0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AM2732ADRFGQZCERQ1

AM2732ADRFGQZCERQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LFBGA285

  • 描述:

    AM2732ADRFGQZCERQ1

  • 数据手册
  • 价格&库存
AM2732ADRFGQZCERQ1 数据手册
AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 AM273x Sitara™ Microcontrollers 1 Features • Processor Cores: • • Dual-core Arm® Cortex®-R5F MCU subsystem operating up to 400 MHz, highly-integrated for real-time processing – Dual-core Arm® Cortex®-R5F cluster supports dual-core and single-core operation – 32KB ICache and 32KB DCache per R5F core with SECDED ECC on all memories – Single-core: 128KB TCM per cluster (128KB TCM per R5F core) – Dual-core: 128KB TCM per cluster (64KB TCM per R5F core) TMS320C66x DSP core – Single core, 32-bit, floating point DSP – Operating at 450 MHz (14.4 GMAC) Digital Connectivity – 4x Serial Peripheral Interface (SPI) controllers operating up to 25 MHz – 3x Inter-Integrated Circuit (I2C) ports – 4x Universal Asynchronous ReceiverTransmitters (UART) Industrial and control interfaces: • • • 3x Enhanced Pulse-Width Modulator (ePWM) 1x Enhanced Capture Module (eCAP) 2x Modular Controller Area Network (MCAN) modules with CAN-FD support Power Management: • Simplified power sequencing and reduced number of power supply rails • Dual voltage digital I/O supporting 3.3V and 1.8V operation Memory subsystem: Security: • • • Up to 5.0 MB On Chip RAM (OCSRAM) – Memory space sharable between DSP, MCU, and shared L3 – 3.5625MB shared L3 memory – 960KB dedicated to Main subsystem – 384KB dedicated to DSP subsystem External Memory Interfaces (EMIF) – QSPI interface operating up to 67 MHz System on Chip (SoC) Services and Architecture: • • • • • 12x EDMA for various subsystems, MCU, DSP and Accelerator cores 5x Real-Time Interrupt (RTI) modules Mailbox system for Interprocessor Communication (IPC) JTAG/Trace interfaces for device debugging Clock source – 40.0 MHz crystal with internal oscillator – Supports external oscillator at 40/50 MHz – Supports externally driven clock (Square/Sine) at 40/50 MHz High-speed Serial Interfaces: • • • 10/100 Mbps Ethernet (RGMII/RMII/MII) Input: 2x 4-lane MIPI D-PHY CSI 2.0 Data Output: 4-lane Aurora/LVDS General Connectivity Peripherals: • General Purpose Analog to Digital Converters (GPADC) – 1x 9-channel ADC supporting up to 625 Ksps Device Security – Programmable embedded Hardware Security Module (HSM) – Secure authenticated and encrypted boot support – Customer programmable root keys, symmetric keys (256 bit), Asymmetric keys (up to RSA-4K or ECC-512) with Key revocation capability – Crypto hardware accelerators - PKA with ECC, AES (up to 256 bit), TRNG/DRBG Functional Safety: • • • Functional Safety-Compliant targeted – Developed for functional safety applications – Documentation will be available to aid ISO 26262 functional safety system design – Hardware integrity up to ASIL B targeted – Safety-related certification • ISO 26262 certification by TÜV SÜD planned AEC-Q100 qualification targeted Operating Conditions – Automotive grade temperature range supported – Industrial grade temperature range supported Package options: • ZCE (285-pin) nFBGA package 13mm x 13mm, 0.65 mm pitch • 45-nm technology • Compact solution size An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 2 Applications • • • • • • • • Robotics Factory Automation Safety Guards Building Automation Automotive Audio Traffic Monitoring Machine Vision Avionics Industrial Transport 3 Description The AM273x family of microcontrollers is a highly-integrated, high-performance microcontroller based on the Arm Cortex-R5F and a C66x floating-point DSP cores. The device enables Original-Equipment Manufacturers (OEM) and Original-Design Manufacturers (ODM) to quickly bring to market devices with robust software support, rich user interfaces, and high performance, through the maximum flexibility of a fully integrated, mixed processor solution. With an integrated Hardware Security Module (HSM) and functional safety support built in, large, integrated RAM on die and a wide temperature range, the AM273x offers a safe, secure and cost effective solution for many industrial and automotive applications. The AM273x device is provided as part of a complete platform solution including hardware reference designs, software drivers, DSP library, sample software configurations/applications, API guide, and user documentation. Device Information PACKAGE(1) BODY SIZE AM2732ADRFGAZCER nFBGA (285) 13 mm x 13 mm AM2732ADRFGQZCERQ1 nFBGA (285) 13 mm x 13 mm PART NUMBER (1) 2 For more information, see Section 11, Mechanical, Packaging, and Orderable Information. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 3.1 Functional Block Diagram Figure 3-1. AM273x Functional Block Diagram Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 3 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 2 3 Description.......................................................................2 3.1 Functional Block Diagram........................................... 3 4 Revision History.............................................................. 4 5 Device Comparison......................................................... 5 5.1 Related Products........................................................ 6 6 Terminal Configuration and Functions..........................7 6.1 Pin Diagram................................................................ 7 6.2 Pin Attributes.............................................................12 6.3 Signal Descriptions................................................... 33 7 Specifications................................................................ 42 7.1 Absolute Maximum Ratings...................................... 42 7.2 ESD Ratings - Automotive........................................ 42 7.3 Power-On Hours (POH)............................................ 42 7.4 Recommended Operating Conditions.......................43 7.5 Operating Performance Points .................................45 7.6 Power Supply Specifications ....................................45 7.7 I/O Buffer Type and Voltage Rail Dependency......... 45 7.8 CPU Specifications................................................... 46 7.9 Thermal Resistance Characteristics for nFBGA Package [ZCE285A] ...................................................46 7.10 Power Consumption Summary............................... 46 7.11 Timing and Switching Characteristics..................... 47 8 Detailed Description......................................................74 8.1 Overview................................................................... 74 8.2 Main Subsystem....................................................... 74 8.3 DSP Subsystem........................................................74 8.4 Radar Control Subsystem.........................................74 8.5 Other Subsystems.................................................... 74 8.6 Boot Modes...............................................................77 9 Applications, Implementation, and Layout................. 79 9.1 Typical Application.................................................... 79 10 Device and Documentation Support..........................85 10.1 Device Nomenclature..............................................85 10.2 Tools and Software................................................. 89 10.3 Documentation Support.......................................... 90 10.4 Support Resources................................................. 90 10.5 Trademarks............................................................. 90 10.6 Electrostatic Discharge Caution..............................90 10.7 Glossary..................................................................90 11 Mechanical, Packaging, and Orderable Information.................................................................... 91 4 Revision History Changes from December 17, 2021 to February 28, 2022 (from Revision * (December 2021) to Revision A (February 2022)) Page • (Device Comparison): Added Q1, automotive device product links....................................................................5 • (ESD Ratings - Automotive): Updating HBM tolerance to +/-2kV..................................................................... 42 • (Power-On Hours (POH): Added extended industrial POH data. Modified automotive/industrial table formatting. ........................................................................................................................................................42 • (Power-On Hours (POH)): Added automotive temperature profile table.......................................................... 42 • (Power-On Hours (POH)): Added industrial temperature profile table..............................................................43 • (Operating Performance Points): Changing order of device grades.................................................................45 • (Power Supply Sequencing and Reset Timing): Added further detail to the power-on/off sequence diagram. Added power-on/off sequence timing table for further clarification...................................................................47 4 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 5 Device Comparison Table 5-1. Device Comparison FUNCTION AM2732 On-chip memory AM2732-Q1 3.625 Mbytes ASIL 3.625 Mbytes B-Targeted PROCESSORS MCU Arm Cortex (R5F) Yes DSP (C66x) Yes RADAR FEATURES Hardware Accelerator 2.0 No PERIPHERALS Ethernet Interface RGMII, RMII, MII (10/100 ONLY) Yes Serial Peripheral Interface (SPI) ports 4 Quad Serial Peripheral Interface (QSPI) 1 Inter-Integrated Circuit (I2C) Interface 3 Modular Controller Area Network (MCAN) modules with CAN-FD 2 Universal Asynchronous Receiver-Transmitters (UART) 4 Enhanced Pulse-Width Modulator (ePWM) 3 Enhanced Capture Module (eCAP) Yes Hardware in Loop (HIL/DMM) Yes General Purpose ADC (9 Channels) 1 4-lane Aurora/LVDS Debug Yes 4-lane MIPI D-PHY CSI2.0 (CSI2_RX0 and CSI2_RX1) JTAG/Trace 2 Yes Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 5 AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 www.ti.com 5.1 Related Products Sitara™ processors Broad family of scalable processors based on Arm® Cortex® cores with flexible accelerators, peripherals, connectivity and unified software support – perfect for sensors to servers. Sitara™ processors have the reliability needed for use in industrial applications. AM273x Sitara™ microcontrollers AM273x microcontrollers enable industrial Ethernet networks, robust operation with extensive ECC on memories, and enhanced security features. Sitara™ processors - Evaluation Modules TI provides Evaluation Modules (EVM) are also provided to help kick-start product development. See the AM273x GP EVM for more information. Products to complete your design Review products that are frequently purchased or used in conjunction with this product to complete your design. See the following: • 4x 5-A (20-A) multiphase buck converter PMIC with functional safety features for automotive SoCs LP8764-Q1 • Extended temperature, robust low-latency gigabit Ethernet PHY transceiver DP83867E • Automotive high-speed CAN transceiver TCAN1044-Q1 6 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 6 Terminal Configuration and Functions 6.1 Pin Diagram Figure 6-1 shows the pin locations for the 285-pin NanoFree™ (nFBGA) package (ZCE). Figure 6-2, Figure 6-3, Figure 6-4, and Figure 6-5 show the same pins, but split into four quadrants. A B C D E F G H J K L M N P R T U V W 19 VSS MSS_GPIO_9 MSS _MIBSPIB _MISO MSS _MIBSPIB _CS0 RCSS_GPIO _49 MSS _MIBSPIA _CS0 MSS _MIBSPIA _CLK DSS_UARTA _RX DSS_UARTA _TX MSS_RGMII _TCLK MSS_RGMII _RD3 MSS_RGMII _RCLK MSS_RGMII _RD1 MSS_MDIO _DATA MSS_MDIO _CLK RCSS _MIBSPIA _CS0 RCSS _MIBSPIB _MOSI RCSS _MIBSPIB _CLK VSS 18 MSS_GPIO _12 MSS_GPIO _10 MSS _MIBSPIB _MOSI MSS _MIBSPIB _CLK MSS _MIBSPIB _CS1 MSS_I2CA _SCL MSS _MIBSPIA _HOSTIRQ MSS _MIBSPIA _MOSI MSS_RGMII _TCTL MSS_RGMII _TD3 MSS_RGMII _TD0 MSS_RGMII _RD2 VNWA MSS_RGMII _RD0 RCSS _MIBSPIA _MOSI RCSS _MIBSPIA _CLK RCSS _MIBSPIA _HOSTIRQ RCSS _MIBSPIB _MISO RCSS _MIBSPIB _HOSTIRQ 17 RCSS_UARTA _TX MSS_GPIO _13 MSS_GPIO _11 RCSS _MIBSPIB _CS0 HW_SYNC _FE1 HW_SYNC _FE2 16 NERRORIN _FE2 RCSS_UARTA _RX 15 NERRORIN _FE1 NRESET_FE2 NRESET_FE1 VSS NWARMRESET _IN_FE1 13 CSI2_RX1M0 CSI2_RX1P0 12 CSI2_RX1P1 CSI2_RX1M1 11 CSI2 _RX1CLKM CSI2 _RX1CLKP 10 CSI2_RX1M2 CSI2_RX1P2 9 CSI2_RX1M3 CSI2_RX1P3 8 CSI2_RX0M0 CSI2_RX0P0 7 CSI2_RX0M1 CSI2_RX0P1 6 CSI2 _RX0CLKP CSI2 _RX0CLKM 5 CSI2_RX0P2 CSI2_RX0M2 4 CSI2_RX0P3 CSI2_RX0M3 3 VSS MSS_GPIO_8 1 MSS_MCANA MSS_MCANA _TX _RX VSS MSS _MIBSPIA _MISO MSS_I2CA _SDA VSS 14 2 MSS _MIBSPIB _CS2 VIOIN_18 VSS VIOIN _18CSI VSS VSS VDD VDD VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VSS VDD VDD VDD VDD MSS_MCANB MSS_MCANB _TX _RX MSS_EPWMA0 MSS_GPIO _28 VDD_SRAM2 MSS_QSPI _D1 MSS_QSPI _D3 MSS_QSPI _CS MSS_RS232 _RX MSS_GPIO_2 FE2_REFCLK MSS_QSPI _D2 MSS_QSPI _CLK PMIC _CLKOUT MSS_RS232 _TX FE1_REFCLK XREF_CLK1 NRESET XREF_CLK0 WARM_RESETNERROR_OUT TRACE_CTL TRACE_CLK TRACE_DATA TRACE_DATA TRACE_DATA _10 _11 _12 TRACE_DATA TRACE_DATA _13 _14 MSS_UARTB _TX VSS LVDS _FRCLKP LVDS _FRCLKM LVDS_CLKP LVDS_CLKM LVDS_TXM0 LVDS_TXP0 LVDS_TXM1 LVDS_TXP1 LVDS_TXM2 LVDS_TXP2 MSS_UARTA _RX LVDS_TXM3 LVDS_TXP3 VPP VDD_SRAM3 VIOIN _18LVDS VIOIN _18LVDS VIOIN TEMP _SENSOR_2 NERROR_IN VIOIN VSS TEMP _SENSOR_1 VIOIN_18 TRACE_DATA TRACE_DATA TRACE_DATA _6 _8 _9 TRACE_DATA _15 VSS VIOIN TRACE_DATA TRACE_DATA _5 _7 VIOIN_18 VDD VIOIN_18 TRACE_DATA TRACE_DATA TRACE_DATA _1 _3 _4 VSS VDD VIOIN TRACE_DATA TRACE_DATA _0 _2 VSS VSS TMS MSS_QSPI _D0 VIOIN VDD VSS TCK VIOIN_18 VDD TDO TDI MSS_RGMII _TD2 VIOIN RCSS _MIBSPIA _MISO VDD_SRAM1 VDD VSS VIOIN _18CSI MSS_RGMII _TD1 VDD VIOIN NWARMRESET _IN_FE2 MSS_RGMII _RCTL OSC_CLK _OUT_AUDIO VIOIN _18ADC ADC5 ADC7 ADC2 ADC1 ADC6 VIOIN _18CLK VSS MSS_UARTA _TX ADC9 ADC8 ADC4 ADC3 VBGAP CLKM CLKP VSS Not to scale Figure 6-1. Pin Diagram (Top View) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 7 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 A B C D E F G H J 19 VSS MSS_GPIO_9 MSS _MIBSPIB _MISO MSS _MIBSPIB _CS0 RCSS_GPIO _49 MSS _MIBSPIA _CS0 MSS _MIBSPIA _CLK DSS_UARTA _RX DSS_UARTA _TX 18 MSS_GPIO _12 MSS_GPIO _10 MSS _MIBSPIB _MOSI MSS _MIBSPIB _CLK MSS _MIBSPIB _CS1 MSS_I2CA _SCL MSS _MIBSPIA _HOSTIRQ MSS _MIBSPIA _MOSI MSS_RGMII _TCTL 17 RCSS_UARTA _TX MSS_GPIO _13 MSS_GPIO _11 16 NERRORIN _FE2 RCSS_UARTA _RX 15 MSS _MIBSPIB _CS2 MSS_I2CA _SDA VSS NERRORIN _FE1 NRESET_FE2 NRESET_FE1 14 VSS NWARMRESET _IN_FE1 13 CSI2_RX1M0 CSI2_RX1P0 12 CSI2_RX1P1 CSI2_RX1M1 11 CSI2 _RX1CLKM CSI2 _RX1CLKP VIOIN_18 NWARMRESET _IN_FE2 VSS MSS_RGMII _RCTL VIOIN VDD VDD VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VIOIN VIOIN _18CSI MSS _MIBSPIA _MISO Not to scale 1 2 3 4 Figure 6-2. Top Left Quadrant (Top View) 8 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 K L M N P R T U V W 19 MSS_RGMII _TCLK MSS_RGMII _RD3 MSS_RGMII _RCLK MSS_RGMII _RD1 MSS_MDIO _DATA MSS_MDIO _CLK RCSS _MIBSPIA _CS0 RCSS _MIBSPIB _MOSI RCSS _MIBSPIB _CLK VSS 18 MSS_RGMII _TD3 MSS_RGMII _TD0 MSS_RGMII _RD2 VNWA MSS_RGMII _RD0 RCSS _MIBSPIA _MOSI RCSS _MIBSPIA _CLK RCSS _MIBSPIA _HOSTIRQ RCSS _MIBSPIB _MISO RCSS _MIBSPIB _HOSTIRQ RCSS _MIBSPIB _CS0 HW_SYNC _FE1 HW_SYNC _FE2 MSS_RGMII _TD1 17 16 MSS_RGMII _TD2 RCSS _MIBSPIA _MISO VDD_SRAM1 VIOIN_18 VIOIN 15 VDD VDD 14 VDD VDD VSS VSS TRACE_DATA TRACE_DATA TRACE_DATA _1 _3 _4 VSS VIOIN_18 13 VSS VSS VSS VSS VSS VSS 12 VSS VSS VSS VSS VSS VSS 11 VSS VSS VSS VSS VDD VDD TRACE_DATA TRACE_DATA _0 _2 TRACE_DATA TRACE_DATA _5 _7 TRACE_DATA TRACE_DATA TRACE_DATA _6 _8 _9 VIOIN TRACE_CTL TRACE_CLK TRACE_DATA TRACE_DATA TRACE_DATA _10 _11 _12 Not to scale 1 2 3 4 Figure 6-3. Top Right Quadrant (Top View) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 9 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 A B 10 CSI2_RX1M2 CSI2_RX1P2 9 CSI2_RX1M3 CSI2_RX1P3 8 CSI2_RX0M0 CSI2_RX0P0 7 CSI2_RX0M1 CSI2_RX0P1 6 CSI2 _RX0CLKP CSI2 _RX0CLKM 5 CSI2_RX0P2 CSI2_RX0M2 4 CSI2_RX0P3 CSI2_RX0M3 3 VSS MSS_GPIO_8 2 MSS_MCANA MSS_MCANA _TX _RX 1 VSS C D E F VSS VIOIN _18CSI VSS VSS MSS_MCANB MSS_MCANB _TX _RX VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD TMS MSS_QSPI _D0 J VDD VSS TCK H VDD TDO TDI G VIOIN MSS_EPWMA0 VIOIN_18 MSS_GPIO _28 VDD_SRAM2 MSS_QSPI _D1 MSS_QSPI _D3 MSS_QSPI _CS MSS_RS232 _RX MSS_GPIO_2 FE2_REFCLK MSS_QSPI _D2 MSS_QSPI _CLK PMIC _CLKOUT MSS_RS232 _TX FE1_REFCLK XREF_CLK0 Not to scale 1 2 3 4 Figure 6-4. Bottom Left Quadrant (Top View) 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 K L M N 10 VSS VSS VSS VSS 9 VSS VSS VSS VSS VDD VDD 8 VSS VSS VSS VSS VSS VSS 7 VSS VSS VSS VSS VSS VSS VSS 6 VDD VDD 5 VDD VDD 4 VIOIN 3 2 1 NRESET WARM_RESETNERROR_OUT R T U V TRACE_DATA _15 MSS_UARTB _TX VSS LVDS _FRCLKP LVDS _FRCLKM LVDS_CLKP LVDS_CLKM LVDS_TXM0 LVDS_TXP0 LVDS_TXM1 LVDS_TXP1 LVDS_TXM2 LVDS_TXP2 MSS_UARTA _RX LVDS_TXM3 LVDS_TXP3 VPP VDD_SRAM3 VIOIN _18LVDS VIOIN _18LVDS VIOIN TEMP _SENSOR_2 OSC_CLK _OUT_AUDIO VIOIN _18ADC W TRACE_DATA TRACE_DATA _13 _14 VSS TEMP _SENSOR_1 VIOIN_18 NERROR_IN XREF_CLK1 P ADC5 ADC7 ADC2 ADC1 ADC6 VIOIN _18CLK VSS MSS_UARTA _TX ADC9 ADC8 ADC4 ADC3 VBGAP CLKM CLKP VSS Not to scale 1 2 3 4 Figure 6-5. Bottom Right Quadrant (Top View) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 11 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 6.2 Pin Attributes The following list describes the contents of each column in Table 6-1, Pin Attributes: 1. BALL NUMBER: BGA coordinate of signal 2. PAD NAME: Associated pinmux pad coordinate for each BGA. The specific PINCNTL address register will be prefixed with this name. See the associated device-specific TRM for more information. 