0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADS8556EVM

ADS8556EVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVAL MODULE FOR ADS8556

  • 数据手册
  • 价格&库存
ADS8556EVM 数据手册
www.ti.com User’s Guide ADS8555EVM-PDK Evaluation Module ABSTRACT This user's guide describes the operation and use of the ADS8555 evaluation module (EVM). The ADS8555 is a 6-channel, simultaneous sampling, 16-bit successive approximation (SAR) analog-to-digital converter (ADC). Each input channel on the device can support true bipolar input ranges up to ±12 V. The device includes a programmable, internally buffered voltage reverence. The ADC includes a serial programming interface (SPI) interface and a parallel interface (word and byte mode) for data communication. Device configuration is achieved through simple static digital input pins (hardware mode) or through communications to the SPI interface (control register configuration in software mode). This user's guide covers the circuit description, schematic diagram, and bill of materials for the ADS8555 circuit board. This EVM hardware and software can also be used to support the ADS8556, ADS8557, and ADS8558 devices from this family. Other devices can be tested by desoldering the ADC and reprogramming the EVM (see Section 6.3). Detailed instructions for using other family members are provided later in this document. SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 1 Table of Contents www.ti.com Table of Contents 1 ADS8555EVM-PDK Overview.................................................................................................................................................3 1.1 ADS8555EVM-PDK Features............................................................................................................................................ 3 1.2 ADS8555EVM Features.....................................................................................................................................................3 2 EVM Analog Interface.............................................................................................................................................................4 2.1 ADC Supply, Input, Voltage Reference, and Digital Connections...................................................................................... 4 2.2 ADC Amplifier Drive........................................................................................................................................................... 5 3 Digital Interface.......................................................................................................................................................................6 3.1 Parallel Interface................................................................................................................................................................ 6 3.2 Serial Interface (SPI)..........................................................................................................................................................6 3.3 I2C Bus and EEPROM....................................................................................................................................................... 6 3.4 Connections to the PHI Connector.....................................................................................................................................7 4 Power Supplies....................................................................................................................................................................... 8 4.1 External Power Connections and Test Points.................................................................................................................... 8 4.2 Low-Dropout Regulator (TPS7A3001 for HVSS)............................................................................................................... 8 4.3 Low-Dropout Regulator (TPS7A4700 for AVDD, HVDD)................................................................................................... 9 5 Installing the ADS8555EVM Software................................................................................................................................. 10 6 ADS8555EVM Operation...................................................................................................................................................... 12 6.1 Connecting the Hardware and Running the GUI..............................................................................................................12 6.2 Jumper Settings for the ADS8555EVM............................................................................................................................13 6.3 Modifying Hardware and Using Software to Evaluate Other Devices in the Family.........................................................14 6.4 EVM GUI Global Settings for ADC Control and Registers............................................................................................... 15 6.5 Time Domain Display....................................................................................................................................................... 