµs = 56A, di/dt = 400Aµs = 80A, di/dt = 400Aµs VGS = 0V, VDS = 500V IC = 28A, VGS = 10V VDS = VGS, ID = 1mA VGS ±20V ID = 56A, VDS = 400V VGS = 10V ID = 80A, VDS = 400V VGS = 10V 1.5 1.0 2.0 0.4 0.5 1.25 0.25 150 0.20 .15 .025 .20 7-20 Model 7700 Series ELECTRICAL CHARACTERISTICS Parameter SCRS Average On Current RMS On Current (As AC switch) Peak Repetitive Off Voltage Symbol IT(AV) IRMS Conditions1 TC = 75°C, 180° half sine wave Model B -2A B -2A B -2A B -2A B -2A B -2A B, -2A B, -2A B, -2A B, -2A B, -2A B, -2A B -2A B -2A B, -2A B -2A Min. Typ. Max. 20 35 30 55 600 800 300 400 25 300 1.6 1.6 3.5 1.5 1.5 60 120 35 100 100 Units A A A A V V A A µA µA V V V V V mA mA mA mA mA Ω Ω °C °C/W °C/W A A V V A A µA µA V V °C °C/W °C/W VRRM/ VDRM Peak One Cycle Non-Repetitive ITSM Surge Current Reverse and Direct Leakage IR/ID Current On Voltage VT Gate Trigger Voltage (Includes drop across RG) Gate Trigger Current (Each SCR Individually) Holding Current Internal Gate Resistor Junction Temperature Thermal Resistance Bridge Diodes Average Forward Current Peak Repetitive Reverse Voltage Peak One Cycle Non-Repetitive Surge Current Reverse Leakage Current Forward Voltage Junction Temperature Thermal Resistance VGT TJ = TJMax., t = 10ms (50 Hz), sine VR = VRRM, VD = VDRM IT = 25A IT = 45A VD= 6V, 22Ω VD= 6V, 22Ω. TJ = -40°C VD= 6V, 22Ω. TJ = 125°C VD= 6V, 22Ω VD= 6V, 22Ω. TJ = -40°C VD= 6V, 22Ω. TJ = 125°C (Each SCR Individually) Connected to each SCR VGT 0.5 0.5 0.2 0.3 0.1 5 10 2 IH RG Tj Rthjc 10 10 150 1.4 0.7 2.0 1.0 20 40 600 800 300 400 100 300 1.2 1.2 150 1.5 1.0 1.8 1.2 IF(AV) VRRM IFSM IR/ VF TJ RTHJC TC= 105°C, 180°, half sine wave TJ = TJ Max., t = 10ms (50 Hz), sine VR = VRRM IF = 25A IF = 40A B -2A B -2A B -2A B -2A B -2A B, -2A B -2A 7 0.5 0.5 7-21 Model 7700 Series ELECTRICAL CHARACTERISTICS Parameter Output Diode Average Forward Current Peak Repetitive Reverse Voltage Peak One Cycle Non-Repetitive Surge Current Reverse Leakage Current Forward Voltage Reverse Recovery Time Junction Temperature Thermal Resistance TH1 NTC Thermistor Resistance Resistance Ratio Symbol IF(AV) VRRM IFSM IR/ VF trr TJ RTHJC Conditions1 TC= 120°C Model B -2A B, -2A B -2A B -2A B -2A B -2A B, -2A B -2A Min. Typ. Max. 24 60 600 500 500 60 1 2.8 2.8 35 40 175 Units A A V A A µA mA V V ns ns °C °C/W °C/W KΩ TJ = TJMax., t = 10ms (50 Hz), sine VR = VRRM IF = 24A IF = 50A IF = 6A, di/dt = 300Aµs IF = 2A, di/dt = 200Aµs 1.0 0.5 0.9 0.75 22.5 .126 .0916 .0679 .0511 25 1.0 0.9 27.5 R25 RT/R25 I = 1mA T = 80°C T = 90°C T = 100°C T = 110°C Dissipation Constant Thermal Time Constant PD t B, -2A B, -2A B, -2A B, -2A B, -2A B, -2A B, -2A 1.0 10 mW/°C sec 1 - TCase = 25°C unless otherwise specified. 7-22 Model 7700 Series SYSTEM DIAGRAM 4 3 1 CT L1 CT 7 2 + Co 8 9 Vo EMI Filter AC Line Load Dotted line denotes BI Model 7700 and associated pins. 14 Pin 1: AC 1 Pin 2: AC 2 Pin 3: Bridge Output Pin 4: SCR Gates Pin 5: Ground Pin 6: Ground Pin 7: FET Drain Pin 8: Ultrafast Anode Pin 9: Ultrafast Cathode Pin 10: Gate Ground Pin 11: Gate Drive Pin 12: N.C. Pin 13: TH 1 Pin 14: TH 2 13 12 Thermal Shutdown Circuitry 11 10 Gate Driver 6 5 PFC PWM 7 7-23 Model 7700 Series OUTLINE DIMENSIONS (Inch) 3.050 Max. 2.560 .505 ±.010 Pin 14 Pin .050 x .020 14 Places .950 1.100±.015 1.440 Max. R .235 ∅ .280 ∅ .150 .160 Ref. Pin 1 6X .175 .075 Ref. 6X .275 .330 .150 .154±.015 .515 Ref. .361 .286 Part Number