3. BALL NAME: Default signal name of BGA. Based on the default MUXMODE selection after reset release. 4. SIGNAL NAME: Each specific MUXMODE signal name. 5. PINCNTL ADDRESS: MSS_IOMUX register address for each pad control register. 6. MUX MODE: Supported FUNC_SEL field names in associated MSS_IOMUX configuration register. 7. TYPE: IO buffer type and direction associated with specific MSS_IOMUX FUNC_SEL field selection. 8. BALL RESET STATE: State of the terminal at power-on reset, during while NRESET is asserted. 9. PULL TYPE (UP/DOWN): IO buffer default internal pull direction and type. 10. Modes and values marked RSVD are reserved and not available for customer configuration. Table 6-1. Pin Attributes (ZCE285A Package) BALL NUMBER[1] E18 H1 J2 C1 12 PAD NAME[2] PADAA PADAB PADAC PADAD BALL NAME[3] MSS_MIBSPIB_CS1 FE1_REFCLK FE2_REFCLK MSS_MCANB_RX SIGNAL NAME[4] [10] MSS_GPIO_12 PINCNTL ADDRESS[5] MUX MODE[6] [10] TYPE[7] 0 IO MSS_MIBSPIA_HOSTIRQ 1 I RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_MIBSPIB_CS1 6 O 0 IO MSS_GPIO_0 1 IO PMIC_CLKOUT 2 O MSS_EPWM_TZ2 3 O RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD FE1_REFCLK 7 I RSVD 8 RSVD RSVD 9 RSVD MSS_EPWMA1 10 O MSS_EPWMB0 11 O 0 IO MSS_GPIO_1 1 IO RSVD 2 RSVD MSS_EPWM_TZ1 3 I RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD FE2_REFCLK 7 I RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD DMM_MUX_IN 12 I MSS_MIBSPIB_CS1 13 O MSS_MIBSPIB_CS2 14 O MSS_EPWMA_SYNCI 15 I 0 IO MSS_MIBSPIA_MOSI 1 O MSS_MCANA_RX 2 I MSS_GPIO_13 MSS_GPIO_16 MSS_GPIO_19 0x020C 0000 0x020C 0004 0x020C 0008 0x020C 000C Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Up Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] PAD NAME[2] BALL NAME[3] MUX MODE[6] [10] TYPE[7] RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD DSS_UARTA_TX 8 O MSS_MCANB_RX 9 IO 10 IO 0 IO MSS_MIBSPIA_MISO 1 I MSS_MCANA_TX 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD RSVD 8 RSVD MSS_MCANB_TX 9 IO MSS_I2CA_SDA 10 IO 0 IO MSS_MIBSPIA_CLK 1 O RCOSC_CLK 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_MCANB_RX 6 IO DSS_UARTA_TX 7 O RSVD 8 RSVD SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] MSS_I2CA_SCL B1 B2 PADAE PADAF MSS_MCANB_TX MSS_MCANA_RX MSS_GPIO_20 MSS_GPIO_3 0x020C 0010 0x020C 0014 MSS_MCANA_RX A2 C18 C19 PADAG PADAH PADAI MSS_MCANA_TX MSS_MIBSPIB_MOSI MSS_MIBSPIB_MISO 9 I 0 IO MSS_MIBSPIA_CS0 1 O RCOSC_CLK 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_MCANB_TX 6 O RSVD 7 RSVD RSVD 8 RSVD MSS_MCANA_TX 9 IO 0 IO MSS_MIBSPIB_MOSI 1 O MSS_I2CA_SDA 2 IO MSS_EPWMA0 3 O RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD MSS_MCANB_RX 7 I 0 IO MSS_MIBSPIB_MISO 1 I MSS_I2CA_SCL 2 IO MSS_EPWMB0 3 O RSVD 4 RSVD RSVD 5 RSVD DSS_UARTA_TX 6 O MSS_GPIO_30 MSS_GPIO_21 MSS_GPIO_22 0x020C 0018 0x020C 001C 0x020C 0020 BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 13 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] PAD NAME[2] BALL NAME[3] SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] MUX MODE[6] [10] MSS_MCANB_TX D18 PADAJ MSS_MIBSPIB_CLK 7 O 0 IO MSS_MIBSPIB_CLK 1 O MSS_UARTA_RX 2 I MSS_EPWMC0 3 O RSVD 4 RSVD RSVD 5 RSVD MSS_UARTB_TX 6 O RSVD 7 RSVD MSS_GPIO_5 0x020C 0024 MSS_MCANA_RX D19 C2 D2 D1 E2 14 PADAK PADAL PADAM PADAN PADAO MSS_MIBSPIB_CS0 MSS_QSPI_D0 MSS_QSPI_D1 MSS_QSPI_D2 MSS_QSPI_D3 TYPE[7] 8 I 0 IO MSS_MIBSPIB_CS0 1 O MSS_UARTA_TX 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_UARTB_TX 6 O RSVD 7 RSVD RSVD 8 RSVD MSS_MCANA_TX 9 O 0 IO MSS_QSPI_D0 1 IO MSS_MIBSPIB_MISO 2 I RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD 0 IO MSS_QSPI_D1 1 IO MSS_MIBSPIB_MOSI 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD MSS_MIBSPIB_CS2 8 O 0 IO MSS_QSPI_D2 1 IO RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD MSS_MCANA_TX 8 O 0 IO MSS_QSPI_D3 1 IO RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD MSS_GPIO_4 MSS_GPIO_8 MSS_GPIO_9 MSS_GPIO_10 MSS_GPIO_11 0x020C 0028 0x020C 002C 0x020C 0030 0x020C 0034 0x020C 0038 Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Up Output Disabled Pull Up Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] PAD NAME[2] BALL NAME[3] SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] MUX MODE[6] [10] MSS_MCANA_RX E1 F2 PADAP PADAQ MSS_QSPI_CLK MSS_QSPI_CS TYPE[7] 8 I 0 IO MSS_QSPI_CLK 1 O MSS_MIBSPIB_CLK 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD DSS_UARTA_TX 6 O 0 IO 1 O MSS_GPIO_7 MSS_GPIO_6 0x020C 003C 0x020C 0040 MSS_QSPI_CS MSS_MIBSPIB_CS0 BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Up 2 O L3 PADAR NERROR_IN NERROR_IN 0x020C 0044 0 I Hi-Z (Open-Drain) Pull Disabled K1 PADAS WARM_RESET WARM_RESET 0x020C 0048 0 IO Hi-Z (Open-Drain) Pull Disabled L1 PADAT NERROR_OUT NERROR_OUT 0x020C 004C 0 O Hi-Z (Open-Drain) Pull Disabled C3 PADAU TCK MSS_GPIO_17 0x020C 0050 Output Disabled Pull Down Output Disabled Pull Up Output Disabled Pull Up Output Enabled Pull Disabled Output Disabled Pull Down D4 C5 D6 E3 PADAV PADAW PADAX PADAY TMS TDI TDO MSS_EPWMA0 0 IO TCK 1 I MSS_UARTB_TX 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD MSS_MCANA_TX 8 O 0 IO TMS 1 I RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_MCANA_RX 6 I 0 IO TDI 1 I MSS_UARTA_RX 2 I RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD DSS_UARTA_RX 7 I 0 IO TDO 1 O MSS_UARTA_TX 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD MSS_UARTB_TX 6 O RSVD 7 RSVD RSVD 8 RSVD NDMM_EN 9 I 0 IO MCU_CLKOUT 1 O RSVD 2 RSVD RSVD 3 RSVD MSS_GPIO_18 MSS_GPIO_23 MSS_GPIO_24 MSS_GPIO_25 0x020C 0054 0x020C 0058 0x020C 005C 0x020C 0060 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 15 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] H2 F1 G3 E17 16 PAD NAME[2] PADAZ PADBA PADBB PADBC BALL NAME[3] MSS_GPIO_2 PMIC_CLKOUT MSS_GPIO_28 MSS_MIBSPIB_CS2 MUX MODE[6] [10] TYPE[7] RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD MSS_EPWMA0 12 IO RSVD 13 RSVD RSVD 14 RSVD OBS_CLKOUT 15 O 0 IO MSS_GPIO_2 1 IO RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD MSS_UARTB_TX 7 O RCSS_GPIO_34 8 IO RSVD 9 RSVD PMIC_CLKOUT 10 O RSVD 11 RSVD RSVD 12 RSVD RSVD 13 RSVD MSS_EPWM_TZ0 14 I 0 IO PMIC_CLKOUT 1 O OBS_CLKOUT 2 O RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD MSS_EPWMA1 11 O MSS_EPWMB0 12 O 0 IO SYNC_IN 1 I RSVD 2 RSVD RCSS_MCASPB_AHCLKR 3 I RSVD 4 RSVD RSVD 5 RSVD MSS_UARTB_RX 6 I DMM_MUX_IN 7 I DSS_UARTA_RX 8 I 0 IO RSVD 1 RSVD RCOSC_CLK 2 I RSVD 3 RSVD RSVD 4 RSVD SIGNAL NAME[4] [10] MSS_GPIO_26 MSS_GPIO_27 MSS_GPIO_28 MSS_GPIO_29 PINCNTL ADDRESS[5] 0x020C 0064 0x020C 0068 0x020C 006C 0x020C 0070 Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] G2 G1 V16 U15 PAD NAME[2] PADBD PADBE PADBF PADBG BALL NAME[3] MSS_RS232_RX MSS_RS232_TX TRACE_DATA_0 TRACE_DATA_1 MUX MODE[6] [10] TYPE[7] RSVD 5 RSVD RSVD 6 RSVD RSVD 7 RSVD RSVD 8 RSVD DMM_MUX_IN 9 I MSS_MIBSPIB_CS1 10 O MSS_MIBSPIB_CS2 11 O MSS_EPWMB0 12 O MSS_EPWMB1 13 O 0 IO MSS_RS232_RX 1 I MSS_UARTA_RX 2 I RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD MSS_UARTB_RX 7 I MSS_MCANA_RX 8 I MSS_I2CA_SCL 9 IO MSS_EPWMB0 10 O MSS_EPWMB1 11 O MSS_EPWMC0 12 O 0 IO MSS_RS232_TX 1 O RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD MSS_UARTA_TX 5 O MSS_UARTB_TX 6 O RSVD 7 RSVD RSVD 8 RSVD RSVD 9 RSVD MSS_MCANA_TX 10 O MSS_I2CA_SDA 11 IO MSS_EPWMA0 12 O MSS_EPWMA1 13 O NDMM_EN 14 I MSS_EPWMB0 15 O SIGNAL NAME[4] [10] MSS_GPIO_15 MSS_GPIO_14 TRACE_DATA_0 PINCNTL ADDRESS[5] 0x020C 0074 0x020C 0078 0 IO MSS_GPIO_31 1 IO DMM0 2 I RSVD 3 RSVD MSS_UARTA_TX 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_DAT1 7 IO RSVD 8 RSVD RSVD 9 RSVD MSS_I2CA_SDA 10 IO 0 IO RCSS_GPIO_32 1 IO DMM1 2 I MSS_EPWMC_SYNCI 3 I MSS_UARTA_RX 4 I TRACE_DATA_1 0x020C 007C 0x020C 0080 BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Enabled Pull Disabled Output Disabled Pull Down Output Disabled Pull Down Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 17 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] W16 V15 W15 V14 U13 W14 18 PAD NAME[2] PADBH PADBI PADBJ PADBK PADBL PADBM BALL NAME[3] TRACE_DATA_2 TRACE_DATA_3 TRACE_DATA_4 TRACE_DATA_5 TRACE_DATA_6 TRACE_DATA_7 MUX MODE[6] [10] TYPE[7] RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_DAT0 7 IO RSVD 8 RSVD RSVD 9 RSVD MSS_I2CA_SCL 10 IO 0 IO RCSS_GPIO_33 1 IO DMM2 2 I MSS_EPWMB_SYNCI 3 I RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_FSR 7 IO 0 IO RCSS_GPIO_34 1 IO DMM3 2 I RSVD 3 RSVD MSS_EPWMC_SYNCO 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_ACLKR 7 I 0 IO RCSS_GPIO_35 1 IO DMM4 2 I RSVD 3 RSVD MSS_EPWMB_SYNCO 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_FSX 7 IO 0 IO RCSS_GPIO_36 1 IO DMM5 2 I RSVD 3 RSVD MSS_EPWM_TZ2 4 I MSS_UARTB_TX 5 O RSVD 6 RSVD RCSS_MCASPC_ACLKX 7 IO 0 IO RCSS_GPIO_37 1 IO DMM6 2 I RSVD 3 RSVD MSS_EPWM_TZ1 4 I RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPC_AHCLKX 7 O 0 IO RCSS_GPIO_38 1 IO DMM7 2 I RSVD 3 RSVD MSS_EPWM_TZ0 4 I DSS_UARTA_TX 5 O RSVD 6 RSVD RCSS_MCASPB_ACLKX 7 IO SIGNAL NAME[4] [10] TRACE_DATA_2 TRACE_DATA_3 TRACE_DATA_4 TRACE_DATA_5 TRACE_DATA_6 TRACE_DATA_7 PINCNTL ADDRESS[5] 0x020C 0084 0x020C 0088 0x020C 008C 0x020C 0090 0x020C 0094 0x020C 0098 Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] V13 PAD NAME[2] PADBN BALL NAME[3] TRACE_DATA_8 SIGNAL NAME[4] [10] TRACE_DATA_8 PINCNTL ADDRESS[5] MUX MODE[6] [10] TYPE[7] 0 IO RCSS_GPIO_39 0x020C 009C 1 IO DMM8 2 I RSVD 3 RSVD MSS_MCANA_TX 4 O MSS_EPWMA_SYNCI 5 I RSVD 6 RSVD 7 IO 0 IO RCSS_GPIO_40 1 IO DMM9 2 I RSVD 3 RSVD MSS_MCANA_RX 4 I MSS_EPWMA_SYNCO 5 O RSVD 6 RSVD RCSS_MCASPB_ACLKR 7 I 0 IO RCSS_GPIO_41 1 IO DMM10 2 I RSVD 3 RSVD MSS_EPWMC0 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPB_FSR 7 IO 0 IO RCSS_GPIO_42 1 IO DMM11 2 I RSVD 3 RSVD MSS_EPWMC1 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPB_DAT0 7 IO 0 IO RCSS_GPIO_43 1 IO DMM12 2 I RSVD 3 RSVD MSS_EPWMA0 4 O MSS_MCANB_TX 5 O RSVD 6 RSVD 7 IO 0 IO RCSS_GPIO_44 1 IO DMM13 2 I RSVD 3 RSVD MSS_EPWMA1 4 O MSS_MCANB_RX 5 I RSVD 6 RSVD 7 IO 0 IO RCSS_GPIO_45 1 IO DMM14 2 I RSVD 3 RSVD MSS_EPWMB0 4 O RSVD 5 RSVD RCSS_MCASPB_FSX W13 U11 V11 W11 PADBO PADBP PADBQ PADBR TRACE_DATA_9 TRACE_DATA_10 TRACE_DATA_11 TRACE_DATA_12 TRACE_DATA_9 TRACE_DATA_10 TRACE_DATA_11 TRACE_DATA_12 0x020C 00A0 0x020C 00A4 0x020C 00A8 0x020C 00AC RCSS_MCASPB_DAT1 V10 PADBS TRACE_DATA_13 TRACE_DATA_13 0x020C 00B0 RCSS_MCASPB_DAT2 W10 PADBT TRACE_DATA_14 TRACE_DATA_14 0x020C 00B4 BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 19 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] T10 W12 V12 E19 PAD NAME[2] PADBU PADBV PADBW PADBX BALL NAME[3] TRACE_DATA_15 TRACE_CLK TRACE_CTL RCSS_GPIO_49 MUX MODE[6] [10] TYPE[7] RSVD 6 RSVD RCSS_MCASPB_DAT3 7 IO 0 IO RCSS_GPIO_46 1 IO DMM15 2 I RSVD 3 RSVD MSS_EPWMB1 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPB_DAT4 7 IO RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RCSS_I2CA_SDA 11 IO SIGNAL NAME[4] [10] TRACE_DATA_15 TRACE_CLK PINCNTL ADDRESS[5] 0x020C 00B8 0 O RCSS_GPIO_47 1 IO DMM_CLK 2 I HW_SYNC_FE1 3 O HW_SYNC_FE2 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPB_DAT5 7 IO RSVD 8 RSVD RSVD 9 RSVD DSS_UARTA_RX 10 I RCSS_I2CA_SCL 11 IO TRACE_CTL 0x020C 00BC 0 IO RCSS_GPIO_48 1 IO DMM_SYNC 2 I HW_SYNC_FE2 3 O HW_SYNC_FE1 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPB_AHCLKX 7 O RSVD 8 RSVD RSVD 9 RSVD DSS_UARTA_TX 10 O 0 IO MSS_MII_COL 1 I MSS_RMII_REFCLK 2 I RSVD 3 RSVD RCSS_MCASPA_DAT3 4 IO RSVD 5 RSVD RCSS_GPIO_49 0x020C 00C0 0x020C 00C4 MSS_EPWMA1 F16 PADBY MSS_I2CA_SDA 6 O 0 IO MSS_MII_CRS 1 I MSS_RMII_CRS_DV 2 I MSS_I2CA_SDA 3 IO RCSS_MCASPA_DAT2 4 IO RSVD 5 RSVD RCSS_GPIO_50 0x020C 00C8 MSS_EPWMB1 F18 20 PADBZ MSS_I2CA_SCL 6 O 0 IO MSS_MII_RXER 1 I MSS_RMII_RXER 2 I RCSS_GPIO_51 0x020C 00CC Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] PAD NAME[2] BALL NAME[3] MUX MODE[6] [10] TYPE[7] MSS_I2CA_SCL 3 IO RCSS_MCASPA_DAT1 4 IO RSVD 5 RSVD SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] MSS_EPWMC1 J18 J17 K18 PADCA PADCB PADCC MSS_RGMII_TCTL MSS_RGMII_RCTL MSS_RGMII_TD3 6 O 0 IO MSS_MII_TXEN 1 O MSS_RMII_TXEN 2 O MSS_RGMII_TCTL 3 O RCSS_MCASPA_DAT0 4 IO RSVD 5 RSVD MSS_EPWMA0 6 O 0 IO MSS_MII_RXDV 1 I RSVD 2 RSVD MSS_RGMII_RCTL 3 O RCSS_MCASPA_FSR 4 IO MSS_UARTB_RX 5 I MSS_EPWMB0 6 O RCSS_GPIO_52 RCSS_GPIO_53 RCSS_GPIO_54 0x020C 00D0 0x020C 00D4 0 IO MSS_MII_TXD3 0x020C 00D8 1 O RSVD 2 RSVD MSS_RGMII_TD3 3 O RCSS_MCASPA_ACLKR 4 I MSS_UARTB_TX 5 O MSS_EPWMC0 K16 L17 L18 K19 M19 L19 PADCD PADCE PADCF PADCG PADCH PADCI MSS_RGMII_TD2 MSS_RGMII_TD1 MSS_RGMII_TD0 MSS_RGMII_TCLK MSS_RGMII_RCLK MSS_RGMII_RD3 6 O 0 IO MSS_MII_TXD2 1 O RSVD 2 RSVD MSS_RGMII_TD2 3 O RCSS_MCASPA_FSX 4 IO RCSS_GPIO_55 RCSS_GPIO_56 0x020C 00DC 0 IO MSS_MII_TXD1 1 O MSS_RMII_TXD1 2 O MSS_RGMII_TD1 3 O RCSS_MCASPA_ACLKX 4 IO RCSS_GPIO_57 0x020C 00E0 0 IO MSS_MII_TXD0 1 O MSS_RMII_TXD0 2 O MSS_RGMII_TD0 3 O RCSS_MCASPA_AHCLKX 4 O 0 IO MSS_MII_TXCLK 1 O RSVD 2 RSVD MSS_RGMII_TCLK 3 O RCSS_MCASPB_AHCLKX 4 O RCSS_I2CA_SDA 5 IO RCSS_GPIO_58 RCSS_GPIO_59 0x020C 00E4 0x020C 00E8 0 IO MSS_MII_RXCLK 1 I RSVD 2 RSVD MSS_RGMII_RCLK 3 I RCSS_MCASPB_AHCLKR 4 I RCSS_I2CA_SCL 5 IO 0 IO 1 I RCSS_GPIO_60 0x020C 00EC 0x020C 00F0 MSS_MII_RXD3 BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 21 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] PAD NAME[2] BALL NAME[3] MUX MODE[6] [10] TYPE[7] RSVD 2 RSVD MSS_RGMII_RD3 3 I RCSS_MCASPB_ACLKX 4 IO 5 IO 0 IO MSS_MII_RXD2 1 I RSVD 2 RSVD MSS_RGMII_RD2 3 I RCSS_MCASPB_FSX 4 IO 5 IO 0 IO MSS_MII_RXD1 1 I MSS_RMII_RXD1 2 I MSS_RGMII_RD1 3 I RCSS_MCASPB_ACLKR 4 I 0 IO MSS_MII_RXD0 1 I MSS_RMII_RXD0 2 I MSS_RGMII_RD0 3 I RCSS_MCASPB_FSR 4 IO SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] RCSS_I2CB_SDA M18 PADCJ MSS_RGMII_RD2 RCSS_GPIO_61 0x020C 00F4 RCSS_I2CB_SCL N19 P18 P19 R19 R18 R17 T18 T19 22 PADCK PADCL PADCM PADCN PADCO PADCP PADCQ PADCR MSS_RGMII_RD1 MSS_RGMII_RD0 MSS_MDIO_DATA MSS_MDIO_CLK RCSS_MIBSPIA_MOSI RCSS_MIBSPIA_MISO RCSS_MIBSPIA_CLK RCSS_MIBSPIA_CS0 RCSS_GPIO_62 RCSS_GPIO_63 MSS_GPIO_30 0x020C 00F8 0x020C 00FC 0 IO MSS_MDIO_DATA 1 IO RSVD 2 RSVD RSVD 3 RSVD RCSS_MCASPB_DAT0 4 IO 0 IO MSS_MDIO_CLK 1 IO RSVD 2 RSVD RSVD 3 RSVD RCSS_MCASPB_DAT1 4 IO 0 IO RCSS_MIBSPIA_MOSI 1 O RCSS_I2CA_SDA 2 IO RSVD 3 RSVD RSVD 4 RSVD MSS_MIBSPIA_MOSI 5 O 0 IO RCSS_MIBSPIA_MISO 1 I RCSS_I2CA_SCL 2 IO RSVD 3 RSVD RSVD 4 RSVD MSS_MIBSPIA_MISO 5 I 0 IO RCSS_MIBSPIA_CLK 1 IO RCSS_I2CB_SDA 2 IO RSVD 3 RSVD RSVD 4 RSVD MSS_MIBSPIA_CLK 5 O 0 IO RCSS_MIBSPIA_CS0 1 IO RCSS_I2CB_SCL 2 IO RSVD 3 RSVD RSVD 4 RSVD MSS_MIBSPIA_CS0 5 O MSS_GPIO_31 RCSS_GPIO_32 RCSS_GPIO_33 RCSS_GPIO_34 RCSS_GPIO_35 0x020C 0100 0x020C 0104 0x020C 0108 0x020C 010C 0x020C 0110 0x020C 0114 Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] U18 U19 PAD NAME[2] PADCS PADCT BALL NAME[3] RCSS_MIBSPIA_HOSTIRQ RCSS_MIBSPIB_MOSI SIGNAL NAME[4] [10] RCSS_GPIO_36 PINCNTL ADDRESS[5] MUX MODE[6] [10] TYPE[7] 0 IO RCSS_MIBSPIA_CS1 1 O MSS_GPIO_2 2 IO MSS_GPIO_8 3 IO RSVD 4 RSVD MSS_MIBSPIA_HOSTIRQ 5 I MSS_MIBSPIB_CS2 6 O RCSS_GPIO_34 7 IO RSVD 8 RSVD RSVD 9 RSVD RCSS_GPIO_40 10 IO 