16 6.6 Frequency Domain Display.............................................................................................................................................. 17 6.7 Histogram Display............................................................................................................................................................ 18 7 Bill of Materials, Layout, and Schematics.......................................................................................................................... 19 7.1 Bill of Materials.................................................................................................................................................................19 7.2 Board Layout....................................................................................................................................................................22 7.3 Schematics.......................................................................................................................................................................23 8 Revision History................................................................................................................................................................... 26 Trademarks Keysight™ is a trademark of Keysight Technologies. LabVIEW™ is a trademark of National Instruments. Microsoft® and Windows® are registered trademarks of Microsoft Corporation. All trademarks are the property of their respective owners. 2 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated ADS8555EVM-PDK Overview www.ti.com 1 ADS8555EVM-PDK Overview This document describes how to connect the EVM to your computer and test equipment to evaluate device performance and understand device features. The document also describes how to install and use the associated evaluation module software. 1.1 ADS8555EVM-PDK Features Figure 1-1 shows the proper component connection for the ADS8555EVM. The ADS8555 evaluation module kit includes the following features: • • • • Hardware and software required for diagnostic testing as well as accurate performance evaluation of the ADS8555 ADC. Digital and analog interface power with universal serial bus (USB) power. External power is required for the high-voltage ±15-V supply. Easy-to-use evaluation software for the 64-bit Microsoft® Windows®7, Windows® 8, and Windows® 10 operating systems. Precision host interface (PHI) controller translates the USB (2.0) or higher to parallel or serial digital communications. +15V, -15V, GND xx xx xx xx xx xx xx ADS8555EVM Signal Source PHI Board x Signal Source ADS8555 GUI x x x Included in kit Figure 1-1. System Connection for Evaluation x 1.2 ADS8555EVM Features • • • • • • Six input channels connected to external single-ended signals that are source applied to subminiature version A (SMA) connectors or headers. Serial and parallel interface connects to the PHI controller via a 60-pin connector (J2). High-voltage power supplies (HVDD and HVSS) are not included. Connect common lab supplies via screw terminal J1. Analog low-voltage supplies (AVDD = 5 V) are generated using an external 15-V supply and a low-dropout regulator (LDO). HVDD (12-V supply) is also generated using the 15-V supply and an LDO. HVSS (–12-V supply) is generated using the –15-V supply and an LDO. Digital low-voltage supply (DVDD = 3.3 V) is generated using USB power from the PHI controller. Integrated or external voltage reference options are available. SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 3 EVM Analog Interface www.ti.com 2 EVM Analog Interface The ADS8555EVM is an evaluation module built using a two-board modular EVM system. One board is a digital controller (PHI), and the other board contains the ADC and associated analog circuitry. Both boards and the associated cables form the ADS8555EVM-PDK. 2.1 ADC Supply, Input, Voltage Reference, and Digital Connections Figure 2-1 shows the decoupling on AVDD, BVDD, HVDD, and HVSS and the voltage reference. The decoupling capacitors match the recommendations in the ADS8555 data sheet. The layout (see Figure 7-1) uses the shortest possible connections to the decoupling capacitors and connects the ground end to the GND plane using vias. The ADS8555 can use an external or internal voltage reference. This reference can be selected by changing the position of JP06 to INT for internal or EXT for external. Figure 2-1 also shows the analog input signal and digital signal connections. AVDD C1 1µF C2 1µF C3 1µF C4 1µF C6 1µF C7 1µF U 2A GND CH_A0 GND CONVST_A U 2B 26 34 35 40 41 46 47 50 60 C28 HVDD 1µF 31 R97 CH_A0 23 CONVS T_A 49.9 AV DD AV DD AV DD AV DD AV DD AV DD AV DD AV DD AV DD AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND BV DD BGND HVDD HVSS BVDD 9 33 C71 10uF GND 25 32 37 38 43 44 49 52 53 55 57 59 54 CH_A1 36 CH_B0 39 CONVST_B R98 REFC_A CH_A1 CH_B0 22 8 GND 30 HVSS GND 56 CH_B1 42 CH_C0 45 CONVST_C R99 REFC_B CH_B1 CH_C 0 21 CONVS T_C 49.9 ADS8555SPMR C5 1µF C27 1µF C73 10uF GND CH_C1 58 REFC_C 48 CH_C 1 GND GND 51 GND CS /FS RD WOR D/B YTE PAR/S ER CONVS T_B 49.9 C72 10uF GND BU SY/INT RA NGE/XC LK HW/SW REFEN/WR STB