Lot Number Date Code ORDERING INFORMATION 77 Model Package 0 0 B Range, Watts: B = 1,500 to 3,000 Watts -2A = 2,000 to 4,000 Watts Circuit Function: 0 = Power Factor Correction 7-24 Model 7700 Series MODEL 7700 APPLICATION NOTES OUTPUT VOLTAGE OUTPUT CAPACITOR The dc output voltage must be greater than the highest peak line voltage expected: The output capacitor size is often limited by the line dropout requirements of the power supply: VO > VIN MAX x 1.414 DISCONTINUOUS CONDUCTION CO MIN = 2 x POUT x td VO2 - VO MIN2 When the line voltage approaches zero volts the PFC PWM will be forced towards its maximum duty cycle. This will cause the current to become discontinuous, which will result in some distortion. The line voltage at which the current will become discontinuous will be: Where: POUT is the output power, td is the dropout time, and VO MIN is the minimum allowed output voltage. The 120Hz output voltage ripple can be calculated to insure it meets the system requirements: VO x (1 - DCMAX ) VIN discontinuous = DCMAX The line voltage at which the PWM will be duty cycle limited will be: VO P– P 120 = (2xP) x (2 x π1x f xC + ESR) V O O O The maximum rms 120Hz ripple current will be: I RMS 120 = VIN duty cycle limited = VO x (1-DCMAX) INDUCTOR L1 1.414x PO VO The 100KHz output voltage ripple will be: The inductor value controls the amplitude of the 100KHz current ripple. This can greatly effect the amount of distortion and thus the amount of EMI filtering required on the input. Ripple current can be calculated for any point along the input sine wave: VO P– P 100K = VIN x (1- VO IN ) x Lxf (1.414 x V ) ( 2 x π1x f xC + ESR) O The maximum rms 100KHz ripple current will be: VIN x (1- V ) I RMS 100K = 2.828 x L x f O 1.414 x VIN 7 VIN (t) x DC(t) I P – P(t) = Lx f Where: DC(t)=1-VIN(t)/VO, L is the inductance of L1, and f is the switching frequency. A good starting point would be to set Ip-p equal to 20% of the 120 Hz peakcurrent, solving for L: GATE DRIVE REQUIREMENTS FET switching times must be fast enough to insure that the FET turns off when the PWM is at maximum duty cycle. Snubbing circuits across the FET will slow the turn off time and should not be used. A discrete gate driver circuit will allow the fastest possible switching times. The Unitrode UC3710 or Telcom TC4422 drivers offer a single chip approach L≥ 5 x V x (1PIN x f 2 IN 1.414 x VIN VO ) 7-25 Model 7700 Series MODEL 7700 APPLICATION NOTES with only slightly slower switching times. The gate driver must be located as close to the module as possible. Ground sense pin 10 should be used to insure the fastest possible switching times. HEAT RADIATOR The heat radiator requirements can be determined by the maximum power dissipated (at low line) and the maximum ambient temperature. The back side of the module should be limited to about 100°C by utilizing the internal thermistor. 100 - TMAX AMB P LOWLINE O RΘ = Care should be used when attaching the module to the heat radiator. The screws must be tightened incrementally in a crisscross pattern. A torque limiting screwdriver should be used. The high current levels require currrent sense transformers to maintain a reasonable efficiency. We recommend BI Technologies HM31-20200. PFC PWM VENDORS Popular sources are: Unitrode UC3854 Micro Linear ML4812 Linear Technology LT1248 7-26 Model 7700 Series
7700B 价格&库存

很抱歉,暂时无法提供与“7700B”相匹配的价格&库存,您可以联系我们找货

免费人工找货