0 IO RCSS_MIBSPIB_MOSI 1 O RCSS_I2CA_SDA 2 IO MSS_CPTS0_HW1TSPUSH 3 I RSVD 4 RSVD RCSS_GPIO_37 0x020C 0118 0x020C 011C MSS_MIBSPIB_MOSI V18 PADCU RCSS_MIBSPIB_MISO 5 O 0 IO RCSS_MIBSPIB_MISO 1 I RCSS_I2CA_SCL 2 IO MSS_CPTS0_HW2TSPUSH 3 I RSVD 4 RSVD RCSS_GPIO_38 0x020C 0120 MSS_MIBSPIB_MISO V19 PADCV RCSS_MIBSPIB_CLK 5 I 0 IO RCSS_MIBSPIB_CLK 1 O RCSS_I2CB_SDA 2 IO MSS_CPTS0_TS_SYNC 3 O RSVD 4 RSVD RCSS_GPIO_39 0x020C 0124 MSS_MIBSPIB_CLK U17 PADCW RCSS_MIBSPIB_CS0 5 O 0 IO RCSS_MIBSPIB_CS0 1 O RCSS_I2CB_SCL 2 O MSS_CPTS0_TS_COMP 3 O RCSS_MCASPC_DAT5 4 IO RCSS_GPIO_40 0x020C 0128 MSS_MIBSPIB_CS0 W18 V17 W17 PADCX PADCY PADCZ RCSS_MIBSPIB_HOSTIRQ HW_SYNC_FE1 HW_SYNC_FE2 5 O 0 IO RCSS_MIBSPIB_CS1 1 O RSVD 2 RSVD MSS_CPTS0_TS_GENF 3 O RCSS_MCASPC_DAT4 4 IO MSS_MIBSPIB_CS1 5 O MSS_GPIO_3 6 IO MSS_GPIO_9 7 IO RSVD 8 RSVD RSVD 9 RSVD RCSS_GPIO_35 10 IO 0 IO MSS_CPTS0_TS_COMP 1 O HW_SYNC_FE1 2 O HW_SYNC_FE2 3 O RCSS_MCASPC_DAT2 4 IO RCSS_GPIO_41 RCSS_GPIO_43 RCSS_GPIO_43 0x020C 012C 0x020C 0130 0 IO MSS_CPTS0_TS_COMP 0x020C 0134 1 O HW_SYNC_FE1 2 O BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 23 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] U3 W2 PAD NAME[2] PADDA PADDB BALL NAME[3] MSS_UARTA_RX MSS_UARTA_TX SIGNAL NAME[4] [10] PINCNTL ADDRESS[5] MUX MODE[6] [10] HW_SYNC_FE2 3 O RCSS_MCASPC_DAT2 4 IO RCSS_GPIO_44 0 IO MSS_CPTS0_TS_SYNC 1 O RSVD 2 RSVD RSVD 4 RSVD MSS_UARTB_TX 5 O MSS_UARTA_RX 6 I DSS_UARTA_TX 7 O 0 IO RCSS_GPIO_45 0x020C 0138 0x020C 013C MSS_CPTS0_HW2TSPUSH 1 RSVD 2 RSVD RSVD 3 RSVD MSS_UARTB_RX 4 I MSS_UARTA_TX 5 O DSS_UARTA_RX J19 H19 V9 J1 24 PADDC PADDD PADDE PADDF DSS_UARTA_TX DSS_UARTA_RX MSS_UARTB_TX XREF_CLK0 TYPE[7] 6 I 0 IO MSS_CPTS0_HW1TSPUSH 1 I RSVD 2 RSVD RSVD 3 RSVD DSS_UARTA_TX 4 IO RCSS_UARTA_RX 5 I MSS_UARTA_RX 6 I 0 IO DSS_UARTA_RX 1 IO RSVD 2 RSVD RSVD 4 RSVD RSVD 5 RSVD RCSS_UARTA_TX 6 O MSS_UARTA_TX 7 O 0 IO DSS_UARTA_TX 1 O RSVD 2 RSVD MSS_EPWMB_SYNCI 3 I FE1_REFCLK 4 I MSS_UARTA_TX 5 O MSS_UARTB_TX 6 O RSVD 7 RSVD RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_32 12 IO 0 IO XREF_CLK0 1 I RSVD 2 RSVD RSVD 3 RSVD FE2_REFCLK 4 I RSVD 5 RSVD MCU_CLKOUT 6 O RSVD 7 RSVD RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RCSS_GPIO_46 RCSS_GPIO_47 MSS_GPIO_0 MSS_GPIO_1 0x020C 0140 0x020C 0144 0x020C 0148 0x020C 014C Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] K2 H18 PAD NAME[2] PADDG PADDH BALL NAME[3] XREF_CLK1 MSS_MIBSPIA_MOSI MUX MODE[6] [10] TYPE[7] RSVD 11 RSVD RCSS_GPIO_33 12 IO 0 IO XREF_CLK1 1 I RSVD 2 RSVD RCSS_ECAPA_CAPIN_PWMO 3 O RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD PMIC_CLKOUT 7 O RSVD 8 RSVD RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_34 12 IO 0 IO OBS_CLKOUT 1 O RCSS_ATL_CLK0 2 I RSVD 3 RSVD RCSS_I2CB_SDA 4 IO MSS_EPWMA1 5 O RSVD 6 RSVD RSVD 7 RSVD RSVD 8 RSVD RCSS_UARTA_RTS 9 O MSS_MIBSPIA_MOSI 10 O RSVD 11 RSVD 12 IO 0 IO HW_SYNC_FE1 1 O MSS_CPTS0_TS_GENF 2 O RCSS_ATL_CLK1 3 I RCSS_I2CB_SCL 4 O MSS_EPWMB1 5 O MSS_EPWMB0 6 O HW_SYNC_FE2 7 O OBS_CLKOUT 8 O RCSS_UARTA_CTS 9 I MSS_MIBSPIA_MISO 10 IO RSVD 11 RSVD RCSS_GPIO_36 12 IO 0 IO HW_SYNC_FE2 1 O MSS_CPTS0_TS_COMP 2 O MSS_EPWMB1 3 O RCSS_ECAPA_CAPIN_PWMO 4 O RCSS_I2CA_SDA 5 IO MSS_UARTB_TX 6 O HW_SYNC_FE1 7 O RSVD 8 RSVD RSVD 9 RSVD MSS_MIBSPIA_CLK 10 O RSVD 11 RSVD RCSS_GPIO_37 12 IO SIGNAL NAME[4] [10] MSS_GPIO_2 MSS_GPIO_3 PINCNTL ADDRESS[5] 0x020C 0150 0x020C 0154 RCSS_GPIO_35 G17 G19 PADDI PADDJ MSS_MIBSPIA_MISO MSS_MIBSPIA_CLK MSS_GPIO_4 MSS_GPIO_5 0x020C 0158 0x020C 015C BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Up Output Disabled Pull Up Output Disabled Pull Up Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 25 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] F19 PAD NAME[2] PADDK BALL NAME[3] MSS_MIBSPIA_CS0 SIGNAL NAME[4] [10] MSS_GPIO_6 PINCNTL ADDRESS[5] MUX MODE[6] [10] TYPE[7] 0 IO MSS_EPWMA_SYNCI 0x020C 0160 1 I RSVD 2 RSVD HW_SYNC_FE1 3 O MSS_EPWMA0 4 O RCSS_I2CA_SCL 5 O MSS_UARTB_RX 6 I MSS_CPTS0_TS_GENF 7 O RSVD 8 RSVD HW_SYNC_FE2 9 O MSS_MIBSPIA_CS0 10 O RSVD 11 RSVD 12 IO 0 IO MSS_EPWMA_SYNCO 1 O MSS_EPWMC1 2 O HW_SYNC_FE2 3 O MSS_EPWMB0 4 O RCSS_I2CB_SDA 5 IO MSS_UARTA_RX 6 I MSS_CPTS0_TS_COMP 7 O RCSS_ECAPA_SYNCIN 8 I HW_SYNC_FE1 9 O MSS_MIBSPIA_HOSTIRQ 10 I RSVD 11 RSVD 12 IO 0 IO FE1_REFCLK 1 I MSS_EPWMA_SYNCO 2 O MSS_EPWMB_SYNCI 3 I MSS_EPWMC0 4 O RCSS_I2CB_SCL 5 O MSS_UARTA_TX 6 O MSS_CPTS0_TS_SYNC 7 O RCSS_ECAPA_SYNCOUT 8 O RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_40 12 IO 0 IO FE2_REFCLK 1 O RCSS_UARTA_TX 2 O MSS_EPWMB_SYNCO 3 O MSS_EPWMA1 4 O RSVD 5 RSVD DSS_UARTA_TX 6 O MSS_CPTS0_HW2TSPUSH 7 I RCSS_MCASPA_AHCLKX 8 O RSVD 9 RSVD RSVD 10 RSVD RCSS_ATL_CLK0 11 I RCSS_GPIO_41 12 IO RCSS_GPIO_38 G18 PADDL MSS_MIBSPIA_HOSTIRQ MSS_GPIO_7 0x020C 0164 RCSS_GPIO_39 B3 B19 B18 PADDM PADDN PADDO MSS_GPIO_8 MSS_GPIO_9 MSS_GPIO_10 MSS_GPIO_8 MSS_GPIO_9 MSS_GPIO_10 0x020C 0168 0x020C 016C 0x020C 0170 RSVD 26 Submit Document Feedback 0 IO 1 RSVD BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] C17 A18 B17 A17 PAD NAME[2] PADDP PADDQ PADDR PADDS BALL NAME[3] MSS_GPIO_11 MSS_GPIO_12 MSS_GPIO_13 RCSS_UARTA_TX MUX MODE[6] [10] TYPE[7] RCSS_UARTA_RX 2 I MSS_EPWMC_SYNCI 3 I MSS_EPWMB1 4 O RSVD 5 RSVD DSS_UARTA_RX 6 I MSS_CPTS0_HW1TSPUSH 7 I RCSS_MCASPA_ACLKX 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_42 12 IO SIGNAL NAME[4] [10] MSS_GPIO_11 PINCNTL ADDRESS[5] 0x020C 0174 0 IO RSVD 1 RSVD RCSS_UARTA_RTS 2 O MSS_EPWMC_SYNCO 4 O MSS_EPWMC1 5 O MSS_I2CA_SDA 6 IO MSS_UARTB_TX 7 O RSVD 8 RSVD RCSS_MCASPA_FSX 9 IO RSVD 10 RSVD RSVD 11 RSVD RSVD 12 RSVD RCSS_GPIO_43 13 IO 0 IO MSS_I2CA_SCL 1 O RCSS_UARTA_CTS 2 I HW_SYNC_FE1 3 O RCSS_ECAPA_CAPIN_PWMO 4 O MSS_CPTS0_TS_GENF 5 O MSS_UARTB_RX 6 I RCSS_ECAPA_CAPIN_PWMO 7 O RCSS_MCASPA_ACLKR 8 I RSVD 9 RSVD RSVD 10 RSVD MSS_RS232_RX 11 I RCSS_GPIO_44 12 IO MSS_GPIO_12 MSS_GPIO_13 0x020C 0178 0 IO MSS_I2CA_SDA 1 IO MSS_CPTS0_TS_COMP 2 O HW_SYNC_FE2 3 O RCSS_UARTA_TX 4 O MSS_UARTA_TX 5 O MSS_UARTB_TX 6 O DSS_UARTA_TX 7 O RCSS_MCASPA_FSR 8 IO RSVD 9 RSVD RSVD 10 RSVD MSS_RS232_TX 11 O RCSS_GPIO_45 12 IO MSS_GPIO_14 0x020C 017C 0 IO RSVD 0x020C 0180 1 RSVD RCSS_UARTA_TX 2 O RCSS_I2CB_SDA 3 IO BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Up Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 27 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] B16 C15 A16 B15 28 PAD NAME[2] PADDT PADDU PADDV PADDW BALL NAME[3] RCSS_UARTA_RX NERRORIN_FE1 NERRORIN_FE2 NRESET_FE1 MUX MODE[6] [10] TYPE[7] RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT8 7 IO RCSS_MCASPA_DAT0 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_46 12 IO SIGNAL NAME[4] [10] MSS_GPIO_15 PINCNTL ADDRESS[5] 0 IO RSVD 1 RSVD RCSS_UARTA_RX 2 I RCSS_I2CB_SCL 3 O RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT9 7 IO RCSS_MCASPA_DAT1 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_47 12 IO MSS_GPIO_16 0x020C 0184 0 IO RSVD 1 RSVD RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT10 7 IO RCSS_MCASPA_DAT2 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_48 12 IO MSS_GPIO_17 0x020C 0188 0 IO RSVD 1 RSVD RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT11 7 IO RCSS_MCASPA_DAT3 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_49 12 IO MSS_GPIO_18 0x020C 018C 0x020C 0190 0 IO RSVD 1 RSVD RSVD 2 RSVD RSVD 3 RSVD RSVD 4 RSVD RSVD 5 RSVD Submit Document Feedback BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Up Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-1. Pin Attributes (ZCE285A Package) (continued) BALL NUMBER[1] A15 B14 C13 PAD NAME[2] PADDX PADDY PADDZ BALL NAME[3] NRESET_FE2 NWARMRESET_IN_FE1 NWARMRESET_IN_FE2 MUX MODE[6] [10] TYPE[7] RSVD 6 RSVD RCSS_MCASPA_DAT12 7 IO RCSS_MCASPA_DAT4 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_50 12 IO SIGNAL NAME[4] [10] MSS_GPIO_19 PINCNTL ADDRESS[5] 0 IO RSVD 1 RSVD RSVD 2 RSVD RCSS_I2CA_SDA 3 IO RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT13 7 IO RCSS_MCASPA_DAT5 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_51 12 IO MSS_GPIO_20 0x020C 0194 0 IO RSVD 1 RSVD RSVD 2 RSVD RCSS_I2CA_SCL 3 IO RSVD 4 RSVD RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT14 7 IO RCSS_MCASPA_DAT6 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_52 12 IO MSS_GPIO_21 0x020C 0198 0x020C 019C 0 IO RSVD 1 RSVD RSVD 2 RSVD RSVD 3 RSVD RCSS_ECAPA_CAPIN_PWMO 4 O RSVD 5 RSVD RSVD 6 RSVD RCSS_MCASPA_DAT15 7 IO RCSS_MCASPA_DAT7 8 IO RSVD 9 RSVD RSVD 10 RSVD RSVD 11 RSVD RCSS_GPIO_53 12 IO BALL RESET STATE[8] PULL TYPE[9] Output Disabled Pull Down Output Disabled Pull Down Output Disabled Pull Down The MSS_IOMUX registers contol the individual pin states and MUX mapping described in Table 6-1. The following Table 6-2 provides a reference for these registers and power on reset values. For more information on programming the MSS_IOMUX registers, see the device-specific TRM. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 29 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-2. PAD IO Configuration Registers (MSS_IOMUX) Type Register Width (Bits) Register Reset Address Offset Physical Address PADAA_CFG_REG RW 32 0x0000 00C1 0x0000 0000 0x020C 0000 PADAB_CFG_REG RW 32 0x0000 00C1 0x0000 0004 0x020C 0004 PADAC_CFG_REG RW 32 0x0000 00C1 0x0000 0008 0x020C 0008 PADAD_CFG_REG RW 32 0x0000 02C1 0x0000 000C 0x020C 000C PADAE_CFG_REG RW 32 0x0000 02C1 0x0000 0010 0x020C 0010 PADAF_CFG_REG RW 32 0x0000 02C1 0x0000 0014 0x020C 0014 PADAG_CFG_REG RW 32 0x0000 02C1 0x0000 0018 0x020C 0018 PADAH_CFG_REG RW 32 0x0000 02C1 0x0000 001C 0x020C 001C PADAI_CFG_REG RW 32 0x0000 02C1 0x0000 0020 0x020C 0020 PADAJ_CFG_REG RW 32 0x0000 02C1 0x0000 0024 0x020C 0024 PADAK_CFG_REG RW 32 0x0000 02C1 0x0000 0028 0x020C 0028 PADAL_CFG_REG RW 32 0x0000 00C1 0x0000 002C 0x020C 002C PADAM_CFG_REG RW 32 0x0000 00C1 0x0000 0030 0x020C 0030 PADAN_CFG_REG RW 32 0x0000 02C1 0x0000 0034 0x020C 0034 PADAO_CFG_REG RW 32 0x0000 02C1 0x0000 0038 0x020C 0038 PADAP_CFG_REG RW 32 0x0000 00C1 0x0000 003C 0x020C 003C PADAQ_CFG_REG RW 32 0x0000 02C1 0x0000 0040 0x020C 0040 PADAR_CFG_REG RW 32 0x0000 0100 0x0000 0044 0x020C 0044 PADAS_CFG_REG RW 32 0x0000 0100 0x0000 0048 0x020C 0048 PADAT_CFG_REG RW 32 0x0000 0100 0x0000 004C 0x020C 004C PADAU_CFG_REG RW 32 0x0000 00C1 0x0000 0050 0x020C 0050 PADAV_CFG_REG RW 32 0x0000 02C1 0x0000 0054 0x020C 0054 PADAW_CFG_REG RW 32 0x0000 02C1 0x0000 0058 0x020C 0058 PADAX_CFG_REG RW 32 0x0000 0101 0x0000 005C 0x020C 005C PADAY_CFG_REG RW 32 0x0000 00C1 0x0000 0060 0x020C 0060 PADAZ_CFG_REG RW 32 0x0000 00C1 0x0000 0064 0x020C 0064 PADBA_CFG_REG RW 32 0x0000 00C1 0x0000 0068 0x020C 0068 PADBB_CFG_REG RW 32 0x0000 00C1 0x0000 006C 0x020C 006C PADBC_CFG_REG RW 32 0x0000 00C1 0x0000 0070 0x020C 0070 PADBD_CFG_REG RW 32 0x0000 02C1 0x0000 0074 0x020C 0074 PADBE_CFG_REG RW 32 0x0000 0301 0x0000 0078 0x020C 0078 PADBF_CFG_REG RW 32 0x0000 00C1 0x0000 007C 0x020C 007C PADBG_CFG_REG RW 32 0x0000 00C1 0x0000 0080 0x020C 0080 PADBH_CFG_REG RW 32 0x0000 00C1 0x0000 0084 0x020C 0084 PADBI_CFG_REG RW 32 0x0000 00C1 0x0000 0088 0x020C 0088 PADBJ_CFG_REG RW 32 0x0000 00C1 0x0000 008C 0x020C 008C PADBK_CFG_REG RW 32 0x0000 00C1 0x0000 0090 0x020C 0090 PADBL_CFG_REG RW 32 0x0000 00C1 0x0000 0094 0x020C 0094 PADBM_CFG_REG RW 32 0x0000 00C1 0x0000 0098 0x020C 0098 PADBN_CFG_REG RW 32 0x0000 00C1 0x0000 009C 0x020C 009C PADBO_CFG_REG RW 32 0x0000 00C1 0x0000 00A0 0x020C 00A0 PADBP_CFG_REG RW 32 0x0000 00C1 0x0000 00A4 0x020C 00A4 PADBQ_CFG_REG RW 32 0x0000 00C1 0x0000 00A8 0x020C 00A8 PADBR_CFG_REG RW 32 0x0000 00C1 0x0000 00AC 0x020C 00AC PADBS_CFG_REG RW 32 0x0000 00C1 0x0000 00B0 0x020C 00B0 Register Name 30 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-2. PAD IO Configuration Registers (MSS_IOMUX) (continued) Type Register Width (Bits) Register Reset Address Offset Physical Address PADBT_CFG_REG RW 32 0x0000 00C1 0x0000 00B4 0x020C 00B4 PADBU_CFG_REG RW 32 0x0000 00C1 0x0000 00B8 0x020C 00B8 PADBV_CFG_REG RW 32 0x0000 00C1 0x0000 00BC 0x020C 00BC PADBW_CFG_REG RW 32 0x0000 00C1 0x0000 00C0 0x020C 00C0 PADBX_CFG_REG RW 32 0x0000 00C1 0x0000 00C4 0x020C 00C4 PADBY_CFG_REG RW 32 0x0000 00C1 0x0000 00C8 0x020C 00C8 PADBZ_CFG_REG RW 32 0x0000 00C1 0x0000 00CC 0x020C 00CC PADCA_CFG_REG RW 32 0x0000 00C1 0x0000 00D0 0x020C 00D0 PADCB_CFG_REG RW 32 0x0000 00C1 0x0000 00D4 0x020C 00D4 PADCC_CFG_REG RW 32 0x0000 00C1 0x0000 00D8 0x020C 00D8 PADCD_CFG_REG RW 32 0x0000 00C1 0x0000 00DC 0x020C 00DC PADCE_CFG_REG RW 32 0x0000 00C1 0x0000 00E0 0x020C 00E0 PADCF_CFG_REG RW 32 0x0000 00C1 0x0000 00E4 0x020C 00E4 PADCG_CFG_REG RW 32 0x0000 00C1 0x0000 00E8 0x020C 00E8 PADCH_CFG_REG RW 32 0x0000 00C1 0x0000 00EC 0x020C 00EC PADCI_CFG_REG RW 32 0x0000 00C1 0x0000 00F0 0x020C 00F0 PADCJ_CFG_REG RW 32 0x0000 00C1 0x0000 00F4 0x020C 00F4 PADCK_CFG_REG RW 32 0x0000 00C1 0x0000 00F8 0x020C 00F8 PADCL_CFG_REG RW 32 0x0000 00C1 0x0000 00FC 0x020C 00FC PADCM_CFG_REG RW 32 0x0000 02C1 0x0000 0100 0x020C 0100 PADCN_CFG_REG RW 32 0x0000 02C1 0x0000 0104 0x020C 0104 PADCO_CFG_REG RW 32 0x0000 02C1 0x0000 0108 0x020C 0108 PADCP_CFG_REG RW 32 0x0000 02C1 0x0000 010C 0x020C 010C PADCQ_CFG_REG RW 32 0x0000 02C1 0x0000 0110 0x020C 0110 PADCR_CFG_REG RW 32 0x0000 02C1 0x0000 0114 0x020C 0114 PADCS_CFG_REG RW 32 0x0000 00C1 0x0000 0118 0x020C 0118 PADCT_CFG_REG RW 32 0x0000 02C1 0x0000 011C 0x020C 011C PADCU_CFG_REG RW 32 0x0000 02C1 0x0000 0120 0x020C 0120 PADCV_CFG_REG RW 32 0x0000 02C1 0x0000 0124 0x020C 0124 PADCW_CFG_REG RW 32 0x0000 02C1 0x0000 0128 0x020C 0128 PADCX_CFG_REG RW 32 0x0000 00C1 0x0000 012C 0x020C 012C PADCY_CFG_REG RW 32 0x0000 00C1 0x0000 0130 0x020C 0130 PADCZ_CFG_REG RW 32 0x0000 00C1 0x0000 0134 0x020C 0134 PADDA_CFG_REG RW 32 0x0000 02C1 0x0000 0138 0x020C 0138 PADDB_CFG_REG RW 32 0x0000 02C1 0x0000 013C 0x020C 013C PADDC_CFG_REG RW 32 0x0000 02C1 0x0000 0140 0x020C 0140 PADDD_CFG_REG RW 32 0x0000 02C1 0x0000 0144 0x020C 0144 PADDE_CFG_REG RW 32 0x0000 02C1 0x0000 0148 0x020C 0148 PADDF_CFG_REG RW 32 0x0000 00C1 0x0000 014C 0x020C 014C PADDG_CFG_REG RW 32 0x0000 00C1 0x0000 0150 0x020C 0150 PADDH_CFG_REG RW 32 0x0000 02C1 0x0000 0154 0x020C 0154 PADDI_CFG_REG RW 32 0x0000 02C1 0x0000 0158 0x020C 0158 PADDJ_CFG_REG RW 32 0x0000 02C1 0x0000 015C 0x020C 015C PADDK_CFG_REG RW 32 0x0000 02C1 0x0000 0160 0x020C 0160 PADDL_CFG_REG RW 32 0x0000 00C1 0x0000 0164 0x020C 0164 Register Name Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 31 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-2. PAD IO Configuration Registers (MSS_IOMUX) (continued) Type Register Width (Bits) Register Reset PADDM_CFG_REG RW 32 0x0000 00C1 0x0000 0168 0x020C 0168 PADDN_CFG_REG RW 32 0x0000 00C1 0x0000 016C 0x020C 016C PADDO_CFG_REG RW 32 0x0000 00C1 0x0000 0170 0x020C 0170 PADDP_CFG_REG RW 32 0x0000 00C1 0x0000 0174 0x020C 0174 PADDQ_CFG_REG RW 32 0x0000 00C1 0x0000 0178 0x020C 0178 PADDR_CFG_REG RW 32 0x0000 00C1 0x0000 017C 0x020C 017C PADDS_CFG_REG RW 32 0x0000 02C1 0x0000 0180 0x020C 0180 PADDT_CFG_REG RW 32 0x0000 02C1 0x0000 0184 0x020C 0184 PADDU_CFG_REG RW 32 0x0000 00C1 0x0000 0188 0x020C 0188 PADDV_CFG_REG RW 32 0x0000 00C1 0x0000 018C 0x020C 018C PADDW_CFG_REG RW 32 0x0000 00C1 0x0000 0190 0x020C 0190 PADDX_CFG_REG RW 32 0x0000 00C1 0x0000 0194 0x020C 0194 PADDY_CFG_REG RW 32 0x0000 00C1 0x0000 0198 0x020C 0198 PADDZ_CFG_REG RW 32 0x0000 00C1 0x0000 019C 0x020C 019C Register Name 32 Submit Document Feedback Address Offset Physical Address Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 6.3 Signal Descriptions Note All digital IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply being present to the device Note The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the application where the state of the GPIO is critical, even when NRESET is low, a tri-state buffer should be used to isolate the GPIO output from any attached device. An additional pull resister should be used to define the required state in the application. The NRESET signal could be used to control the output enable (OE) of the tri-state buffer. Table 6-3. Signal Descriptions FUNCTION ADC Interface BALL NUMBER SIGNAL NAME TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION R2 ADC1 I – ADC Input ADC Input Channel 1 ADC Interface P2 ADC2 I – ADC Input ADC Input Channel 2 ADC Interface R1 ADC3 I – ADC Input ADC Input Channel 3 ADC Interface P1 ADC4 I – ADC Input ADC Input Channel 4 ADC Interface M2 ADC5 I – ADC Input ADC Input Channel 5 ADC Interface T2 ADC6 I – ADC