Y RES ET REFIO TP8 DB0/SEL _A DB1/SEL _B DB2/SEL _C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SC LK DB7/HBEN/DCEN DB8/SDO_A DB9/SDO_B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBU FEN DB15 18 27 62 63 24 28 19 20 29 61 17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 64 ADS8555SPMR VREF R71 49.9 R72 49.9 R74 R73 49.9 R75 49.9 R77 49.9 R46 49.9 R78 49.9 49.9 R79 R80 49.9 49.9 R81 49.9 R82 49.9 R83 R84 49.9 49.9 R85 R86 49.9 49.9 R87 R35 49.9 49.9 R88 49.9 R89 R90 49.9 49.9 R91 R92 49.9 49.9 R93 R94 49.9 49.9 R95 R96 49.9 49.9 49.9 R76 BUSY/INT RANGE/XCLK HW/SW REFEN/WR ST BY RESET CS/FS ~RD_RETURN ~RD WORD/BYTE PAR/SER DB0/SEL_A DB1/SEL_B DB2/SEL_C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCLK SCLK_RET URN DB7/HBEN/DCEN DB8/SDO_A DB9/SDO_B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 JP06 C40 470nF 25V INT 1 2 3 EXT AVDD U6A 2 3 C39 100nF VIN VOUT TRIM/NR TEMP R47 6 5 0 GND 4 GND C37 1µF R48 0.22 REF5025AIDGKR GND GND C38 10uF GND Figure 2-1. ADC Signal and Supply Connection 4 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Analog Interface 2.2 ADC Amplifier Drive Figure 2-2 shows the op amp configuration for each ADC drive input. The default configuration is a noninverting buffer configuration. The gain of this circuit can be adjusted by changing R03 and R02 as needed. C02 can be used to limit the amplifier bandwidth or compensate the amplifier. R01 and C01 can also be used to create a low-pass filter. Jumper JP00 can be used to completely bypass the amplifier. This diagram only shows one channel, but this circuit is repeated six times. For other channels, see Figure 7-2. BYPS R03 R02 DNP 1.00k TP9 A0 1 2 3 0 JP00 AMP C02 DNP 100pF HVDD R04 GND C03 5 TP10 A0in 100nF GND 4 J00 1 C05 220pF 1 R01 3 2 1.00k 2 3 4 5 CH_A0 24.9 C01 1000pF U00 OPA209AIDBVR GND C04 100nF HVSS GND GND GND Figure 2-2. Amplifier Drive Circuit SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 5 Digital Interface www.ti.com 3 Digital Interface As noted in Section 1.1, the EVM interfaces with the PHI and communicates with the computer over the USB. There are two devices on the EVM with which the PHI communicates: the ADS8555 ADC (over SPI or parallel) and the EEPROM (over I2C). The electrically erasable programmable read-only memory (EEPROM) comes preprogrammed with the information required to configure and initialize the ADS8555 platform. When the hardware is initialized, the EEPROM is no longer used. 3.1 Parallel Interface The parallel interface signals are generated on the PHI controller and are connected through J2. Each of these signals has a 47-Ω resistor between the device and the controller to slow down the signal edges in order to minimize signal overshoot. The digital signals can be monitored on the J3, J4, and J5 test headers. 3.2 Serial Interface (SPI) The ADS8555 ADC uses SPI serial communication in mode 1 (CPOL = 0 and CPHA= 1). Because the serial clock (SCLK) frequency can be as fast as 36 MHz, the ADS8555EVM offers 47-Ω resistors between the controller and device to aid with signal integrity. Typically, in high-speed SPI communication, fast signal edges can cause overshoot; these 47-Ω resistors slow down the signal edges in order to minimize signal overshoot. 3.3 I2C Bus and EEPROM The circuit shown in Figure 3-1 is used with the EVM controller (PHI) for EVM identification. This circuit is not required by the ADS8555 for operation. The switch (S1) is write protected and does not need to be changed for EVM operation. EVM_ID_PWR EVM_ID_PWR C74 R101 10.0k U3 1 2 3 4 A0 VCC A1 WP A2 SCL VSS SDA 8 7 S1 1 100nF GND 6 EVM_ID_SCL 5 EVM_ID_SDA 2 3 BR24G32FVT-3AGE2 GND R102 EVM_ID_WP 0 GND Figure 3-1. I2C Bus and EEPROM 6 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Digital Interface 3.4 Connections to the PHI Connector Connector J2 is used to connect the PHI digital controller printed circuit board (PCB) to the ADS8555EVM. This connector has all the digital signals as well as the BVDD supply. The power for the BVDD supply is from the USB connection. This connector also provides I2C signals that are used on the EEPROM identification circuit. The digital signals can be monitored on the J3, J4, and J5 test headers. Figure 3-2 provides a schematic showing the various connections to the PHI connector. BVDD R49 100k R50 100k J4 WORD/BYTE RESET RANGE/XCLK STBY CONVST_A CONVST_B CONVST_C ~RD CS/FS BUSY/INT 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 GND J3 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 BVDD D7 Zener 3.6V TSW-116-07-G-D BVDD 2 4 6 8 10 12 14 CONVST_A 16 CONVST_B 18 CONVST_C 20 CS/FS 22 24 ~RD 26 ~RD_RETURN 28 BUSY/INT 30 REFEN/WR 32 34 36 38 40 42 44 46 HW/SW 48 50 52 PAR/SER 54 C75 EVM_ID_SDA 56 10uF EVM_ID_SCL 58 60 WORD/BYTE RESET RANGE/XCLK STBY TSW-110-07-G-D DB0/SEL_A DB1/SEL_B DB2/SEL_C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCLK DB7/HBEN/DCEN DB8/SDO_A DB9/SDO_B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 TP1 5.5V J2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 DNP 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 DB0/SEL_A DB1/SEL_B DB2/SEL_C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCLK DB7/HBEN/DCEN DB8/SDO_A DB9/SDO_B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 SCLK_RETURN EVM_ID_WP EVM_ID_PWR GND R55 100k R56 100k R57 100k MP1 MP2 GND J5 REFEN/WR HW/SW PAR/SER 1 3 5 2 4 6 GND GND GND GND MP3 MP4 QTH-030-01-L-D-A GND GND TSW-103-07-G-D GND Figure 3-2. Connections to PHI Connector SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 7 www.ti.com Power Supplies 4 Power Supplies The ADS8555 device uses four power supplies: AVDD (5 V), BVDD (3.3 V), HVDD (12 V), and HVSS (–12 V). The two high-voltage power supplies require an external ±15-V supply and are connected on a screw terminal strip (J1). The ±15-V supplies are regulated from ±15 V to ±12 V for HVDD and HVSS. The digital voltage supply (BVDD), is generated with the USB power. The analog supply (AVDD) is generated using the external 15-V supply and an LDO to generate 5 V. 4.1 External Power Connections and Test Points The screw terminal block J1 is used to connect the external high voltage supplies. These supplies are not provided in the evaluation module kit and the expectation is that a low-noise lab supply is used to provide this power (for example, Keysight™ E3632A). The high-voltage supplies have transient voltage suppressor diodes to help protect the ADC from transients. These supplies are typically connected to ±15 V. For details on operation, see the ADS8555 data sheet. Figure 4-1 also shows how each supply has a light-emitting diode (LED) monitor for quick verification that power is applied. 3 2 1 J1 D1 D2 SMAJ 15A SMAJ 15A +15V -15V GND C20 C26 10µF 10µF GND 1 D3 APT2012LZGCK Green GND BVDD R20 6.65k D4 APT2012LZGCK Green GND R30 6.65k 1 1 AVDD BVDD D5 APT2012LZGCK Green 2 R19 10.0k HVDD 2 AVDD 1 R18 10.0k 2 HVSS GND HVDD 2 HVSS GND D6 APT2012LZGCK Green GND Figure 4-1. External Power Connections and Test Points 4.2 Low-Dropout Regulator (TPS7A3001 for HVSS) As shown in Figure 4-2, the –15-V external power is connected to the TPS7A3001 LDO to generate –12 V. This LDO output can be programmed to different voltages by changing the feedback network R6 and R7. This LDO was selected for low noise and flexibility. -15V R4 0 TP3 -15V U4 8 C16 25V 10uF 5 OUT R6 93.1k EN FB 6 7 GND IN HVSS C19 50V 10nF 3 R5 1 2 0 C17 50V 10nF C18 25V 10uF NR /SS R7 10.0k DN C NC GND PAD 4 9 GND TPS7A3001DRBR GND GND Figure 4-2. Low-Dropout Regulator (TPS7A3001 for HVSS) 8 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Power Supplies 4.3 Low-Dropout Regulator (TPS7A4700 for AVDD, HVDD) The 15-V external power is connected to two LDOs (TPS7A4700RGWR). One LDO generates AVDD (5 V), and one generates HVDD (12 V). As shown in Figure 4-3, the TPS7A4700RGWR LDO output can be programmed to different voltages by installing or uninstalling the resistors connected on pins 4-12. This LDO was selected for low noise and flexibility. +15V AVDD U5 R25 15 16 0 R29 C29 25V 22uF 13 EN 1 20 OUT OUT IN IN R28 0 3 SENSE C30 25V 10uF 100k NR 4 5 6 8 9 10 11 12 GND 14 6P4V2 6P4V1 3P2V 1P6V 0P8V 0P4V 0P2V 0P1V 19 18 17 2 NC NC NC NC GND C36 1µF 25V 7 21 GND PAD TPS7A4700RGWR R36 R37 R38 R39 R40 R45 DNP DNP DNP DNP 0 0 0 0 0 0 GND TP2 +15V +15V HVDD GND U1 R1 15 16 0 R3 C8 25V 22uF 13 IN IN EN OUT OUT SENSE R2 1 20 0 3 C9 25V 10uF 100k 4 5 6 8 9 10 11 12 GND NR 6P4V2 6P4V1 3P2V 1P6V 0P8V 0P4V 0P2V 0P1V NC NC NC NC GND PAD 14 19 18 17 2 GND C10 1µF 25V 7 21 TPS7A4700RGWR R26 R27 R8 R9 DNP DNP 0 0 0 0 R10 R15 R16 R17 DNP DNP 0 0 0 0 GND GND Figure 4-3. Low-Dropout Regulator (TPS7A4700 for AVDD, HVDD) SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 9 www.ti.com Installing the ADS8555EVM Software 5 Installing the ADS8555EVM Software Download the latest version of the EVM GUI installer from the Tools and Software folder of the ADS8555EVM and run the GUI installer to install the EVM GUI software on your computer. Accept the license agreements and follow the on-screen instructions shown in Figure 5-1 to complete the installation. Figure 5-1. ADS8555 Software Installation Prompts As a part of the ADS8555EVM GUI installation, a prompt with a Device Driver Installation (as shown in Figure 5-2) appears on the screen. Click Next to proceed. Figure 5-2. Device Driver Installation Wizard Prompts 10 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Installing the ADS8555EVM Software www.ti.com The ADS8555EVM requires the LabVIEW™ run-time engine and may prompt for the installation of this software, as shown in Figure 5-3, if not already installed. Figure 5-3. LabVIEW™ Run-Time Engine Installation Verify that C:\Program Files (x86)\Texas Instruments\ADS8555EVM is as shown in Figure 5-4 after these installations. Figure 5-4. ADS8555EVM GUI Folder Post-Installation SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 11 www.ti.com ADS8555EVM Operation 6 ADS8555EVM Operation This section provides step-by-step instructions for connecting the ADS8555EVM to the computer and evaluating the performance of the ADS8555. 6.1 Connecting the Hardware and Running the GUI 1. Set the jumpers according to Section 6.2. 2. Physically connect P2 of the PHI to J10 of the ADS8555EVM. Install the screws to assure a robust connection. 3. Connect the USB on the PHI to the computer first. a. LED D5 on the PHI lights up, indicating that the PHI is powered up. b. LEDs D1 and D2 on the PHI start blinking to indicate that the PHI is booted up and communicating with the PC; Figure 6-1 shows the resulting LED indicators. 4. As shown in Figure 6-2, start the software GUI. Notice that the LEDs blink slowly when the FPGA firmware is loaded on the PHI. This process takes a few seconds, afterwards the AVDD and DVDD power supplies turn on. 5. Connect the external ±15-V power supplies and GND to J1. This connection generates the AVDD, HVDD, and HVSS supplies (HVDD = 12 V, HVSS = –12 V, and AVDD = 5 V). 6. Connect the signal generator. The default input range is ±10 V (or 10 Vpk). A common input signal applied is a sinusoidal 1-kHz, 9.9-Vpk signal with a 0-V offset. This signal is adjusted just below the full-scale range to avoid clipping. +15V, -15V, GND External Supply Test point headers ADS8555EVM PHI Controler Input signals connected to first two channels. JP00 t JP05 Bypass amplifier jumper JP06 External/Internal Vref configuration Figure 6-1. ADS8555EVM Hardware Setup and LED Indicators Select EVM GUI from start menu, or associated shortcut. Figure 6-2. Launch the EVM GUI Software 12 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com ADS8555EVM Operation 6.2 Jumper Settings for the ADS8555EVM The amplifiers and reference can be configured with jumpers. The amplifier jumpers (JP00–JP05) determine if the amplifier is used or if an external signal is directly connected to the ADC input. JP06 is used to select either the internal or external reference option. Make sure that the GUI configuration for the device reference matches the setting of JP06. The GUI software starts up in the internal reference mode, so make sure the JP06 is in the INT position. Table 6-1 lists the various jumper settings for the ADS8555EVM. Table 6-1. Jumper Settings JUMPER SETTING DEFAULT FUNCTION JP00–JP05 AMP/BYPS AMP These eight jumpers determine if the amplifier is used to buffer the inputs signals or if the amplifier is bypassed. Choosing AMP connects the amplifier between each SMA connector (JP00–JP05) and the ADC input. The default amplifier configuration is noninverting (gain = 1 V/V). The amplifier gain configuration can be adjusted by soldering and desoldering different resistors. Choosing the bypass configuration (BYPS) connects the SMA connectors directly to the ADC input. JP06 INT/EXT INT This jumper selects either the internal or external mode on the voltage reference. Using the internal mode disconnects the external reference. Using the external mode connects the external REF5025 2.5-V reference to the ADC reference input. Make sure that the GUI settings for the voltage reference match the setting on this jumper. SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 13 www.ti.com ADS8555EVM Operation 6.3 Modifying Hardware and Using Software to Evaluate Other Devices in the Family The ADS8555 is part of a family of related devices. This EVM hardware and software support the entire family because all the devices are pin-for-pin compatible. The Table 6-2 lists other compatible devices in the family. The following procedure shows how to modify the hardware and software to evaluate the other devices in this family. 1. Desolder the ADS8555 and replace this device with the device you want to evaluate. 2. Enable the EEPROM for writing. This process is done by changing switch S2 to the WR_EN (top) position using tweezers. Figure 6-3 details this process. 3. Connect the EVM and start the GUI as described in Figure 6-2. 4. Under the Tools menu in Figure 6-4, select Load EEPROM to load the EEPROM according to the device that is currently installed. When this procedure is successfully completed, the status bar at the top of the software updates according to the device installed on the hardware. Table 6-2. Compatible Devices DEVICE RESOLUTION PARALLEL DATA RATE SERIAL DATA OTHER FEATURE RATE ADS8555 16 630 450 Does not have partial power-down mode ADS8556 16 630 450 — ADS8557 14 670 470 — ADS8558 12 730 500 — Use tweezers to change position of switch S1 ^WR_EN_ as shown to allow the EPROM write operation. Figure 6-3. Enable EEPROM for Writing 1. On the ^tools_ menu select ^load EEPROM_ 3. After pressing ^load EEPROM_ it will take a few minutes to load the EEPROM. 2. Under ^Supported Devices_ select the desired devices and press ^Load EEPROM_X 4. The top of the status bar on the software will indicate what the EVM connected has been updated to. Figure 6-4. Configure EEPROM and Software for the New Device 14 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com ADS8555EVM Operation 6.4 EVM GUI Global Settings for ADC Control and Registers Figure 6-5 shows the Register Map page. This page can only be accessed by selecting Software device mode. Editing the CONFIG_REG configures the different ranges and voltage references available on the ADS8555. See the ADS8555 data sheet for register field details. The left hand side of this GUI contains important configurations such as interface selection, device mode, range selection, and sampling rate. These controls are always available on the left hand side of the GUI