Input ADC Input Channel 6 ADC Interface N2 ADC7 I – ADC Input ADC Input Channel 7 ADC Interface N1 ADC8 I – ADC Input ADC Input Channel 8 ADC Interface M1 ADC9 I – ADC Input ADC Input Channel 9 Clocking U1 CLKM – Clock Input Primary crystal or oscillator input clock negative polarity. Clocking V1 CLKP – Clock Input Primary crystal or oscillator input clock positive polarity. Clocking T4 OSC_CLK_OUT_AUDIO – Clock Output Oscillator output reference clock Clocking J1 XREF_CLK0 – LVCMOS Optional external reference input clock 0. Can be used as dedicated peripheral clock source for system synchronization. See TRM for details. – LVCMOS Optional external reference input clock 1. Can be used as dedicated peripheral clock source for system synchronization. See TRM for details. – LVCMOS PMIC output reference clock – MIPI D-PHY CSI2.0 Receiver #1, Clock Input Negative Polarity – MIPI D-PHY CSI2.0 Receiver #1, Clock Input Positive Polarity – MIPI D-PHY CSI2.0 Receiver #1, Negative Polarity Lane 0 – MIPI D-PHY CSI2.0 Receiver #1, Negative Polarity Lane 1 – MIPI D-PHY CSI2.0 Receiver #1, Negative Polarity Lane 2 I I O IO Clocking K2 XREF_CLK1 IO Clocking F1 PMIC_CLKOUT CSI2.0 Interface B6 CSI2_RX0CLKM CSI2.0 Interface A6 CSI2_RX0CLKP CSI2.0 Interface A8 CSI2_RX0M0 CSI2.0 Interface A7 CSI2_RX0M1 CSI2.0 Interface B5 CSI2_RX0M2 IO I I I I I Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 33 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER CSI2.0 Interface B4 CSI2_RX0M3 CSI2.0 Interface B8 CSI2_RX0P0 CSI2.0 Interface B7 CSI2_RX0P1 CSI2.0 Interface A5 CSI2_RX0P2 CSI2.0 Interface A4 CSI2_RX0P3 CSI2.0 Interface A11 CSI2_RX1CLKM CSI2.0 Interface B11 CSI2_RX1CLKP CSI2.0 Interface A13 CSI2_RX1M0 CSI2.0 Interface B12 CSI2_RX1M1 CSI2.0 Interface A10 CSI2_RX1M2 CSI2.0 Interface A9 CSI2_RX1M3 CSI2.0 Interface B13 CSI2_RX1P0 CSI2.0 Interface A12 CSI2_RX1P1 CSI2.0 Interface B10 CSI2_RX1P2 CSI2.0 Interface B9 CSI2_RX1P3 Debug Trace W12 TRACE_CLK Debug Trace V12 TRACE_CTL Debug Trace V16 TRACE_DATA_0 Debug Trace U15 Debug Trace U11 Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace Debug Trace 34 SIGNAL NAME TYPE I I I I I I I I I I I I I I I DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION – MIPI D-PHY CSI2.0 Receiver #1, Negative Polarity Lane 3 – MIPI D-PHY CSI2.0 Receiver #1, Positive Polarity Lane 0 – MIPI D-PHY CSI2.0 Receiver #1, Positive Polarity Lane 1 – MIPI D-PHY CSI2.0 Receiver #1, Positive Polarity Lane 2 – MIPI D-PHY CSI2.0 Receiver #1, Positive Polarity Lane 3 – MIPI D-PHY CSI2.0 Receiver #2, Clock Input Negative Polarity – MIPI D-PHY CSI2.0 Receiver #2, Clock Input Positive Polarity – MIPI D-PHY CSI2.0 Receiver #2, Negative Polarity Lane 0 – MIPI D-PHY CSI2.0 Receiver #2, Negative Polarity Lane 1 – MIPI D-PHY CSI2.0 Receiver #2, Negative Polarity Lane 2 – MIPI D-PHY CSI2.0 Receiver #2, Negative Polarity Lane 3 – MIPI D-PHY CSI2.0 Receiver #2, Positive Polarity Lane 0 – MIPI D-PHY CSI2.0 Receiver #2, Positive Polarity Lane 1 – MIPI D-PHY CSI2.0 Receiver #2, Positive Polarity Lane 2 – MIPI D-PHY CSI2.0 Receiver #2, Positive Polarity Lane 3 Pull Down LVCMOS ARM/DSP Trace Debug Interface Clock Pull Down LVCMOS ARM/DSP Trace Debug Interface Control IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O TRACE_DATA_1 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O TRACE_DATA_10 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O V11 TRACE_DATA_11 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O W11 TRACE_DATA_12 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O V10 TRACE_DATA_13 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O W10 TRACE_DATA_14 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O T10 TRACE_DATA_15 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O W16 TRACE_DATA_2 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O V15 TRACE_DATA_3 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O W15 TRACE_DATA_4 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O V14 TRACE_DATA_5 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O U13 TRACE_DATA_6 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O W14 TRACE_DATA_7 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O V13 TRACE_DATA_8 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O IO IO Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER SIGNAL NAME TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION Debug Trace W13 TRACE_DATA_9 IO Pull Down LVCMOS ARM/DSP Trace Debug Interface I/O DSS UART A H19 DSS_UARTA_RX IO Pull Up LVCMOS DSS UART A Receiver DSS UART A J19 DSS_UARTA_TX IO Pull Up LVCMOS DSS UART A Receiver Error Interface L3 NERROR_IN Pull Disabled LVCMOS, Open-Drain, Failsafe Error Interface Input I Pull Disabled LVCMOS, Open-Drain, Failsafe Error Interface Output O Error Interface Ground L1 NERROR_OUT W1 VSS – – Power Ground Return Ground A1 VSS – – Power Ground Return Ground C7 VSS – – Power Ground Return Ground V2 VSS – – Power Ground Return Ground A3 VSS – – Power Ground Return Ground E5 VSS – – Power Ground Return Ground T6 VSS – – Power Ground Return Ground P6 VSS – – Power Ground Return Ground F6 VSS – – Power Ground Return Ground R7 VSS – – Power Ground Return Ground P7 VSS – – Power Ground Return Ground N7 VSS – – Power Ground Return Ground M7 VSS – – Power Ground Return Ground L7 VSS – – Power Ground Return Ground K7 VSS – – Power Ground Return Ground J7 VSS – – Power Ground Return Ground H7 VSS – – Power Ground Return Ground G7 VSS – – Power Ground Return Ground F7 VSS – – Power Ground Return Ground E7 VSS – – Power Ground Return Ground R8 VSS – – Power Ground Return Ground P8 VSS – – Power Ground Return Ground N8 VSS – – Power Ground Return Ground M8 VSS – – Power Ground Return Ground L8 VSS – – Power Ground Return Ground K8 VSS – – Power Ground Return Ground J8 VSS – – Power Ground Return Ground H8 VSS – – Power Ground Return Ground G8 VSS – – Power Ground Return Ground F8 VSS – – Power Ground Return Ground E8 VSS – – Power Ground Return Ground D8 VSS – – Power Ground Return Ground W9 VSS – – Power Ground Return Ground N9 VSS – – Power Ground Return Ground M9 VSS – – Power Ground Return Ground L9 VSS – – Power Ground Return Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 35 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION Ground BALL NUMBER SIGNAL NAME TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION K9 VSS – – Power Ground Return Ground J9 VSS – – Power Ground Return Ground H9 VSS – – Power Ground Return Ground G9 VSS – – Power Ground Return Ground N10 VSS – – Power Ground Return Ground M10 VSS – – Power Ground Return Ground L10 VSS – – Power Ground Return Ground K10 VSS – – Power Ground Return Ground J10 VSS – – Power Ground Return Ground H10 VSS – – Power Ground Return Ground G10 VSS – – Power Ground Return Ground D10 VSS – – Power Ground Return Ground N11 VSS – – Power Ground Return Ground M11 VSS – – Power Ground Return Ground L11 VSS – – Power Ground Return Ground K11 VSS – – Power Ground Return Ground J11 VSS – – Power Ground Return Ground H11 VSS – – Power Ground Return Ground G11 VSS – – Power Ground Return Ground R12 VSS – – Power Ground Return Ground P12 VSS – – Power Ground Return Ground N12 VSS – – Power Ground Return Ground M12 VSS – – Power Ground Return Ground L12 VSS – – Power Ground Return Ground K12 VSS – – Power Ground Return Ground J12 VSS – – Power Ground Return Ground H12 VSS – – Power Ground Return Ground G12 VSS – – Power Ground Return Ground F12 VSS – – Power Ground Return Ground E12 VSS – – Power Ground Return Ground D12 VSS – – Power Ground Return Ground R13 VSS – – Power Ground Return Ground P13 VSS – – Power Ground Return Ground N13 VSS – – Power Ground Return Ground M13 VSS – – Power Ground Return Ground L13 VSS – – Power Ground Return Ground K13 VSS – – Power Ground Return Ground J13 VSS – – Power Ground Return Ground H13 VSS – – Power Ground Return Ground G13 VSS – – Power Ground Return Ground F13 VSS – – Power Ground Return Ground E13 VSS – – Power Ground Return Ground P14 VSS – – Power Ground Return Ground F14 VSS – – Power Ground Return 36 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER SIGNAL NAME TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION Ground A14 VSS – – Power Ground Return Ground R15 VSS – – Power Ground Return Ground T16 VSS – – Power Ground Return Ground D16 VSS – – Power Ground Return Ground W19 VSS – – Power Ground Return Ground A19 VSS – – Power Ground Return JTAG C3 TCK IO Pull Down LVCMOS JTAG Test Clock JTAG C5 TDI IO Pull Up LVCMOS JTAG Test Data Input JTAG D6 TDO IO Pull Disabled LVCMOS JTAG Test Data Output JTAG D4 TMS IO Pull Up LVCMOS JTAG Test Data Mode Select LVDS Interface W7 LVDS_CLKM – LVDS LVDS/Aurora Transmitter, Clock, Negative Polarity LVDS Interface V7 LVDS_CLKP – LVDS LVDS/Aurora Transmitter, Clock, Positive Polarity LVDS Interface W8 LVDS_FRCLKM – LVDS LVDS/Aurora Transmitter, Frame Clock, Negative Polarity LVDS Interface V8 LVDS_FRCLKP – LVDS LVDS/Aurora Transmitter, Frame Clock, Positive Polarity LVDS Interface V6 LVDS_TXM0 – LVDS LVDS/Aurora Transmitter, Data Output, Negative Polarity, Lane 0 LVDS Interface V5 LVDS_TXM1 – LVDS LVDS/Aurora Transmitter, Data Output, Negative Polarity, Lane 1 LVDS Interface V4 LVDS_TXM2 – LVDS LVDS/Aurora Transmitter, Data Output, Negative Polarity, Lane 2 LVDS Interface V3 LVDS_TXM3 – LVDS LVDS/Aurora Transmitter, Data Output, Negative Polarity, Lane 3 LVDS Interface W6 LVDS_TXP0 – LVDS LVDS/Aurora Transmitter, Data Output, Positive Polarity, Lane 0 LVDS Interface W5 LVDS_TXP1 – LVDS LVDS/Aurora Transmitter, Data Output, Positive Polarity, Lane 1 LVDS Interface W4 LVDS_TXP2 – LVDS LVDS/Aurora Transmitter, Data Output, Positive Polarity, Lane 2 LVDS Interface W3 LVDS_TXP3 – LVDS LVDS/Aurora Transmitter, Data Output, Positive Polarity, Lane 3 MSS CAN A B2 MSS_MCANA_RX IO Pull Up LVCMOS MSS CAN Channel A, Receiver MSS CAN A A2 MSS_MCANA_TX IO Pull Up LVCMOS MSS CAN Channel A, Transmitter MSS CAN B C1 MSS_MCANB_RX IO Pull Up LVCMOS MSS CAN Channel B, Receiver MSS CAN B B1 MSS_MCANB_TX IO Pull Up LVCMOS MSS CAN Channel B, Transmitter MSS EPWM E3 MSS_EPWMA0 IO Pull Down LVCMOS MSS Enhanced PWM A, Channel 0 Pull Up LVCMOS MSS Ethernet Manage Data Input/ Output Clock Pull Up LVCMOS MSS Ethernet Manage Data Input/ Output Data O O O O O O O O O O O O MSS Ethernet R19 MSS_MDIO_CLK MSS Ethernet P19 MSS_MDIO_DATA MSS Ethernet M19 MSS_RGMII_RCLK MSS Ethernet P18 MSS_RGMII_RD0 MSS Ethernet N19 MSS_RGMII_RD1 IO IO IO IO IO Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Receive Clock Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Receive Data 0 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Receive Data 1 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 37 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER SIGNAL NAME MSS Ethernet M18 MSS_RGMII_RD2 MSS Ethernet L19 MSS_RGMII_RD3 MSS Ethernet K19 MSS_RGMII_TCLK MSS Ethernet L18 MSS_RGMII_TD0 MSS Ethernet L17 MSS_RGMII_TD1 MSS Ethernet K16 MSS_RGMII_TD2 MSS Ethernet K18 MSS_RGMII_TD3 MSS Ethernet J17 MSS_RGMII_RCTL MSS Ethernet J18 MSS_RGMII_TCTL MSS GPIO B18 MSS_GPIO_10 MSS GPIO C17 MSS GPIO A18 MSS GPIO MSS GPIO TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Receive Data 2 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Receive Data 3 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Clock Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 0 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 1 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 2 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 3 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 3 Pull Down LVCMOS MSS Ethernet RGMII/GMII/MII Transmit Data 3 IO Pull Down LVCMOS MSS GPIO MSS_GPIO_11 IO Pull Down LVCMOS MSS GPIO MSS_GPIO_12 IO Pull Down LVCMOS MSS GPIO B17 MSS_GPIO_13 IO Pull Down LVCMOS MSS GPIO H2 MSS_GPIO_2 IO Pull Down LVCMOS MSS GPIO MSS GPIO G3 MSS_GPIO_28 IO Pull Down LVCMOS MSS GPIO MSS GPIO B3 MSS_GPIO_8 IO Pull Down LVCMOS MSS GPIO MSS GPIO B19 MSS_GPIO_9 IO Pull Down LVCMOS MSS GPIO MSS I2CA F16 MSS_I2CA_SDA IO Pull Down LVCMOS 12C A, Data MSS I2CA F18 MSS_I2CA_SCL IO Pull Down LVCMOS I2C A, Clock MSS SPI A G19 MSS_MIBSPIA_CLK IO Pull Up LVCMOS MSS SPI A, Clock Output MSS SPI A F19 MSS_MIBSPIA_CS0 IO Pull Up MSS SPI A G18 MSS_MIBSPIA_HOSTIR Q MSS SPI A G17 MSS_MIBSPIA_MISO MSS SPI A H18 MSS_MIBSPIA_MOSI MSS SPI B D18 MSS_MIBSPIB_CLK MSS SPI B D19 MSS_MIBSPIB_CS0 MSS SPI B E18 MSS SPI B E17 MSS SPI B C19 MSS_MIBSPIB_MISO MSS SPI B C18 MSS_MIBSPIB_MOSI MSS UART A U3 MSS_UARTA_RX MSS UART A W2 MSS UART B V9 Power, 1.2V Core Digital N5 VDD 38 IO IO IO IO IO IO IO IO IO LVCMOS MSS SPI A, Chip-Select Output Pull Down LVCMOS MSS SPI A ,Host Interrupt Input Pull Up LVCMOS MSS SPI A, Host Master Input, Slave Output Pull Up LVCMOS MSS SPI A, Host Master Output, Slave Input IO Pull Up LVCMOS MSS SPI B, Clock Output IO Pull Up LVCMOS MSS SPI B, Chip-Select 0 Output MSS_MIBSPIB_CS1 IO Pull Down LVCMOS MSS SPI B, Chip-Select 1 Output MSS_MIBSPIB_CS2 IO Pull Down LVCMOS MSS SPI B, Chip-Select 2Output Pull Up LVCMOS MSS SPI B, Host Master Input, Slave Output Pull Up LVCMOS MSS SPI B, Host Master Output, Slave Input IO Pull Up LVCMOS MSS UART A, Receive MSS_UARTA_TX IO Pull Up LVCMOS MSS UART A, Transmit MSS_UARTB_TX IO Pull Up LVCMOS MSS UART B, Transmit – Power 1.2V Core Digital Power IO IO IO IO IO – Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER SIGNAL NAME Power, 1.2V Core Digital L5 VDD Power, 1.2V Core Digital J5 VDD Power, 1.2V Core Digital G5 VDD Power, 1.2V Core Digital N6 VDD Power, 1.2V Core Digital L6 VDD Power, 1.2V Core Digital J6 VDD Power, 1.2V Core Digital G6 VDD Power, 1.2V Core Digital R9 VDD Power, 1.2V Core Digital P9 VDD Power, 1.2V Core Digital F9 VDD Power, 1.2V Core Digital E9 VDD Power, 1.2V Core Digital R11 VDD Power, 1.2V Core Digital P11 VDD Power, 1.2V Core Digital F11 VDD Power, 1.2V Core Digital E11 VDD Power, 1.2V Core Digital N14 VDD Power, 1.2V Core Digital L14 VDD Power, 1.2V Core Digital J14 VDD Power, 1.2V Core Digital G14 VDD Power, 1.2V Core Digital N15 VDD Power, 1.2V Core Digital L15 VDD Power, 1.2V Core Digital J15 VDD Power, 1.2V Core Digital G15 VDD Power, 1.2V Core Digital N17 VDD_SRAM1 Power, 1.2V Core Digital J3 VDD_SRAM2 Power, 1.2V Core Digital T8 VDD_SRAM3 TYPE – – – – – – – – – – – – – – – – – – – – – – – – – – DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V Core Digital Power – Power 1.2V SRAM Digital Power – Power 1.2V SRAM Digital Power – Power 1.2V SRAM Digital Power Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 39 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER SIGNAL NAME Power, 1.2V Core Digital N18 VNWA Power, 1.8V ADC R3 VIOIN_18ADC Power, 1.8V Clocking U2 VIOIN_18CLK Power, 1.8V I/O M4 VIOIN_18 Power, 1.8V I/O H4 VIOIN_18 Power, 1.8V I/O T14 Power, 1.8V I/O E15 Power, 1.8V I/O M16 Power, 1.8V I/O LVDS U5 VIOIN_18LVDS Power, 1.8V I/O LVDS U7 VIOIN_18LVDS Power, 1.8V I/O MIPI D-PHY C9 VIOIN_18CSI Power, 1.8V I/O MIPI D-PHY C11 VIOIN_18CSI Power, 1.8V/3.3V I/O K4 VIOIN Power, 1.8V/3.3V I/O F4 VIOIN Power, 1.8V/3.3V I/O R5 VIOIN Power, 1.8V/3.3V I/O T12 VIOIN Power, 1.8V/3.3V I/O D14 VIOIN Power, 1.8V/3.3V I/O P16 VIOIN Power, 1.8V/3.3V I/O H16 VIOIN Power, Bandgap Output T1 VBGAP Power, E-fuse U9 VPP MSS QSPI E1 MSS_QSPI_CLK MSS QSPI F2 MSS_QSPI_CS MSS QSPI C1 MSS_QSPI_D0 MSS QSPI D2 MSS QSPI D1 MSS QSPI MSS UART MSS UART G2 MSS_RS232_RX Radar Front-End H1 FE1_REFCLK Radar Front-End J2 FE2_REFCLK 40 TYPE DEFAULT PULL STATUS BUFFER TYPE DESCRIPTION – Power 1.2V N-well bias – Power 1.8V ADC Power – Power 1.8V Clock Power – – Power 1.8V Digital I/O Power – – Power 1.8V Digital I/O Power VIOIN_18 – – Power 1.8V Digital I/O Power VIOIN_18 – – Power 1.8V Digital I/O Power VIOIN_18 – – Power 1.8V Digital I/O Power – Power 1.8V LVDS I/O Power – Power 1.8V LVDS I/O Power – Power 1.8V CSI2 I/O Power – Power 1.8V CSI2 I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power 1.8V/3.3V Digital I/O Power – Power Bandgap Output – – Power E-fuse Programming Voltage IO Pull Down LVCMOS MSS QSPI Clock Output IO Pull Up LVCMOS MSS QSPI Chip-Select Output IO Pull Up LVCMOS MSS QSPI Data Input/Output 0 MSS_QSPI_D1 IO Pull Down LVCMOS MSS QSPI Data Input/Output 1 MSS_QSPI_D2 IO Pull Up LVCMOS MSS QSPI Data Input/Output 2 E2 MSS_QSPI_D3 IO Pull Up LVCMOS MSS QSPI Data Input/Output 3 G1 MSS_RS232_TX IO Pull Disabled LVCMOS