regardless of which page is selected. Also, if Hardware mode is used, the hardware input select pins on the device are set according the controls on the left hand side. For example, when in hardware mode if the Parallel Interface is selected, than the PAR/SER pin on the device is driven low by the PHI to select parallel interface mode. Edit control register contents here. Select different ^Pages_ here. Select serial or parallel digital interface. Select ^Software_ mode to access the ^Register Map Config_ Select sampling rate. Figure 6-5. EVM GUI Global Settings for ADC Control and Registers SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 15 ADS8555EVM Operation www.ti.com 6.5 Time Domain Display The time domain display tool allows visualization of the ADC response to a given input signal. This tool is useful for both studying the behavior and debugging any gross problems with the ADC or drive circuits. The user can trigger a capture of the data of the selected number of samples from the ADS8555EVM, as per the current interface mode settings indicated in Figure 6-6 by using the Capture button. The sample indices are on the x-axis and there are two y-axes showing the corresponding output codes as well as the equivalent analog voltages based on the specified reference voltage. Switching pages to any of the analysis tools described in the subsequent sections causes calculations to be performed on the same set of data. Figure 6-6. Time Domain Display 16 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com ADS8555EVM Operation 6.6 Frequency Domain Display The spectral analysis tool, shown in Figure 6-7, is intended to evaluate the dynamic performance (SNR, THD, SFDR, SINAD, and ENOB) of the ADS8555 ADC through single-tone sinusoidal signal fast Fourier transform (FFT) analysis using the 7-term Blackman-Harris window setting. The FFT tool includes windowing options that are required to mitigate the effects of noncoherent sampling (this discussion is beyond the scope of this document). The 7-term Blackman-Harris window is the default option and has sufficient dynamic range to resolve the frequency components of up to a 24-bit ADC. The None option corresponds to not using a window (or using a rectangular window) and is not recommended. Figure 6-7. Frequency Domain Display SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 17 ADS8555EVM Operation www.ti.com 6.7 Histogram Display Noise degrades ADC resolution and the histogram tool can be used to estimate effective resolution, which is an indicator of the number of bits of ADC resolution losses resulting from noise generated by the various sources connected to the ADC when measuring a DC signal. The cumulative effect of noise coupling to the ADC output from sources such as the input drive circuits, the reference drive circuit, the ADC power supply, and the ADC itself is reflected in the standard deviation of the ADC output code histogram that is obtained by performing multiple conversions of a DC input applied to a given channel. As shown in Figure 6-8, the histogram corresponding to a DC input is displayed on clicking the Capture button. Figure 6-8. Histogram Display 18 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials, Layout, and Schematics 7 Bill of Materials, Layout, and Schematics This section provides a bill of materials (BOM), a PCB layout for the ADS8555EVM, and schematics for the ADS8555EVM. 7.1 Bill of Materials Table 7-1 lists the bill of materials (BOM) for the ADS8555EVM. Table 7-1. Bill of Materials (BOM) DESIGNATOR QTY !PCB VALUE DESCRIPTION PART NUMBER MANUFACTURER 1 Printed circuit board ADS8555 Any C1–C7, C10, C27, C28, C36, C37 12 1uF CAP, CERM, 1 uF, 25 V, +/10%, X7R, 0603 C0603C105K3RACTU Kemet C01, C11, C21, C31, C41, C51 6 1000pF CAP, CERM, 1000 pF, 50 V, +/- 5%, C0G/NP0, 0603 GRM1885C1H102JA01D MuRata C03, C04, C13, C14, C23, C24, C33, C34, C43, C44, C53, C54 12 0.1uF CAP, CERM, 0.1 µF, 50 V,+/10%, X7R, AEC-Q200 Grade 1, 0603 C0603C104K5RACAUTO Kemet C05, C15, C25, C35, C45, C55 6 220pF CAP, CERM, 220 pF, 50 V, +/5%, C0G/NP0, 0603 06035A221JAT2A AVX C8, C29 2 22uF CAP, CERM, 22 uF, 25 V, +/10%, X7R, 1210 GRM32ER71E226KE15L MuRata C9, C16, C18, C30, C38, C71, C72, C73, C75 9 10uF CAP, CERM, 10 uF, 25 V, +/10%, X5R, 0805 CL21A106KAFN3NE Samsung ElectroMechanics C17, C19 2 0.01uF CAP, CERM, 0.01 µF, 50 V,+/10%, X7R, 0603 885012206089 Wurth Elektronik C20, C26 2 10uF CAP, CERM, 10 µF, 50 V,+/10%, X7R, AEC-Q200 Grade 1, 1206 CGA5L1X7R1H106K160AC TDK C39, C74 2 0.1uF CAP, CERM, 0.1 uF, 50 V, +/10%, X7R, 0603 C0603C104K5RACTU Kemet C40 1 0.47uF CAP, CERM, 0.47 uF, 25 V, +/GRM188R71E474KA12D 10%, X7R, 0603 MuRata D1, D2 2 15V Diode, TVS, Uni, 15 V, 24.4 Vc, 400 W, 16.4 A, SMA SMAJ15A Littelfuse D3–D6 4 Green LED, Green, SMD APT2012LZGCK Kingbright 3.6V Diode, Zener, 3.6 V, 500 mW, SOD-123 MMSZ4685T1G ON Semiconductor D7 1 H1–H4 4 Hex Standoff Threaded #4-40 Aluminum 0.250" (6.35mm) 1/4" 1891 Keystone H5–H8 4 MACHINE SCREW PAN PHILLIPS, 5/16", 4-40 PMSSS 440 0031 PH B&F Fastener Supply H13, H14 2 Machine Screw Pan PHILLIPS RM3X4MM 2701 M3 APM HEXSEAL H15, H16 2 ROUND STANDOFF M3 STEEL 5MM 9774050360R Wurth Elektronik J00–J05 