MSS Debug UART - Transmit Signal IO Pull Up LVCMOS MSS Debug UART - Receive Signal – – – – – – – – – – – – – – – IO IO Pull Down Clocking Radar Front-End 1, Reference Clock Input Pull Down Clocking Radar Front-End 2, Reference Clock Input Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 6-3. Signal Descriptions (continued) FUNCTION BALL NUMBER Radar Front-End V17 HW_SYNC_FE1 Radar Front-End W17 HW_SYNC_FE2 Radar Front-End C15 NERRORIN_FE1 Radar Front-End A16 NERRORIN_FE2 Radar Front-End B15 NRESET_FE1 Radar Front-End A15 NRESET_FE2 Radar Front-End B14 NWARMRESET_IN_FE1 Radar Front-End C13 NWARMRESET_IN_FE2 RCSS GPIO E19 RCSS_GPIO_49 RCSS SPI A T18 RCSS_MIBSPIA_CLK RCSS SPI A T19 RCSS_MIBSPIA_CS0 RCSS SPI A U18 RCSS_MIBSPIA_HOSTI RQ RCSS SPI A R17 RCSS_MIBSPIA_MISO RCSS SPI A R18 RCSS_MIBSPIA_MOSI RCSS SPI B V19 RCSS_MIBSPIB_CLK RCSS SPI B U17 RCSS_MIBSPIB_CS0 RCSS SPI B W18 RCSS_MIBSPIB_HOSTI RQ RCSS SPI B V18 RCSS_MIBSPIB_MISO RCSS SPI B U19 RCSS_MIBSPIB_MOSI RCSS UART A A17 RCSS_UARTA_TX RCSS UART A B16 RCSS_UARTA_RX Reset L2 SIGNAL NAME TYPE DEFAULT PULL STATUS DESCRIPTION Pull Down Clocking Radar Front-End 1, Frame Sync Output Pull Down Clocking Radar Front-End 2, Frame Sync Output IO Pull Down LVCMOS, Open-Drain Radar Front-End 1, Error Input IO Pull Down LVCMOS, Open-Drain Radar Front-End 2, Error Input Pull Down LVCMOS Radar Front-End 1, Power-on-Reset Output Pull Down LVCMOS Radar Front-End 2, Power-on-Reset Output Pull Down LVCMOS Radar Front-End 1, Warm-Reset Output Pull Down LVCMOS Radar Front-End 2, Warm-Reset Output IO Pull Down LVCMOS General-purpose I/O IO Pull Up LVCMOS Radar Control SPI A, Clock Output Pull Up LVCMOS Radar Control SPI A, Chip-Select Output IO IO IO IO IO IO IO IO IO IO IO IO Pull Down LVCMOS Radar Control SPI A, Host Interrupt Input Pull Up LVCMOS Radar Control SPI A, Master Input, Slave Output Pull Up LVCMOS Radar Control SPI A, Master Output, Slave Input Pull Up LVCMOS Radar Control SPI B, Clock Output Pull Up LVCMOS Radar Control SPI B, Chip-Select Output Pull Down LVCMOS Radar Control SPI B, Host Interrupt Input Pull Up LVCMOS Radar Control SPI B, Master Input, Slave Output Pull Up LVCMOS Radar Control SPI B, Master Output, Slave Input IO Pull Up LVCMOS Radar Control UART A, Transmitter IO Pull Up LVCMOS Radar Control UART A, Receiver – LVCMOS, Open-Drain, Failsafe AM273x Power-on-Reset Input IO Pull Disabled LVCMOS, Open-Drain AM273x Warm-Reset Input IO IO IO NRESET I Reset BUFFER TYPE K1 WARM_RESET Reserved P4 Reserved1 – – – Reserved. Short to VSS on PCB. Reserved N3 Reserved2 – – – Reserved. Short to VSS on PCB. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 41 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7 Specifications 7.1 Absolute Maximum Ratings PARAMETER/PIN(1) (2) MIN MAX VDD 1.2V digital power supply DESCRIPTION -0.5 1.4 V VIN_SRAM 1.2V power rail for internal SRAM -0.5 1.4 V VNWA 1.2V power rail for SRAM array back bias -0.5 1.4 V VIOIN I/O Supply (3.3V or 1.8V): All LVCMOS1833 I/O would operate on this supply -0.5 3.8 V VIOIN_18 1.8V supply for CMOS I/O -0.5 2 V VIN_18CLK 1.8V supply for clock module -0.5 2 V VIOIN_18DIFF 1.8V supply for CSI2 and LVDS ports -0.5 2 V -0.3V to VIOIN +0.3V V VIOIN +20% up to 20% of Signal Period V Dual-voltage LVCMOS inputs, operated at 3.3V or 1.8V (Steady State) Input Voltage Dual-voltage LVCMOS inputs, operated at 3.3V/1.8V (Transient Overshoot/Undershoot) UNIT CLKP/CLKN -0.5 2 V Clamp Current Limit clamp current(3) -20 20 mA TJ Operating junction temperature range Automotive -40 140 Industrial -40 105 Tstg Storage temperature range after soldered onto PC Board -55 150 (1) (2) (3) °C °C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal GND. Specifies clamp current that will flow through the internal diode protection cells of the I/O in an overvoltage or undervoltage condition. 7.2 ESD Ratings - Automotive VALUE ESD stress voltage HBM, per AEC Q100-002(1) V(ESD) (1) Electrostatic discharge ESD stress voltage CDM, per AEC Q100-011 All pins ±2000 All pins ±500 Corner Pins (A1, A19, W1, W19) ±750 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Power-On Hours (POH) PARAMETER(1) EXTENDED INDUSTRIAL EXTENDED AUTOMOTIVE –40°C to 105°C –40°C to 140°C See the Extended Industrial Temperature Profile See the Extended Automotive Temperature Profile Operating Junction Temperature (Tj) POH at Temperature Profile (1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products. 7.3.1 Automotive Temperature Profile Table 7-1. Extended Automotive Temperature Profile 42 TJ (℃) HOURS DAYS YEARS PERCENT OF TIME –40 1200 ~50 ~0.14 6% 75 4000 ~167 ~0.46 20% 95 13000 ~541 ~1.48 65% 130 1600 ~67 ~0.18 8% 140 200 ~8.5 ~0.023 1% Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-1. Extended Automotive Temperature Profile (continued) TJ (℃) HOURS DAYS YEARS PERCENT OF TIME Total 20000 ~833 ~2.28 100% 7.3.2 Industrial Temperature Profile Table 7-2. Extended Industrial Temperature Profile (1) TJ (℃) TOTAL HOURS TOTAL DAYS TOTAL YEARS 95 100000 ~4166 ~11.41 105(1) 70000 ~2916 ~7.99 Based on operating at CSI2.0 interface at 50% utilization 7.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) SUPPLY NAME DESCRIPTION MIN NOM MAX UNIT Power Supply Conditions VDD 1.2-V digital power supply 1.14 1.2 1.32 V VIN-SRAM 1.2-V power rail for internal SRAM 1.14 1.2 1.32 V VNWA 1.2-V power rail for SRAM array back bias 1.14 1.2 1.32 V VIOIN I/O Supply (3.3-V mode): ALL LVCMOS1833 I/O would operate on this supply 3.135 3.3 3.465 V VIOIN I/O Supply (1.8-V mode): ALL LVCMOS1833 I/O would operate on this supply 1.71 1.8 1.89 V VIOIN_18 1.8V supply for LVCMOS1833 I/O 1.71 1.8 1.9 V VIN_18CLK 1.8V supply for clock module 1.71 1.8 1.9 V VIN_18ADC 1.8V supply for ADC module 1.71 1.8 1.9 V VIN_18CSI 1.8V supply for CSI-2 D-PHY buffers 1.71 1.8 1.9 V VIOIN_18LVDS 1.8V supply for LVDS buffers 1.71 1.8 1.9 V VPP 1.7V supply for e-Fuse array 1.65 1.7 1.75 V LVCMOS18/33 (1.8V mode) Voltage Input High 1.71 V LVCMOS18/33 (3.3V mode) Voltage Input High 2.25 V I/O Conditions LVCMOS VIH LVCMOS18/33 (1.8V mode) Voltage Input Low 0.3 × VIOIN V LVCMOS18/33 (3.3V mode) Voltage Input Low 0.8 × VIOIN V LVCMOS VIL LVCMOS VOH LVCMOS18/33 (1.8 and 3.3V mode) Voltage Output High (IOH = 6 ma) LVCMOS VOL LVCMOS18/33 (1.8V and 3.3V mode) Voltage Output Low(IOL = 6 ma) NRESET, SOP[4:0] VIH NRESET, SOP[4:0] VIL VIOIN - 0.450 V 0.45 NRESET, SOP[4:0], (1.8V mode) Voltage Input High 0.96 NRESET, SOP[4:0], (3.3V mode) Voltage Input High 1.57 V V V NRESET, SOP[4:0], (1.8V mode) Voltage Input Low 0.2 V NRESET, SOP[4:0], (3.3V mode) Voltage Input Low 0.3 V LVDS TX VOH Voltage Output High 1.5 V LVDS TX VOL Voltage Output Low CSI2 RX VIH(1) Voltage Input High - LP Mode CSI2 RX VIL (1) Voltage Input Low - LP Mode 0.55 V CSI2 RX VIH(1) Voltage Input High - HS Mode 0.46 V 0.9 V 0.74 V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 43 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.4 Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted) SUPPLY NAME CSI2 RX VIL(1) OSC_CLKOUT (1) 44 DESCRIPTION Voltage Input Low - HS Mode MIN NOM -0.04 MAX UNIT V Voltage Output High 1.4 V Voltage Output Low VSS V CSI2 receivers compatible with MIPI D-PHY standard version 2.1. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.5 Operating Performance Points This section describes the operating conditions of the device. This section also contains the description of each Operating Performance Point (OPP) for processor clocks and device core clocks. Note The OPP voltage and frequency values may change following the silicon characterization result. Table 7-3 describes the maximum supported frequency per speed grade for the device. Table 7-3. Device Speed and Memory Grade DEVICE GRADE RAM (MB) DSP (MHz) R5FSS (MHz) AM2732, AM2732-Q1 D 3.625 450 400 7.6 Power Supply Specifications Table 7-4 describes the four power rails provided from an external power supply and how they map to major sub-systems and power nets of the AM273x device. Table 7-4. Power Supply Rails Characteristics SUPPLY DEVICE BLOCKS POWERED FROM THE SUPPLY RELEVANT INPUT POWER NETS ON THE DEVICE 1.8 V APLL, crystal oscillator, ADC, CSI2, LVDS Input: VIN18CLK, VIN_18ADC, VIOIN_18DIFF, VIOIN_18LVDS, VIOIN_18CSI 3.3 V (or 1.8 V for 1.8 V I/O mode) Digital I/O Input: VIOIN 1.2 V Core Digital and SRAMs Input: VDD, VIN_SRAM1, VIN_SRAM2, VIN_SRAM3, VNWA 7.7 I/O Buffer Type and Voltage Rail Dependency Table 7-5. Buffer Type BUFFER TYPE (STANDARD) DESCRIPTION VOLTAGE RAIL PERIPHERALS VIOIN, VIOIN_18 Resets, QSPI, UART, SPI, I2C, CAN-FD, GPIO, RGMII, MDIO, ePWM, eCAP, JTAG, Trace, SOP, Safety, DMM LVCMOS Dual voltage 1.8V/3.3V LVCMOS I/O buffer GPADC General Purpose ADC Input VIN_18ADC GPADC Clock Subsystem Clock subsystem crystal or 1.8V singleended input buffer VIN_18CLK CLKP/CLKM Clock Subsystem Output Analog, low-jitter output from clock subsystem VIN_18CLK OSC_CLKOUT LVDS TX LVDS high-speed data, differential output buffer VIOIN_18DIFF Aurora LVDS CSI2.0 RX MIPI D-PHY CSI2.0 high-speed data, differential input buffer VIOIN_18DIFF CSI2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 45 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.8 CPU Specifications Table 7-6. CPU and Hardware Accelerator Specifications PARAMETER Dual-Core Cortex-R5F, ARMv7 Main Subsystem (MSS) MIN NOM MAX UNIT (2) L1 Program Memory Cache 16 kB L1 Data Memory Chache 16 kB 64 kB 960 kB 450 MHz L1 Program Memory 32 kB L1 Data Memory 32 kB 384 kB 3625 kB (3) L1 Tightly Coupled Memory (TCM) with 32-bit ECC L2 Memory Single Core C66x DSP Clock Speed DSP Subsystem (DSS) L2 Memory Shared Memory (1) (2) (3) (4) (1) Shared L3 Memory (4) 2000 C66x L2 memory includes up to 256kB configuration as RAM or cache R5F dual-cores configuration as single, redundant, lock-step device, or two independent cores L1 64kB tightly coupled memory shared between lock-step devices, or 32kB L1 for each core when operating in dual-core mode. Sharable across R5F, C66x, and HWA subsystems 7.9 Thermal Resistance Characteristics for nFBGA Package [ZCE285A] THERMAL METRICS(1) °C/W(2) (3) RΘJC Junction-to-case RΘJB Junction-to-board 5.7 RΘJA Junction-to-free air 17.3 PsiJT Junction-to-package top 1.0 PsiJB Junction-to-board 5.6 (1) (2) (3) 6.2 For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. °C/W = degrees Celsius per watt. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • • • • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements 7.10 Power Consumption Summary Table Table 7-7 summarizes average power consumption of the AM273x device for a set of typical application utilization and thermal parameters. Table Table 7-8 shows hypothetical peak current for the device. Both of these tables can be used to scale power regulator and PCB design. However, specific power utilization of the device is dependent on the software utilization of device cores, accelerators and peripherals and operating temperature. To facilitate accurate power planning, TI provides a power estimation tool (PET) spreadsheet which can be used for estimating device power utilization across a wide number of scenarios. Please see sprad10 for more information. 46 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-7. Average Power and Current PARAMETER SUPPLY NAME Average Power and Current Consumption for Typical Control and Processing Use-Case: • • • • • • C66x DSP: 450 MHz, 50% Utilization R5F Dual Core: 400 MHz, 70% Utilization CSI2-A/B: 4-Lane, 600 Mbps Operation SPI: 10% Utilization Ethernet: 100Mbps Operation, 70% Utilization CAN: 8Mbps Operation, 10% Utilization • • SPI: 25 Mbps Operation, 10% Utilization TJ= 25 C SUPPLY DESCRIPTION AVERAGE POWER (mW) AVERAGE CURRENT (mA) 692 576 VDD 1.2V Core Digital Power VDD_SRAM 1.2V SRAM Power 3 3 VIOIN 1.8V or 3.3V Digital I/O Power 12 4 VIOIN_18 1.8V Digital I/O Power 0 0 VIOIN_18CLK 1.8V Clocking Power 32 18 VIOIN_18ADC 1.8V ADC Power 3 2 VIOIN_18CSI 1.8V CSI Power 40 22 125 69 VIOIN_18LVDS 1.8V LVDS Power Total Power 907 Table 7-8. Peak Current SUPPLY NAME SUPPLY DESCRIPTION PEAK CURRENT (mA) VDD 1.2V Core Digital Power 2315 VDD_SRAM 1.2V SRAM Power 75 VIOIN 1.8V or 3.3V Digital I/O Power 74 VIOIN_18 1.8V Digital I/O Power 1 VIOIN_18CLK 1.8V Clocking Power 18 VIOIN_18ADC 1.8V ADC Power 2 VIOIN_18CSI 1.8V CSI Power 23 VIOIN_18LVDS 1.8V LVDS Power 70 7.11 Timing and Switching Characteristics 7.11.1 Power Supply Sequencing and Reset Timing The AM273x device expects all external voltage rails and SOP boot mode select lines to be stable before NRESET is de-asserted (brought from VSS level to VIOIN level). Likewise external voltage rails should only be powered down after NRESET is asserted (brought from VIOIN level to VSS level).Figure 7-1 describes the device wake-up and power-down sequence. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 47 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Figure 7-1. Device Wake-up and Power-Down Sequence Table 7-9 lists the timing values shown in Figure 7-1. Table 7-9. Device Wake-Up Sequence Timing NAME tPOWER_STABLE DESCRIPTION Settling time after initial power supply turn-on after which device power nets are at valid, recommended operating conditions. NRESET should not be de-asserted (brought from GND to VIOIN level) before all power pins are at recommended operating point. See Recommended Operating Conditions for recommended operating MIN TYP MAX UNIT 0 ms 0 ms conditions of all device power pins. tRESET_DELAY 48 Delay after device power nets are at valid, nominal values, when NRESET can be brought from VSS to VIOIN level. NRESET can be brought from VSS to VIOIN level anytime after power supplies are at recommended operating conditions. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-9. Device Wake-Up Sequence Timing (continued) NAME DESCRIPTION MIN tSU_SOP Setup time for SOP signals to be sampled by the rising edge of NRESET. Device is ready to sample SOP pin states anytime after power supplies are at recommended operating conditions. tMSS_BOOT_START Typical delay after NRESET rising edge before boot ROM to begins MSS code execution. Value depends on whether device is operating directly from a crystal source or oscillator (REFCLK) source. Faster startup possible with the oscillator mode. 0.5 tRESET_POWER_DELAY During power off events, delay after NRESET is brought from VIOIN to VSS level to when power pins can be powered off. Device power pins can be powered off anytime after NRESET is brought to VSS level. 0 TYP MAX UNIT 0 ms 7.0 ms ms 7.11.2 Clock Specifications An external crystal is connected to the device pins. Figure 7-2 shows the crystal implementation. Cf1 CLKP Cp 40 MHz CLKM Cf2 Figure 7-2. Crystal Implementation Note The load capacitors, Cf1 and Cf2 in Figure 7-2, should be chosen such that Equation 1 is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and CLKM pins. Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing. C L = C f1 ´ C f2 C f1 + C f 2 +CP (1) Table 7-10 lists the electrical characteristics of the clock crystal. Table 7-10. Crystal Electrical Characteristics (Oscillator Mode) NAME DESCRIPTION fP Parallel resonance crystal frequency CL Crystal load capacitance ESR Crystal ESR Temperature range Expected temperature range of operation Frequency tolerance Crystal frequency tolerance(1) (2) (3) Drive level (1) (2) (3) MIN TYP MAX 40 5 8 –40 –200 50 UNIT MHz 12 pF 50 Ω 150 °C 200 ppm 200 µW The crystal manufacturer's specification must satisfy this requirement. Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance. Crystal tolerance affects sensor accuracy if AM273x used as clock source for attached sensors. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 49 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 A non-crystal oscillator can also be used as the clock reference source. In this case the signal is fed to the CLKP pin only and CLKM is grounded. Table 7-11 lists the electrical, AC timing, and phase noise requirements of the external oscillator input signal. Table 7-11. External Clock Mode Input Requirements SPECIFICATION PARAMETER MIN TYP Frequency UNIT MAX 40 MHz AC-Amplitude 700 1200 mV (pp) DC-VIL 0.00 0.02 V DC-VIH 1.40 1.95 V 10 ns Input Clock: DC-trise/fall External AC-coupled sine wave or DCPhase Noise at 1 kHz coupled square wave Phase Noise at 10 kHz Phase Noise referrenced to 40 MHz –132 dBc/Hz –143 dBc/Hz Phase Noise at 100 kHz –152 dBc/Hz Phase Noise at 1 MHz –153 dBc/Hz Duty Cycle Freq Tolerance 35 65 % –50 50 ppm 7.11.3 Peripheral Information Initial peripheral descriptions and features are provided in the following sections. Additional peripheral details and interface timing information shall be provided in a later product preview or datasheet release. 7.11.3.1 QSPI Flash Memory Peripheral AM273x includes a Quad-Serial Peripheral Interface for external flash memory access. Flash memory can be be utilized for many purposes including: Secondary boot-loader memory, application program memory, security keys storage, and long-term data logs for security and error conditions. • • • • • ROM bootloader auto identification of supported flash through flash device ID (DEVID) register Loopback skew cancellation for clock signal to supported faster flash interface clock rates Two chip-select signals to connect two external flash devices Memory mapped 'direct' mode and software triggered 'indirect' mode of operation for performing flash data transfers 67 MHz operating clock supported 7.11.3.1.1 QSPI Timing Conditions SPECIFIC ATION NUMBER PARAMETER MIN TYP MAX UNIT Input Conditions 1 tR Input rise time 1 3 ns 2 tF Input fall time 1 3 ns 2 15 pF MAX UNIT Output Conditions 3 CLOAD Output load capacitance 7.11.3.1.2 QSPI Timing Requirements SPECIFIC ATION NUMBER 50 PARAMETER (1), (2), (3) MIN TYP Q12 tsu(D-SCLK) Setup time, D[3:0] valid before falling SCLK edge 5 ns Q13 th(SCLK-D) Hold time, D[3:0] valid after falling SCLK edge 0 ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 SPECIFIC ATION NUMBER (1) (2) (3) PARAMETER (1), (2), (3) MIN Q14 tsu(D-SCLK) Setup time, final D[3:0] bit valid before final falling SCLK edge 5-P Q15 th(SCLK-D) Hold time, final D[3:0] bit valid after final falling SCLK edge 0+P TYP MAX UNIT ns ns Clock Mode 0 (clock polarity = 0 ; clockk phase = 0 ) is the mode of operation. The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although nonstandard, The falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that launch data on the falling edge in Clock Mode 0. P = SCLK period in ns. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 51 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.1.3 QSPI Switching Characteristics SPECIFIC ATION NUMBER (1) (2) PARAMETER (1), (2) Q1 tc(SCLK) Cycle time, sclk Q2 tw(SCLKL) Q3 tw(SCLKH) Q4 td(CS-SCLK) Delay time, sclk falling edge to cs active edge Q5 td(SCLK-CS) Delay time, sclk falling edge to cs inactive edge Q6 td(SCLK-D0) Delay time, sclk falling edge to d[0] transition Q7 tena(CS-D0LZ) Q8 tdis(CS-D0Z) Q9 td(SCLK-D0) MIN TYP MAX UNIT 14.9 ns Pulse duration, sclk low 0.5*P – 1.5 ns Pulse duration, sclk high 0.5*P – 1.5 ns –M*P – 1 –M*P + 2.5 ns N*P – 1 N*P + 2.5 ns –3 5.2 ns Enable time, cs active edge to d[0] driven (lo-z) –P – 4 –P +3.5 ns Disable time, cs active edge to d[0] tri-stated (hi-z) –P – 4 –P +3.5 ns Delay time, sclk first falling edge to first d[0] transition (for PHA = 0 only) –3– P 3.5 – P ns P = SCLK period in ns. M = QSPI_SPI_DC_REG.DDx + 1, N = 2 Figure 7-3. QSPI Read (Clock Mode 0) 52 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 PHA=0 cs Q5 Q4 Q1 Q2 POL=0 Q3 sclk Q9 Q6 Command Command Bit n-1 Bit n-2 Q7 d[0] Q6 Q8 Q6 Write Data Bit 1 Write Data Bit 0 d[3:1] SPRS85v_TIMING_OSPI1_04 Figure 7-4. QSPI Write (Clock Mode 0) 7.11.3.2 MIBSPI Peripheral AM273x includes four, Multi-Buffered Serial Peripheral Interface (MIBSPI) master interfaces. Two of these interfaces are intended for external MCU, PMIC, EEPROM, Watchdog, and other system-level communication. The other two interfaces are intended for independently mastering SPI device sensors. • Maximum clock rate supported over each MIBSPI module is 25 MHz. 7.11.3.2.1 SPI Timing Conditions NO. PARAMETER MIN TYP MAX UNIT Input Conditions 1 tR Input rise time 1 3 ns 2 tF Input fall time 1 3 ns Output load capacitance 2 15 pF Output Conditions 3 CLOAD 7.11.3.2.2 SPI Master Mode Timing and Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) The following tables and figures present timing requirements and switching characteristics for SPI – Master Mode. Table 7-12. SPI Master Mode Switching Characteristics (CLOCK PHASE = 0, SPICLK = output, (1)(3) SPISIMO = output, and SPISOMI = input) see Figure 7-5 and Figure 7-6 NO. 1 2 3 PARAMETER MIN (2) tc(SPC)M Cycle time, SPICLK tw(SPCH)M tw(SPCL)M TYP MAX UNIT 40 256tc(VCLK) Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 ns ns ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 53 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-12. SPI Master Mode Switching Characteristics (CLOCK PHASE = 0, SPICLK = output, (1)(3) SPISIMO = output, and SPISOMI = input) (continued) see Figure 7-5 and Figure 7-6 NO. PARAMETER td(SPCHSIMO)M 4 td(SPCLSIMO)M tv(SPCLSIMO)M 5 tv(SPCHSIMO)M 0.5tc(SPC)M – 13 Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 13 Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0) 0.5tc(SPC)M – 10.5 Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 10.5 ns ns (C2TDELAY+2) * tc(VCLK) + 7 CSHOLD = 1 (C2TDELAY +3) * tc(VCLK) – 7.5 (C2TDELAY+3) * tc(VCLK) + 7 CSHOLD = 0 (C2TDELAY+2)* tc(VCLK) – 7.5 (C2TDELAY+2) * tc(VCLK) + 7 (C2TDELAY +3) * tc(VCLK) – 7.5 (C2TDELAY+3) * tc(VCLK) + 7 Hold time, SPICLK low until CS inactive (clock polarity = (5) 0) 0.5*tc(SPC)M + (T2CDELAY + 1) *tc(VCLK) – 7 0.5*tc(SPC)M + (T2CDELAY + 1) * tc(VCLK) + 7.5 Hold time, SPICLK high until CS inactive (clock polarity = (5) 1) 0.5*tc(SPC)M + (T2CDELAY + 1) *tc(VCLK) – 7 0.5*tc(SPC)M + (T2CDELAY + 1) * tc(VCLK) + 7.5 Setup time CS active until SPICLK low (5) (clock polarity = 1) CSHOLD = 1 tT2CDELAY MAX UNIT (C2TDELAY+2)* tc(VCLK) – 7.5 tC2TDELAY 7 TYP CSHOLD = 0 Setup time CS active until SPICLK high (5) (clock polarity = 0) 6 MIN Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0) ns ns Table 7-13. SPI Master Mode Timing Requirements (CLOCK PHASE = 0, SPICLK = output, (1)(3) SPISIMO = output, and SPISOMI = input) see Figure 7-5 NO. PARAMETER tsu(SOMI- 8 SPCL)M tsu(SOMISPCH)M th(SPCL9 SOMI)M th(SPCHSOMI)M (1) (2) (3) (4) (5) 54 MIN Setup time, SPISOMI before SPICLK low (4) (clock polarity = 0) 5 Setup time, SPISOMI before SPICLK high (4) (clock polarity = 1) 5 Hold time, SPISOMI data valid after SPICLK low (4) (clock polarity = 0) 3 Hold time, SPISOMI data valid after SPICLK high (4) (clock polarity = 1) 3 TYP MAX UNIT ns ns The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1). tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 1 SPICLK (clock polarity = 0) 2 1 3 SPICLK (clock polarity = 1 5 4 Master Out Data Is Valid SPISIMO 1 8 9 Master In Data Must Be Valid SPISOMI Figure 7-5. SPI Master Mode External Timing (CLOCK PHASE = 0) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 6 7 SPICSn Figure 7-6. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0) 7.11.3.2.3 SPI Master Mode Timing and Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input) Table 7-14. SPI Master Mode Switching Characteristics (CLOCK PHASE = 1, SPICLK = output, SPISIMO = (1)(3) output, and SPISOMI = input) see Figure 7-5 and Figure 7-8 NO. 1 2 3 4 PARAMETER MIN (2) TYP MAX tc(SPC)M Cycle time, SPICLK 40 256tc(VCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 td(SPCH- Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0) 0.5tc(SPC)M – 13 Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 13 SIMO)M td(SPCLSIMO)M UNIT ns ns ns ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 55 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-14. SPI Master Mode Switching Characteristics (CLOCK PHASE = 1, SPICLK = output, SPISIMO = (1)(3) output, and SPISOMI = input) (continued) see Figure 7-5 and Figure 7-8 NO. PARAMETER tv(SPCL- 5 SIMO)M tv(SPCHSIMO)M tC2TDELAY MIN Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0) 0.5tc(SPC)M – 10.5 Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 10.5 Setup time CS active until SPICLK high (5) (clock polarity = 0) 0.5*tc(SPC)M + (C2TDELAY+2 ) * tc(VCLK) + 7 CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY + 2)*tc(VCLK) – 7.5 0.5*tc(SPC)M + (C2TDELAY+2 ) * tc(VCLK) + 7 CSHOLD = 0 0.5*tc(SPC)M + (C2TDELAY+2 )*tc(VCLK) – 7.5 0.5*tc(SPC)M + (C2TDELAY+2 ) * tc(VCLK) + 7 CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY+3 )*tc(VCLK) – 7.5 0.5*tc(SPC)M + (C2TDELAY+3 ) * tc(VCLK) + 7 (T2CDELAY + 1) *tc(VCLK) – 7.5 (T2CDELAY + 1) *tc(VCLK) + 7 tT2CDELAY (T2CDELAY + 1) *tc(VCLK) – 7.5 (T2CDELAY + 1) *tc(VCLK) + 7 (5) Hold time, SPICLK high until CS inactive (clock polarity = 1) (5) UNIT ns 0.5*tc(SPC)M + (C2TDELAY + 2)*tc(VCLK) – 7.5 Hold time, SPICLK low until CS inactive (clock polarity = 0) 7 MAX CSHOLD = 0 6 Setup time CS active until SPICLK low (5) (clock polarity = 1) TYP ns ns Table 7-15. SPI Master Mode Timing Requirements (CLOCK PHASE = , SPICLK = output, SPISIMO = (1)(3) output, and SPISOMI = input) see Figure 7-5 and Figure 7-8 NO. PARAMETER tsu(SOMI- 8 SPCL)M tsu(SOMISPCH)M th(SPCL9 SOMI)M th(SPCHSOMI)M (1) (2) (3) (4) (5) 56 MIN Setup time, SPISOMI before SPICLK low (4) (clock polarity = 0) 5 Setup time, SPISOMI before SPICLK high (4) (clock polarity = 1) 5 Hold time, SPISOMI data valid after SPICLK low (4) (clock polarity = 0) 3 Hold time, SPISOMI data valid after SPICLK high (4) (clock polarity = 1) 3 TYP MAX UNIT ns ns The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ). tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 Master Out Data Is Valid SPISIMO Data Valid 9 8 Master In Data Must Be Valid SPISOMI Figure 7-7. SPI Master Mode External Timing (CLOCK PHASE = 1) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 6 7 SPICSn Figure 7-8. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1) 7.11.3.2.4 SPI Slave Mode Timing and Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output) Table 7-16. SPI Slave Mode Timing Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output) (1)(2) see Figure 7-9 and Figure 7-10 NO. 1 2 3 4 PARAMETER (2) MIN TYP MAX tc(SPC)S Cycle time, SPICLK tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 25 10 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 10 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 10 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 10 td(SPCH-SOMI)S Delay time, SPISOMI valid after SPICLK high (clock polarity = 0; clock phase = 0) OR (clock (3) polarity = 1; clock phase = 1) 11 td(SPCL-SOMI)S Delay time, SPISOMI valid after SPICLK low (clock polarity = 1; clock phase = 0) OR (clock polarity = (3) 0; clock phase = 1) 11 UNIT ns ns ns ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 57 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-16. SPI Slave Mode Timing Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output) (1)(2) (continued) see Figure 7-9 and Figure 7-10 NO. 5 PARAMETER MIN th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0; clock phase = 0) OR (clock (3) polarity = 1; clock phase = 1) 2 th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1; clock phase = 0) OR (clock (3) polarity = 0; clock phase = 1) 2 TYP MAX UNIT ns Table 7-17. SPI Slave Mode Switching Characteristics (SPICLK = input, SPISIMO = input, and SPISOMI = (1)(2) output) see Figure 7-9 and Figure 7-10 NO. PARAMETER tsu(SIMO-SPCL)S 4.5 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 1; clock phase = 0) OR (clock polarity = (4) 0; clock phase = 1) 4.5 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0; clock phase = 0) OR (clock (4) polarity = 1; clock phase = 1) 1 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK high (clock polarity = 1; clock phase = 0) OR (clock (4) polarity = 0; clock phase = 1) 1 6 7 (1) (2) (3) (4) 58 MIN Setup time, SPISIMO before SPICLK low (clock polarity = 0; clock phase = 0) OR (clock polarity = (4) 1; clock phase = 1) TYP MAX UNIT ns ns The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ). If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(MSS_VCLK), where PS = prescale value set in SPIFMTx. [15:8]. When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 SPISOMI SPISOMI Data Is Valid 6 7 SPISIMO Data Must Be Valid SPISIMO Figure 7-9. SPI Slave Mode External Timing (CLOCK PHASE = 0) 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISOMI SPISOMI Data Is Valid 6 7 SPISIMO SPISIMO Data Must Be Valid Figure 7-10. SPI Slave Mode External Timing (CLOCK PHASE = 1) 7.11.3.3 Ethernet Switch (RGMII/RMII/MII) Peripheral AM273x integrates a two port Ethernet switch with one external RGMII/RMII/MII port and another port servicing the Master Sub-System (MSS). This interface is intended to operate primarily as a 100Mbps ECU interface. It can also be used as an instrumentation interface. • Full Duplex 10/100Mbps wire rate interface to Ethernet PHY over RGMII, RMII, or MII parallel interface • MDIO Clause 22 and 45 PHY management interface • IEEE 1588 Synchronous Ethernet support • Synchronous trigger output allowing Ethernet to trigger CSI data frames Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 59 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.3.1 RGMII/GMII/MII Timing Conditions SPECIFIC ATION NUMBER PARAMETER MIN TYP MAX UNIT Input Conditions 1 tR Input rise time 1 3 ns 2 tF Input fall time 1 3 ns 2 20 pF Output Conditions 3 CLOAD Output load capacitance 7.11.3.3.2 RGMII Transmit Clock Switching Characteristics NO. PARAMETER DESCRIPTION SPEED MIN MAX UNIT 1 tc(TXC) Cycle time, rgmiin_txc 10 Mbps 360 440 ns 2 tw(TXCH) Pulse duration, rgmiin_txc high 3 tw(TXCL) Pulse duration, rgmiin_txc low 4 tt(TXC) Transition time, rgmiin_txc 100 Mbps 36 44 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 7.11.3.3.3 RGMII Transmit Data and Control Switching Characteristics NO.(1) PARAMETER (1) DESCRIPTION MODE MIN MAX UNIT 5 tosu(TXD-TXC) Output Setup time, transmit selected signals valid to MSS_RGMII_TCLK high/low RGMII, Internal Delay Enabled, 10/100 Mbps 1.2 ns 6 toh(TXC-TXD) Output Hold time, transmit selected signals valid after MSS_RGMII_TCLK high/low RGMII, Internal Delay Enabled, 10/100 Mbps 1.2 ns For RGMII, transmit selected signals include: MSS_RGMII_TXD[3:0] and MSS_RGMII_TCTL. 1 4 2 3 4 (A) rgmiin_txc [internal delay enabled] 5 (B) rgmiin_txd[3:0] 1st Half-byte 2nd Half-byte 6 (B) rgmiin_txctl A. B. TXEN TXERR TXC is delayed internally before being driven to the rgmiin_txc pin. This internal delay is always enabled. Data and control information is transmitted using both edges of the clocks. rgmiin_txd[3:0] carries data bits 3-0 on the rising edge of rgmiin_txc and data bits 7-4 on the falling edge of rgmiin_txc. Similarly, rgmiin_txctl carries TXEN on rising edge of rgmiin_txc and TXERR of falling edge of rgmiin_txc. Figure 7-11. RGMII Transmit Interface Switching Characteristics 60 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.3.4 RGMII Recieve Clock Timing Requirements NO. PARAMETER DESCRIPTION SPEED MIN MAX UNIT 1 tc(RXC) Cycle time, rgmiin_rxc 10 Mbps 360 440 ns 2 tw(RXCH) Pulse duration, rgmiin_rxc high 3 tw(RXCL) Pulse duration, rgmiin_rxc low 4 tt(RXC) Transition time, rgmiin_rxc 100 Mbps 36 44 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 7.11.3.3.5 RGMII Recieve Data and Control Timing Requirements NO. PARAMETER DESCRIPTION MIN MAX UNIT 5 tsu(RXD-RXCH) Setup time, receive selected signals valid before MSS_RGMII_RCLK high/low 2 ns 6 th(RXCH-RXD) Hold time, receive selected signals valid after MSS_RGMII_RCLK high/low 2 ns 1 4 2 rgmiin_rxc 4 3 (A) 5 1st Half-byte 2nd Half-byte rgmiin_rxd[3:0] rgmiin_rxctl A. B. (B) (B) RGRXD[3:0] RGRXD[7:4] RXDV RXERR 6 rgmiin_rxc must be externally delayed relative to the data and control pins. Data and control information is received using both edges of the clocks. MSS_RGMII_RXD[3:0] carries data bits 3-0 on the rising edge of rgmiin_rxc and data bits 7-4 on the falling edge ofrgmiin_rxc. Similarly, rgmiin_rxctl carries RXDV on rising edge of rgmiin_rxc and RXERR on falling edge of rgmiin_rxc. Figure 7-12. GMAC Receive Interface Timing, RGMIIn operation 7.11.3.3.6 RMII Transmit Clock Switching Characteristics NO. PARAMETER DESCRIPTION MIN MAX UNIT RMII7 tc(REF_CLK) Cycle time, REF_CLK 20 ns RMII8 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns RMII9 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII10 tt(REF_CLK) Transistion time, REF_CLK 3 ns 7.11.3.3.7 RMII Transmit Data and Control Switching Characteristics NO. RMII11 PARAMETER td(REF_CLK-TXD) DESCRIPTION Delay time, REF_CLK high to selected transmit signals valid MIN MAX UNIT 2 14.2 ns