6 SMA Straight Jack, Gold, 50 Ohm, TH 901-144-8RFX Amphenol RF J1 1 Terminal Block, 3.5mm Pitch, 3x1, TH ED555/3DS On-Shore Technology J2 1 Header(Shrouded), 19.7mil, 30x2, Gold, SMT QTH-030-01-L-D-A Samtec J3 1 Header, 100mil, 16x2, Gold, TH TSW-116-07-G-D Samtec J4 1 Header, 100mil, 10x2, Gold, TH TSW-110-07-G-D Samtec J5 1 Header, 100mil, 3x2, Gold, TH TSW-103-07-G-D Samtec SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 19 Bill of Materials, Layout, and Schematics www.ti.com Table 7-1. Bill of Materials (BOM) (continued) DESIGNATOR QTY JP00–JP06 7 R1, R2, R03, R4, R5, R13, R23, R25, R28, R33, R43, R53, R102 13 0 RES, 0, 5%, 0.1 W, AEC-Q200 CRCW06030000Z0EA Grade 0, 0603 Vishay-Dale R01, R11, R21, R31, R41, R51 6 1.00k RES, 1.00 k, 0.1%, 0.1 W, 0603 RT0603BRB071KL Yageo America R3, R29 2 100k RES, 100 k, 1%, 0.1 W, AECQ200 Grade 0, 0603 CRCW0603100KFKEA Vishay-Dale R04, R14, R24, R34, R44, R54 6 24.9 RES, 24.9, 1%, 0.1 W, 0603 RC0603FR-0724R9L Yageo R6 1 93.1k RES, 93.1 k, 1%, 0.1 W, 0603 RC0603FR-0793K1L Yageo R7, R18, R19, R101 4 10.0k RES, 10.0 k, 1%, 0.1 W, 0603 RC0603FR-0710KL Yageo R8, R10, R16, R27, R36, R39 6 0 RES, 0, 5%, 0.063 W, 0402 RC0402JR-070RL Yageo America R20, R30 2 6.65k RES, 6.65 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 CRCW04026K65FKED Vishay-Dale R35, R46, R71– R99 31 49.9 RES, 49.9, 1%, 0.063 W, AECCRCW040249R9FKED Q200 Grade 0, 0402 Vishay-Dale R47 1 0 RES, 0, 1%, 0.1 W, AEC-Q200 RMCF0603ZT0R00 Grade 0, 0603 Stackpole Electronics Inc R48 1 0.22 RES, 0.22, 1%, 0.1 W, AECQ200 Grade 0, 0603 ERJ-3RQFR22V Panasonic R49, R50, R55, R56, R57 5 100k RES, 100 k, 1%, 0.0625 W, 0402 RC0402FR-07100KL Yageo America S1 1 Switch, Slide, SPDT 100mA, SMT CAS-120TA Copal Electronics SH-JP00–SH-JP06 7 Shunt, 100mil, Flash Gold, Black SPC02SYAN Sullins Connector Solutions TP2–TP23 22 Test Point, Miniature, Black, TH 5001 Keystone 6 2.2 nV/rtHz, 18 MHz, Precision, RRO, Operational Amplifier, 4.5 to 36 V, -40 to 125 degC, 5-pin SOT23 (DBV5), Green (RoHS & no Sb/Br) OPA209AIDBVR Texas Instruments U1, U5 2 36V, 1A, 4.17μVRMS, RF Low-Dropout (LDO) TPS7A4700RGWR Voltage Regulator, RGW0020A (VQFN-20) Texas Instruments U2 1 16 Bit Analog to Digital Converter 6 Input 1 SAR 64LQFP (10x10) ADS8555SPMR Texas Instruments U3 1 I2C BUS EEPROM (2-Wire), TSSOP-B8 BR24G32FVT-3AGE2 Rohm 1 Vin -3V to -36V, -200mA, Ultra-Low-Noise, High-PSRR, Low-Dropout (LDO) Linear Regulator, DRB0008A (VSON-8) TPS7A3001DRBR Texas Instruments U6 1 3 µVpp/V Noise, 3 ppm/°C Drift Precision Series Voltage Reference, DGK0008A (VSSOP-8) REF5025AIDGKR Texas Instruments C02, C12, C22, C32, C42, C52 0 CAP, CERM, 100 pF, 50 V, +/5%, C0G/NP0, 0603 885012006057 Wurth Elektronik U00–U05 U4 20 VALUE 1x2 100pF DESCRIPTION PART NUMBER MANUFACTURER Header, 100mil, 3x1, Tin, TH PEC03SAAN Sullins Connector Solutions ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials, Layout, and Schematics Table 7-1. Bill of Materials (BOM) (continued) DESIGNATOR QTY FID1, FID2, FID3 0 R02, R12, R22, R32, R42, R52 0 R9, R15, R17, R26, R37, R38, R40, R45 0 TP1 0 VALUE DESCRIPTION PART NUMBER MANUFACTURER Fiducial mark. There is nothing N/A to buy or mount. N/A 1.00k RES, 1.00 k, 0.1%, 0.1 W, 0603 RT0603BRB071KL Yageo America 0 RES, 0, 5%, 0.063 W, 0402 RC0402JR-070RL Yageo America Test Point, Miniature, Black, TH 5001 Keystone SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 21 Bill of Materials, Layout, and Schematics www.ti.com 7.2 Board Layout Figure 7-1 shows the PCB layout for the ADS8555EVM. Figure 7-1. Board Layout 22 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials, Layout, and Schematics 7.3 Schematics Figure 7-2 shows a schematic for the amplifier drive section of the ADS8555EVM. The amplifier is by default a buffer and can be bypassed by using a jumper. BYPS JP0 0 1 TP9 A0 2 3 R03 0 AM P C02 DNP 100p F R02 DNP 1.00k HVDD R04 2 U00 OPA209 AIDBVR GND GND R41 1 AM P BYPS 1 0 2 2 3 4 5 C41 1000 pF U04 OPA209 AIDBVR C44 GND 100n F HVS S GND TP11 A1 GND 2 3 R13 R12 DNP 1.00k C45 220p F 3 1.00k C12 JP0 1 CH_C0 24.9 100n F GND 1 4 J04 GND R44 C43 TP14 C0in 100n F GND GND DNP 100p F TP13 C0 HVDD C04 HVS S JP0 4 0 5 3 4 5 C01 1000 pF R43 R42 DNP 1.00k AM P DNP 100p F C05 220p F 3 1.00k 2 C42 5 R01 1 CH_A0 24.9 BYPS C03 100n F GND 1 4 1 2 3 GND TP10 A0in J00 GND HVDD R11 C11 1000 pF HVS S U01 OPA209 AIDBVR C14 0 GND C53 J05 1 R51 3 AM P BYPS 1 0 TP17 B0 2 GND CH_B0 24.9 5 4 R21 C25 220p F 100n F GND 1 J02 3 2 3 4 5 1.00k 2 GND GND R24 C23 TP18 B0in 1 U05 OPA209 AIDBVR C54 100n F HVS S GND HVDD GND C51 1000 pF 2 3 R23 2 3 4 5 1.00k JP0 2 CH_C1 C55 220p F 100n F GND 1 4 GND R54 24.9 TP16 C1in GND R22 DNP 1.00k TP15 C1 HVDD GND 100n F GND C22 DNP 100p F JP0 5 5 2 3 4 5 1.00k R53 R52 DNP 1.00k 3 AM P DNP 100p F C15 220p F BYPS C52 5 4 2 CH_A1 24.9 J01 1 R14 C13 100n F GND 1 1 2 3 GND TP12 A1in C21 1000 pF U02 OPA209 AIDBVR C24 GND 100n F HVS S GND GND GND C32 AM P JP0 3 1 BYPS R33 0 TP19 B1 2 3 DNP 100p F R32 DNP 1.00k HVDD GND C33 5 R31 3 C31 1000 pF 2 3 4 5 1.00k 2 CH_B1 C35 220p F 100n F GND 1 4 1 R34 24.9 TP20 B1in J03 U03 OPA209 AIDBVR C34 GND 100n F HVS S GND GND GND Figure 7-2. Amplifier Drive Schematic SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 23 Bill of Materials, Layout, and Schematics www.ti.com Figure 7-3 shows the LDOs used to generate the AVDD, HVDD, and HVSS supplies. TP2 +15 V +15 V HVDD U1 R1 0 R3 C8 25V 22uF 15 16 IN IN 13 EN OUT OUT SENSE R2 1 20 -15V 0 3 C9 25V 10uF 100k 4 5 6 8 9 10 11 12 GND 6P4V2 6P4V1 3P2V 1P6V 0P8V 0P4V 0P2V 0P1V NR 14 NC NC NC NC 19 18 17 2 GND PAD 7 21 R4 0 TP3 -15V U4 GND 8 C10 1µF 25V C16 25V 10uF TPS7A47 00RGWR R26 R27 R8 R9 DN0 P DN0 P 0 0 R10 R15 R16 R17 P P 0 DN0 0 DN0 C19 50V 10nF GND GND HVSS OUT IN 5 EN 6 NR/SS 7 DNC 3 NC R5 1 R6 93.1 k FB GND PAD 2 0 C17 50V 10nF C18 25V 10uF R7 10.0 k 4 9 GND TPS7A30 01DRBR GND GND GND +15 V HVSS HVDD AVDD 2 1 0 3 D1 AVDD U5 R25 BVDD J1 HVSS D2 R18 10.0 k R19 10.0 k HVDD AVDD R20 6.65 k BVDD GND GND D4 APT 2012LZ GCK Gree n 13 EN 4 5 6 8 9 10 11 12 GND 1 D5 APT 2012LZ GCK Gree n 2 D3 APT 2012LZ GCK Gree n 2 1 10µ F IN IN OUT OUT SENSE R28 1 20 0 3 C30 25V 10uF 100k C26 10µ F 2 C20 1 -15V 2 +15 V R29 C29 25V 22uF R30 6.65 k SMAJ15 A 1 SMAJ15 A 15 16 D6 APT 2012LZ GCK Gree n GND 6P4V2 6P4V1 3P2V 1P6V 0P8V 0P4V 0P2V 0P1V NR 14 NC NC NC NC 19 18 17 2 GND PAD 7 21 GND C36 1µF 25V TPS7A47 00RGWR GND GND GND GND R36 R37 R38 R39 R40 R45 P DN0 P P DN0 P 0 DN0 0 DN0 GND TP21 GND TP22 GND TP23 GND GND GND GND GND Figure 7-3. LDO Schematic 24 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials, Layout, and Schematics Figure 7-4 shows the ADC decoupling, digital connections, and reference connections. AVDD C1 1µ F C2 1µ F C3 1µ F C4 1µ F C6 1µ F C7 1µ F GND GND U2B 26 35 40 41 46 47 50 60 25 AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND BVDD C28 HVDD 1µ F 32 37 38 43 44 49 BVDD 52 53 R49 100 k 55 57 R50 100 k 59 J4 9 BVDD BGND 8 31 HVDD HVSS 30 WORD/BYTE RESET RANG E/XCLK STBY CONVST _A CONVST _B CONVST _C ~RD CS/FS BUSY/INT GND HVSS GND ADS85 55SPM R C5 1µ F C27 1µ F GND GND 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 BVDD GND U2A CH_A0 CONVST _A 33 R97 23 C71 10u F GND CONVST_A 54 CH_A1 REFC_A 36 CH_B0 CONVST _B R98 GND 39 CH_ B0 22 CONVST_B 56 CH_B1 R99 CH_ B1 45 CH_ C0 21 CONVST_C 49. 9 C73 10u F GND CH_C1 18 CS/FS RD WORD/BY TE PAR/SER 19 DB0 /SE L_A DB1 /SE L_B DB2 /SE L_C DB3 /DCIN_ C DB4 /DCIN_ B DB5 /DCIN_ A DB6 /SCLK DB7 /HBEN/DCE N DB8 /SDO_A DB9 /SDO_B DB1 0/SDO_ C DB1 1 DB1 2 DB1 3/SDI DB1 4/REFBUF EN DB1 5 REFC_B 42 CH_C0 CONVST _C BUSY/INT RANGE/XCLK HW/SW REFE N/WR STBY RESET CH_ A1 49. 9 C72 10u F TSW-110 -07-G-D CH_ A0 49. 9 58 REFC_C 48 CH_ C1 51 REFIO TP 8 VREF ADS85 55SPM R 27 R71 62 63 20 R76 R78 29 61 R80 17 16 R82 15 14 R84 13 12 R86 11 10 R35 7 6 49. 9 49. 9 49. 9 R77 R46 49. 9 49. 9 R79 49. 9 49. 9 49. 9 R81 49. 9 49. 9 R83 49. 9 49. 9 R85 49. 9 49. 9 R87 49. 9 49. 9 49. 9 R89 49. 9 49. 9 R91 R92 49. 9 49. 9 R93 1 64 R75 R90 3 2 R73 49. 9 R88 5 4 49. 9 R74 24 28 49. 9 R72 R94 49. 9 49. 9 R95 R96 49. 9 BUSY/INT RANG E/XCLK HW/SW REFEN/WR STBY RESET CS/FS ~RD_RETURN ~RD WORD/BYTE PAR/SER J3 DB0/SEL_ A DB1/SEL_ B DB2/SEL_ C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCL K DB7/HBEN/DCEN DB8/SDO _A DB9/SDO _B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 DB0/SEL_ A DB1/SEL_ B DB2/SEL_ C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCL K SCLK_ RET URN DB7/HBEN/DCEN DB8/SDO _A DB9/SDO _B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 TEMP GND R56 100 k 3 2 EVM _ID_PWR MP3 MP4 R57 100 k J5 REFEN/WR HW/SW PAR/SER 1 3 5 2 4 6 TSW-103-07-G-D EVM _ID_PWR EVM _ID_PWR C74 0 GND 1 C37 1µ F R48 0.2 2 A0 VCC 8 R101 10. 0k S1 1 100 nF GND 2 A1 WP 7 3 A2 SCL 6 EVM _ID_SCL 4 VSS SDA 5 EVM _ID_SDA 2 3 GND R102 GND EVM _ID_WP GND BR24G32 FVT-3AGE2 GND DB0/SEL_ A DB1/SEL_ B DB2/SEL_ C DB3/DCIN_C DB4/DCIN_B DB5/DCIN_A DB6/SCL K DB7/HBEN/DCEN DB8/SDO _A DB9/SDO _B DB10/SDO_C DB11 DB12 DB13/SDI DB14/REFBUFEN DB15 SCLK_ RET URN GND R55 100 k 4 REF502 5AIDG KR GND GND GND GND 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 GND R47 6 5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 QT H-030 -01-L-D-A U3 VOUT TRIM/NR 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 GND C40 470 nF 25V INT 1 3 C39 100 nF VIN MP1 MP2 GND U6A 2 2 4 WORD/BYTE 6 RESET 8 RANG E/XCLK 10 STBY 12 14 CONVST _A 16 CONVST _B 18 CONVST _C 20 CS/FS 22 24 ~RD 26 ~RD_RETURN 28 BUSY/INT 30 REFEN/WR 32 34 36 38 40 42 44 46 HW/SW 48 50 52 PAR/SER 54 C75 EVM _ID_SDA 56 10u F EVM _ID_SCL 58 60 TSW-116 -07-G-D BVDD JP06 EXT D7 Ze ner 3.6 V GND 49. 9 AVDD TP 1 5.5 V DNP J2 AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD 34 C38 10u F EVM _ID_WP 0 GND GND Figure 7-4. ADC, Reference, and Digital I/O Schematic SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback ADS8555EVM-PDK Evaluation Module Copyright © 2021 Texas Instruments Incorporated 25 Revision History www.ti.com 8 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (November 2009) to Revision A (May 2021) Page • Changed entire document because of substantial changes in EVM hardware and software.............................1 26 ADS8555EVM-PDK Evaluation Module SLAU298A – NOVEMBER 2009 – REVISED MAY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
ADS8556EVM 价格&库存

很抱歉,暂时无法提供与“ADS8556EVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货