tdd(REF_CLK-TXEN) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 61 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 RMII7 RMII8 RMII9 RMII11 RMII10 REF_CLK (PRCM) rmiin_txd1−rmiin_txd0, rmiin_txen (Outputs) SPRS8xx_GMAC_RMIITX_06 Figure 7-13. GMAC Transmit Interface Timing RMIIn Operation 7.11.3.3.8 RMII Receive Clock Timing Requirements NO. MIN MAX 20 UNIT RMII1 tc(REF_CLK) Cycle time, REF_CLK ns RMII2 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns RMII3 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII4 ttt(REF_CLK) Transistion time, REF_CLK 3 ns 7.11.3.3.9 RMII Receive Data and Control Timing Requirements NO. MIN MAX UNIT tsu(RXD-REF_CLK) RMII5 tsu(CRS_DV-REF_CLK) Setup time, receive selected signals valid before REF_CLK 4 ns Hold time, receive selected signals valid after REF_CLK 2 ns tsu(RX_ER-REF_CLK) th(REF_CLK-RXD) RMII6 th(REF_CLK-CRS_DV) th(REF_CLK-RX_ER) RMII1 RMII3 RMII4 RMII2 RMII5 RMII6 REF_CLK (PRCM) rmiin_rxd1−rmiin_rxd0, rmiin_crs, rmin_rxer (inputs) SPRS8xx_GMAC_RMIIRX_05 Figure 7-14. GMAC Receive Interface Timing RMIIn operation 7.11.3.3.10 MII Transmit Switching Characteristics NO. 1 PARAMETER td(TX_CLK-TXD) DESCRIPTION Delay time, miin_txclk to transmit selected signals valid MIN MAX UNIT 0 25 ns td(TX_CLK-TX_EN) td(TX_CLK-TX_ER) 62 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 1 miin_txclk (input) miin_txd3 − miin_txd0, miin_txen, miin_txer (outputs) Figure 7-15. GMAC Transmit Interface Timing MIIn operation 7.11.3.3.11 MII Receive Clock Timing Requirements NO. PARAMETER DESCRIPTION 1 tc(RX_CLK) Cycle time, miin_rxclk 2 tw(RX_CLKH) 3 tw(RX_CLKL) 4 tt(RX_CLK) Pulse duration, miin_rxclk high Pulse duration, miin_rxclk low Transition time, miin_rxclk SPEED MIN MAX UNIT 10 Mbps 400 ns 100 Mbps 40 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns 4 1 3 2 miin_rxclk 4 Figure 7-16. Clock Timing (GMAC Receive) - MIIn operation 7.11.3.3.12 MII Receive Timing Requirements NO. 1 PARAMETER tsu(RXD-RX_CLK) DESCRIPTION MIN MAX UNIT Setup time, receive selected signals valid before miin_rxclk 8 ns Hold time, receive selected signals valid after miin_rxclk 8 ns tsu(RX_DV-RX_CLK) tsu(RX_ER-RX_CLK) 2 th(RX_CLK-RXD) th(RX_CLK-RX_DV) th(RX_CLK-RX_ER) 1 2 miin_rxclk (Input) miin_rxd3−miin_rxd0, miin_rxdv, miin_rxer (Inputs) Figure 7-17. GMAC Receive Interface Timing MIIn operation Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 63 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.3.13 MII Transmit Clock Timing Requirements NO. PARAMETER DESCRIPTION SPEED MIN 1 tc(TX_CLK) Cycle time, miin_txclk 10 Mbps 400 2 tw(TX_CLKH) Pulse duration, miin_txclk high 3 tw(TX_CLKL) Pulse duration, miin_txclk low 4 tt(TX_CLK) Transition time, miin_txclk 100 Mbps 40 10 Mbps 140 MAX UNIT ns ns 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns 4 1 3 2 miin_txclk 4 Figure 7-18. Clock Timing (GMAC Transmit) - MIIn operation 7.11.3.3.14 MDIO Interface Timings CAUTION The IO Timings provided in this section are only valid for some GMAC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 7-18, Table 7-19 and Figure 7-19 present switching characteristics and timing requirements for the MDIO interface. Table 7-18. Timing Requirements for MDIO Input No PARAMETER MDIO1 tc(MDC) MDIO2 MDIO3 MDIO4 MDIO5 DESCRIPTION MIN MAX UNIT Cycle time, MDC 400 ns tw(MDCH) Pulse Duration, MDC High 160 ns tw(MDCL) Pulse Duration, MDC Low 160 ns tsu(MDIO-MDC) Setup time, MDIO valid before MDC High 90 ns th(MDIO_MDC) Hold time, MDIO valid from MDC High 0 ns Table 7-19. Switching Characteristics Over Recommended Operating Conditions for MDIO Output NO PARAMETER MDIO6 tt(MDC) MDIO7 td(MDC-MDIO) 64 DESCRIPTION MIN MAX UNIT 5 ns 10 (P * 0.5) - 10 ns Transition time, MDC Delay time, MDC low to MDIO valid Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 1 MDIO2 MDIO3 MDCLK MDIO6 MDIO6 MDIO4 MDIO5 MDIO (input) MDIO7 MDIO (output) Figure 7-19. GMAC MDIO diagrams 7.11.3.4 LVDS/Aurora Instrumentation and Measurement Peripheral The AM273x supports a set of LVDS STM-TWP Aurora interface for exporting raw IF ADC sensor data. The LVDS transmitters are shared between the two measurement interface options. • • 4-data lane LVDS interface (two additional lanes for Data Clock and Frame Clock) at 1 Gbps/lane 6-lane STM-TWP-Aurora-LVDS interface mode Please see the AM273x TRM for information regarding programming options for both LVDS interfaces. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 65 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.4.1 LVDS Interface Configuration The supported AM273x LVDS lane configuration is four Data lanes (LVDS_TXP/M), one Bit Clock lane (LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following data rates: • • • • • • • 900 Mbps (450 MHz DDR Clock) 600 Mbps (300 MHz DDR Clock) 450 Mbps (225 MHz DDR Clock) 400 Mbps (200 MHz DDR Clock) 300 Mbps (150 MHz DDR Clock) 225 Mbps (112.5 MHz DDR Clock) 150 Mbps (75 MHz DDR Clock) Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data. LVDS_TXP/M LVDS_FRCLKP/M Data bitwidth LVDS_CLKP/M Figure 7-20. LVDS Interface Lane Configuration And Relative Timings 7.11.3.4.2 LVDS Interface Timings Trise LVDS_CLK LVDS_TXP/M LVDS_FRCLKP/M Clock Jitter = 6sigma 1100 ps Figure 7-21. Timing Parameters 66 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-20. LVDS Electrical Characteristics PARAMETER TEST CONDITIONS Duty Cycle Requirements max 1 pF lumped capacitive load on LVDS lanes Output Differential Voltage peak-to-peak single-ended with 100 Ω resistive load between differential pairs Output Offset Voltage Trise and Tfall 20%-80%, 900 Mbps Jitter (pk-pk) 900 Mbps MIN TYP MAX UNIT 48% 52% 250 450 mV 1125 1275 mV ps 80 ps 7.11.3.5 UART Peripheral AM273x includes four UART interfaces. One UART is intended as a secondary boot loader source, one is intended for use as a register debug interface (with XDS110 class emulator) and two are meant for general UART communication support. • • Maximum baud-rate supported shall be at least 1536Kbaud in all the different clock frequency modes UART interfaces multiplexed with other I/O to allow for widest peripheral use flexibility 7.11.3.5.1 UART Timing Requirements MIN f(baud) Supported baud rate at 20 pF TYP 921.6 MAX UNIT kHz 7.11.3.6 I2C Protocol Definition AM273x supports three master or slave Inter-integrated Circuit interfaces (I2C). One I2C interface is intended to be connected to an external PMIC or EEPROM device (alternatively controlled by SPI). The other two I2C are intended as alternative control for sensor devices or other external IC. • • Standard/fast mode I2C interface compliant with Philips I2C specification version 2.1 Maximum clock rate of 100Kbps in Standard mode and 400Kbps in Fast mode Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 67 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.6.1 I2C Timing Requirements(1) STANDARD MODE MIN FAST MODE MAX MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 μs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 μs th(SCLL-SDAL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 μs tw(SCLL) Pulse duration, SCL low 4.7 1.3 μs tw(SCLH) Pulse duration, SCL high 4 0.6 μs tsu(SDA-SCLH) Setup time, SDA valid before SCL high th(SCLL-SDA)(1) Hold time, SDA valid after SCL low tw(SDAH) Pulse duration, SDA high between STOP and START conditions tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) tw(SP) Pulse duration, spike (must be suppressed) Cb (2) (3) Capacitive load for each bus line (1) (2) (3) 250 0 100 3.45 0 μs 0.9 μs 4.7 1.3 μs 4 0.6 μs 0 400 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal. Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed. SDA tw(SDAH) tsu(SDA-SCLH) tw(SCLL) tw(SP) tsu(SCLH-SDAH) tw(SCLH) tr(SCL) SCL tc(SCL) tf(SCL) th(SCLL-SDAL) th(SDA-SCLL) tsu(SCLH-SDAL) th(SCLL-SDAL) Stop Start Repeated Start Stop Figure 7-22. I2C Timing Diagram • • Note A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standardmode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH). 7.11.3.7 Controller Area Network - Flexible Data-Rate (CAN-FD) The AM273x integrates two CAN-FD interfaces, MSS_MCANA and MSS_MCANB. This enables support of a typical use case where one CAN-FD interface is used as ECU network interface while the other interface is used as a local network interface, providing communication with the neighboring sensors. 68 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com • • • SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Support CAN-FD according to ISO 11898-7 protocol with data rate up to 8Mbps Multiplexed GPIO can be used for CAN-FD external driver control Synchronous trigger output allows CAN-FD to trigger CSI2 data frames 7.11.3.7.1 Dynamic Characteristics for the CAN-FD TX and RX Pins PARAMETER(1) MIN TYP MAX UNIT td(MSS_CANA_TX) Delay time, transmit shift register to MSS_CANA_TX pin 15 ns td(MSS_CANB_TX) Delay time, transmit shift register to MSS_CANB_TX pin 15 ns td(MSS_MCANA_RX) Delay time, MSS_MCANA_RX pin to receive shift register 10 ns td(MSS_MCANB_RX) Delay time, MSS_MCANB_RX pin to receive shift register 10 ns (1) These values do not include rise/fall times of the output buffer. 7.11.3.8 CSI-2 Peripheral AM273x integrates two, 4-lane MIPI CSI-2, D-PHY receiver peripherals: CSI2 receiver 0 (CSI2_RX0) and CSI2 receiver 1 (CSI2_RX1). Each peripheral can be used for capturing sensor data samples. The CSI2 interface is also capable of operating as a hardware-in-the-loop (HIL) interface, allowing for the playback of recorded data for development or diagnostic purposes. • • • • • • Interface is compliant with the MIPI CSI-2 D-PHY standard revision 1.2 2, 4-lane CSI2 receiver interfaces, working simultaneously at 600 Mbps/lane 4-lane, 3-lane, 2-lane, or 1-lane CSI2 configurations Support for virtual channels (minimum 4) and data types (minimum 4) Support for 8/10/12/14/16-bit RAW data mode with capability of sign extension or zero padding to align with 16-bit memory addressing for RAW 10/12/14 modes Support for user defined data types Please reference the MIPI CSI-2 D-PHY standard revision 1.2 for full receiver timing requirements. Please reference the AM273x TRM for a complete description of all programmable options. 7.11.3.9 General Purpose ADC (GPADC) AM273x device implements a GPADC module for safety monitoring device and system analog signals such as temperature sensor and voltage regulators. • • • • • Up to 9 external or internal channels supported 7.5 ENOB, 625Ksps ADC Full-scale range of GPADC input between VSS and 1.8V Single or continuous conversion modes Data RAM to store the conversion results (1Kbyte results) 7.11.3.10 Enhanced Pulse-Width Modulator (ePWM) AM273x includes three Enhanced Pulse-Width Modulation (ePWM) modules. These modules can be used to generate duty-cycled controlled waveforms for a power regulator, or a power management systems, or more complex waveforms for motor control applications. • • Dedicated 16-bit time-base counter with period and frequency control for each PWM module Each module contains two PWM outputs (EPWMxA and EPWMxB) that shall be usable in the following configurations: – Two independent PWM outputs with single-edge operation – Two independent PWM outputs with dual-edge symmetric operation – One independent PWM output with dual-edge asymmetric operation Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 69 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.11 Enhanced Capture (eCAP) AM273x device includes one enhanced capture (eCAP) module. The eCAP module is used to capture external timing events. It is a general-purpose module which has a complementary function to ePWM. Uses include speed measurements of rotating machinery (e.g., toothed sprockets sensed via Hall sensors) • • • • • 70 Elapsed time measurements between position sensor pulses Period and duty cycle measurements of pulse train signals Decoding current or voltage amplitude derviced from duty cycle encoded current/voltage sensor eCAP shall be working on operating clock of minimum 100mHz 4-event time-stamp registers (each 32 bits) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.3.12 General-Purpose Input/Output Section 7.11.3.12.1 lists the switching characteristics of output timing relative to load capacitance. 7.11.3.12.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)(1) (2) PARAMETER tr TEST CONDITIONS Max rise time Slew control = 0 tf Max fall time tr Max rise time Slew control = 1 tf (1) (2) Max fall time VIOIN = 1.8V VIOIN = 3.3V CL = 20 pF 2.8 3.0 CL = 50 pF 6.4 6.9 CL = 75 pF 9.4 10.2 CL = 20 pF 2.8 2.8 CL = 50 pF 6.4 6.6 CL = 75 pF 9.4 9.8 CL = 20 pF 3.3 3.3 CL = 50 pF 6.7 7.2 CL = 75 pF 9.6 10.5 CL = 20 pF 3.1 3.1 CL = 50 pF 6.6 6.6 CL = 75 pF 9.6 9.6 UNIT ns ns ns ns Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate). The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage. 7.11.4 Emulation and Debug 7.11.4.1 Emulation and Debug Description 7.11.4.2 JTAG Interface The JTAG interface implements the IEEE1149.1 standard interface for processor debug and boundary scan testing. Section 7.11.4.2.1 and Section 7.11.4.2.2 assume the operating conditions stated in Figure 7-23. 7.11.4.2.1 Timing Requirements for IEEE 1149.1 JTAG Table 7-21. JTAG Timing Conditions MIN TYP MAX UNIT Input Conditions tR Input rise time 1 3 ns tF Input fall time 1 3 ns 2 15 pF Output Conditions CLOAD Output load capacitance Table 7-22. JTAG Timing Requirements NO. MIN TYP MAX UNIT 1 tc(TCK) Cycle time TCK 66.66 ns 1a tw(TCKH) Pulse duration TCK high (40% of tc) 26.67 ns 1b tw(TCKL) Pulse duration TCK low (40% of tc) 26.67 ns 3 tsu(TDI-TCK) Input setup time TDI valid to TCK high 2.5 ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 71 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 7-22. JTAG Timing Requirements (continued) NO. MIN TYP MAX UNIT 3 tsu(TMS-TCK) Input setup time TMS valid to TCK high 2.5 ns 4 th(TCK-TDI) Input hold time TDI valid from TCK high 18 ns 4 th(TCK-TMS) Input hold time TMS valid from TCK high 18 ns 7.11.4.2.2 Switching Characteristics for IEEE 1149.1 JTAG NO. 2 PARAMETER td(TCKL-TDOV) MIN Delay time, TCK low to TDO valid 0 TYP MAX 25 UNIT ns 1 1a 1b TCK 2 TDO 3 4 TDI/TMS SPRS91v_JTAG_01 Figure 7-23. JTAG Timing 72 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 7.11.4.3 ETM Trace Interface The ETM Trace interface provides a means of exporting real time processor debug information to a host PC through a compatible emulator toolset. Section 7.11.4.3.1 and Section 7.11.4.3.2 describe the operating conditions shown in Figure 7-24 and Figure 7-25. 7.11.4.3.1 ETM TRACE Timing Requirements MIN TYP MAX UNIT Output Conditions CLOAD Output load capacitance 2 20 pF MAX UNIT 7.11.4.3.2 ETM TRACE Switching Characteristics NO. PARAMETER MIN 1 tcyc(ETM) Cycle time, TRACECLK period 2 th(ETM) 3 TYP 16 ns Pulse Duration, TRACECLK High 7 ns tl(ETM) Pulse Duration, TRACECLK Low 7 ns 4 tr(ETM) Clock and data rise time 5 tf(ETM) Clock and data fall time 6 td(ETMTRACECLKH-ETMDATAV) Delay time, ETM trace clock high to ETM data valid 1 7 td(ETMTRACECLKl-ETMDATAV) Delay time, ETM trace clock low to ETM data valid 1 3.3 ns 3.3 ns 7 ns 7 ns tl(ETM) tr(ETM) th(ETM) tf(ETM) tcyc(ETM) Figure 7-24. ETMTRACECLKOUT Timing Figure 7-25. ETMDATA Timing Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 73 AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 www.ti.com 8 Detailed Description 8.1 Overview The AM273x is a high performance microcontroller with an integrated C66x DSP and is ideally suited for applications needing requiring conditioning and processing functions. Two R5F cores (with optional lockstep capability) running at 400 MHz with 5MB of internal memory coupled along with a broad range of automotive and industrial connectivity peripherals and an easy to use SDK enables our customers to address a wide range of use cases in automotive and industrial markets. Functional safety and security (HSM) features are integrated to address emerging market trends. One representative use case is for the AM273x to operate as the MCU host in an automotive radar system. In this role AM273x provides data aggregation, FFT, CFAR, range, velocity and angle estimation and tracking processing. The AM273x can operate as a host in single or dual (cascaded) front-end radar application. As seen in Figure 3-1 the AM273x is divided into a few high level functional subsystems. Each subsystem contains specific control, signal processing, and digital communication peripherals. • Main Subsystem (MSS): MCU Core, Cryptographic Core, Mailbox, EDMA, RTI, QSPI, SPI, CAN-FD, I2C, UART, Ethernet and GPIO • DSP Subsystem (DSS): C66x Core, HWA2.0 Accelerator, Mailbox, EDMA, RTI • Radar Controller Subsystem (RCSS): EDMA, CSI2A/B, SPIA/B, I2C and GPIO Each primary subsystem is then interconnected through an ECC enabled, switch interconnect bus, allowing for EDMA transfer of data between peripherals and processing cores. 8.2 Main Subsystem The main subsystem (MSS) is the primary controller of the device and controls all the other device subsystem cores and peripherals. The MSS contains the Cortex-R5F (MSS R5F) processor and associated peripherals and associated EDMA and Mailbox IPC functions. The MSS also controls wider system connectivity and network peripherals such as the I2C, UART, SPI, CAN-FD, EPWM, and Ethernet. The MSS is connected to the primary interconnect through the Main Subsystem (MSS) Interconnect which is ECC enabled. The MSS contrains its own dedicated functional safety block consisting of DCC, ESM, LBIST/PBIST, CRC Watchdog Timer and GPADC for safety monitoring of critical system signals such as power supply and temperature monitors. 8.3 DSP Subsystem The DSP subsystem (DSS) contains the TI high performance C66x DSP, HWA 2.0, and a high-bandwidth interconnect for high performance (128-bit, 150MHz), and associated data transfer peripherals: 6x EDMA for data transfer, 2x RTI and Mailbox IPC. The Aurora/LVDS measurement data output interface is also mastered by the C66x DSP. L3 shared memory is available on the DSS interconnect which is also ECC enabled. For more information on DSP functionality, see the 8.4 Radar Control Subsystem The radar control subsystem (RCSS) integrates a high-bandwidth interconnect with a pair of 4-lane, CSI 2.0 receivers (CSI2_RX0 and CSI2_RX1), two SPI controllers (RCSS_SPIA and RCSS_SPIB), I2C controllers and a set of GPIO. The SPI, I2C and GPIO peripherals can be utilized for controlling and configuring the attached sensor devices. The CSI 2.0 receivers allow for receiveing high-speed sensor data samples such as samples. 8.5 Other Subsystems 8.5.1 Radar A2D Data Format Over CSI2 Interface The AM273x device uses MIPI D-PHY / CSI2-based format to receive the raw A2D samples from an external radar transceiver. This is shown in Figure 8-1. • • • 74 Supports four data lanes CSI-2 data rate scalable from 150 Mbps to 600 Mbps per lane Virtual channel based Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com • SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 CRC generation Normal Mode Frame Period Acquisition Period Frame Ramp/Chirp 1 2 3 N Data Ready F S L S H S L E L S H S L E L S H S L E L S H S L E F E Short Packet ST SP ET LPS Short Packet ST SP ET .5μs-.8μs Long Packet LPS ST PH DATA Short Packet PF ET LPS ST SP ET LPS Chirp 1 data Data rate/Lane should be such that "Chirp + Interchirp" period should be able to accommodate the data transfer Copyright © 2017, Texas Instruments Incorporated Frame Start – CSI2 VSYNC Start Short PacketLine Start – CSI2 HSYNC Start Short PacketLine End – CSI2 HSYNC End Short PacketFrame End – CSi2 VSYNC End Short Packet Figure 8-1. CSI-2 Transmission Format Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 75 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 The data payload is constructed with the following three types of information: • • • • Chirp profile information The actual chirp number A2D data corresponding to chirps of all four channels – Interleaved fashion Chirp quality data (configurable) The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data packet packing format is shown in Figure 8-2. First 5 11 NU CH Chirp Profile 5 11 NU CH Chirp Profile 5 11 NU CH Chirp Profile 5 11 NU CH Chirp Profile 1 0 11 0 11 0 11 Channel Number 1 Chirp Num Channel Number 1 0 Channel Number 0 0 0 11 0 11 0 11 0 11 0 11 0 11 0 11 Continues till the last sample. Max 1023 0 CQ Data [47:36] CQ Data [35:24] CQ Data [59:48] 0 CQ Data [23:12] CQ Data [11:0] 11 0 Channel 3 Sample 1 q Channel 3 Sample 1 i 11 0 Channel 2 Sample 1 q Channel 2 Sample 1 i 11 0 Channel 1 Sample 1 q Channel 1 Sample 1 i 11 0 Channel 0 Sample 1 q Channel 0 Sample 1 i 11 0 11 Channel 3 Sample 0 q Channel 3 Sample 0 i 11 0 11 Channel 2 Sample 0 q Channel 2 Sample 0 i 11 0 11 Channel 1 Sample 0 q Channel 1 Sample 0 i 11 0 11 Channel 0 Sample 0 q 0 11 0 11 Chirp Num Channel 0 Sample 0 i 11 0 Chirp Num 0 11 0 Chirp Num Channel Number 1 0 NU 0 CQ Data [63:60] Last Figure 8-2. Data Packet Packing Format for 12-Bit Complex Configuration 76 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 8.5.2 ADC Channels (Service) for User Application The AM273x device includes provision for an ADC service for user application, where the GPADC engine present inside the device can be used to measure up to nine external and internal voltages. The ADC1, ADC2, ADC3, ADC4, ADC5, ADC6, ADC7, ADC8 and ADC9 pins are used for this purpose. Note GPADC structures are used for measuring the output of internal temperature sensors. GPADC Specifications: • 625Ksps SAR ADC • 0 to 1.8-V input range • 10-bit resolution Table 8-1. GPADC Parameters PARAMETER TYP UNIT 1.8 V ADC unbuffered input voltage range 0 – 1.8 V ADC buffered input voltage range(1) 0.4 – 1.3 ADC supply V ADC resolution 10 bits ADC offset error ±5 LSB ADC gain error ±5 LSB ADC DNL –1/+2.5 LSB ADC INL ±2.5 LSB ADC sample rate 625 Ksps ADC sampling time 400 ns ADC internal cap 10 pF ADC buffer input capacitance 2 pF ADC input leakage current 3 uA (1) Outside of given range, the buffer output will become nonlinear. 8.6 Boot Modes AM273x bootloader functionality is controlled by a set of start on power (SOP) pins. These pins states are latched on de-assertion of the NRESET pin after power on of the device. The SOP pins are multiplexed with functional mode signals before and during NRESET de-assertion. After bootloader execution the functional mode operation is then restored. See the power on reset timing sequence for more details. The following tables describe the SOP pin operation. Host hardware should provide a means for driving these SOP pins to their required states during NRESET de-assertion, but also allow for their functional mode operation if required by the intended application. Table 8-2. SOP Pins Pin SOP Mode Signal Name Pinlist Signal Name D6 SOP[0] TDO E17 SOP[1] MSS_MIBSPIB_CS2 F1 SOP[2] PMIC_CLKOUT V9 SOP[3] MSS_UARTB_TX W2 SOP[4] MSS_UARTA_TX Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 77 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Table 8-3. SOP Pin Modes Boot Options SOP Mode Bootmode SOP Modes • • • • SOP[2:0] = 0b011 selects SOP_MODE2 SOP[2:0] = 0b001 selects SOP_MODE4 SOP[2:0] = 0b101 selects SOP_MODE5 All other states reserved and should not be selected. Crystal Detect SOP Modes • • • • SOP[4:3] = 0b00 selects 40 MHz Crystal Mode SOP[4:3] = 0b01 selects 45.1584 MHz Crystal Mode SOP[4:3] = 0b10 selects 49.152 MHz Crystal Mode SOP[4:3] = 0b11 selects 50 MHz Crystal Mode Table 8-4. Bootmode SOP Descriptions Bootmode SOP Modes SOP_MODE2 Function Description Development Mode SOP_MODE4 Functional Mode SOP_MODE5 Device Management Mode Development boot mode. The AM273x ROM bootloader will setup the device to wait for a JTAG debugger connection. Functional boot mode of the AM273x device. In this mode, the ROM bootloader will attempt to load a valid secondary bootloader image from primarily the QSPI interface and secondarily the SPI host interface. QSPI flash programming boot mode of the AM273x device. In this mode the ROM bootloader will attempt to receive a valid QSPI secondary bootloader image over MSS_UARTA_TX/RX (pins W2, U3) and attempt to flash an attached QSPI memory with this image. Table 8-5. Crystal Detect SOP Mode Description Crystal Detect SOP Modes 40 MHz Crystal Crystal Mode ROM bootloader image expects a 40 MHz nominal crystal clock source. 45.1584 MHz Crystal Mode ROM bootloader image expects a 45.1584 MHz nominal crystal clock source. 49.152 MHz Crystal Mode ROM bootloader image expects a 49.152 MHz nominal crystal clock source. 50 MHz Crystal Mode ROM bootloader image expects a 50 MHz nominal crystal clock source. 78 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 9 Applications, Implementation, and Layout Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Typical Application 9.1.1 Schematic The below AM273x Example Schematic shows an exerpt the AM273x EVM schematic. The exerpt focuses only on the AM273x device schematic symbols to show the device pin usage. Figure 9-1. AM273x Example Schematic Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 79 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 9.1.2 Layout 9.1.2.1 Layout Example The following figures are exerpts from the AM273x EVM PCB layout, assembly and layer stack-up. 80 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 www.ti.com AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Figure 9-2. AM273x EVM - Layer 1 (Top) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 81 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Figure 9-3. AM273x EVM - Layer 10 (Bottom) 82 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 www.ti.com AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Figure 9-4. AM273x EVM - Top Assembly Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 83 AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 www.ti.com Figure 9-5. AM273x EVM - Layer Stackup 84 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 10 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. 10.1 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microcontrollers (MCU) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, AM273x). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. null Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, AM273x). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX and TMDX) through fully qualified production devices and tools (TMS and TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. TMS Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZCE), the temperature range (for example, blank is the default commercial temperature range), Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 85 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 and the device speed range, in megahertz (for example, 400 MHz). Table 10-1 and Figure 10-1 provides a legend for reading the complete device name for any AM273x device. For orderable part numbers of AM273x devices in the AM273x package types, see the Package Option Addendum of this document, ti.com, or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the Silicon Errata . 86 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 10.1.1 Standard Package Symbolization Note Some devices may have a cosmetic circular marking visible on the top of the device package which results from the production test process. In addition, some devices may also show a color variation in the package substrate which results from the substrate manufacturer. These differences are cosmetic only with no reliability impact. aBBBBBBr ZfYytPPPQ1 XXXXXXX ZZZ YYY A1 (PIN ONE INDICATOR) G1 O Figure 10-1. Printed Device Reference Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 87 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 10.1.2 Device Naming Convention Table 10-1. Nomenclature Description FIELD PARAMETER a(1) BBBBBB FIELD DESCRIPTION Device evolution stage Base production part number X Prototype P Preproduction (production test flow, no reliability data) BLANK Production AM2732 See Table 5-1, Device Comparison Device revision A SR 1.0 Z Device Speed and Memory Grades D See Table 7-3, Speed and Memory Grade Features (see Table 5-1, Device Comparison) R General Purpose Device f S Programmable DSP (Single Core) y t(2) PPP Q1 Functional Safety Security Temperature (see Section 7.4, ROC) Package Designator Automotive Designator XXXXXXX (2) DESCRIPTION r Y (1) VALUE T DSP Blackbox G Non-Functional Safety Device F Functional Safety Device G Non-Secure 1 Dummy Key Device M Production Key HS Device A –40°C to 105°C - Extended Industrial I –40°C to 125°C - Automotive Q –40°C to 140°C - Extended Automotive ZCE ZCE NFBGA-N285 (13 mm × 13 mm) Package Q1 Auto Qualified (AEC-Q100) EP Enhanced Product Lot Trace Code (LTC) YYY Production Code; For TI use only ZZZ Production Code; For TI use only O Pin one designator G1 ECAT—Green package designator To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices. Prototype devices are shipped against the following disclaimer: “This product is still in development and is intended for internal evaluation purposes.” Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, of this device. Applies to device max junction temperature. Note BLANK in the symbol or part number is collapsed so there are no gaps between characters. 88 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 10.2 Tools and Software The following products support development for AM273x platforms: Development Tools Code Composer Studio™ Integrated Development Environment Code Composer Studio (CCS) Integrated Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. SYSCONFIG The SYSCONFIG Pin MUX Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C header/code files that can be imported into software development kits (SDKs) or used to configure customer's custom software. AM273x Power Estimation Tool (PET) AM273x Power Estimation Tool (PET) provides users the ability to gain insight in to the power consumption of select TI processors. The tool includes the ability for the user to choose multiple application scenarios and understand the power consumption as well as how advanced power saving techniques can be applied to further reduce overall power consumption. For a complete listing of development-support tools for the processor platform, visit the Texas Instruments website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 89 AM2732, AM2732-Q1 www.ti.com SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 10.3 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral is listed below. The following documents describe the AM273x family of devices. Technical Reference Manual AM273x Microntrollers Silicon Revision 1.0 Technical Reference Manual Details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the AM273x family of devices. Errata AM273x Microntrollers Silicon Revision 1.0 Silicon Errata Describes the known exceptions to the functional specifications for the device. Tip: Search TI.com using literature numbers. 10.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.5 Trademarks Sitara™, NanoFree™, and TI E2E™ are trademarks of Texas Instruments. Code Composer Studio™ is a trademark of TI. Arm® and Cortex® are registered trademarks of Arm Limited. All trademarks are the property of their respective owners. 10.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.7 Glossary TI Glossary 90 This glossary lists and explains terms, acronyms, and definitions. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 www.ti.com AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 91 AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 92 Submit Document Feedback www.ti.com Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 www.ti.com AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 93 AM2732, AM2732-Q1 SWRS245A – DECEMBER 2021 – REVISED FEBRUARY 2022 94 Submit Document Feedback www.ti.com Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AM2732 AM2732-Q1 PACKAGE OPTION ADDENDUM www.ti.com 24-Mar-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) AM2732ADRFGAZCER ACTIVE NFBGA ZCE 285 1000 RoHS & Green Call TI Level-3-260C-168 HR -40 to 105 AM2732A DRFGAZCE 711 AM2732ADRFGQZCERQ1 ACTIVE NFBGA ZCE 285 1000 RoHS & Green Call TI Level-3-260C-168 HR -40 to 140 AM2732A DRFGQZCEQ1 711 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
AM2732ADRFGQZCERQ1 价格&库存

很抱歉,暂时无法提供与“AM2732ADRFGQZCERQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AM2732ADRFGQZCERQ1
    •  国内价格
    • 1000+128.26000

    库存:0

    AM2732ADRFGQZCERQ1
      •  国内价格
      • 1000+158.02248

      库存:0

      AM2732ADRFGQZCERQ1
        •  国内价格
        • 1+234.59414
        • 10+216.36538
        • 25+206.64182
        • 100+184.76447
        • 250+176.25476
        • 500+167.74681

        库存:0