0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DAC7552IRGTR

DAC7552IRGTR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN-16_3X3MM-EP

  • 描述:

    IC DAC 12BIT DUAL W/SPI 16-QFN

  • 数据手册
  • 价格&库存
DAC7552IRGTR 数据手册
Actual Size 3 mm x 3 mm DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com 12-BIT, DUAL, ULTRALOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER Check for Samples: DAC7552 FEATURES DESCRIPTION • • • • • • • • • • • • • • • The DAC7552 is a 12-bit, dual-channel, voltage-output DAC with exceptional linearity and monotonicity. Its proprietary architecture minimizes undesired transients such as code-to-code glitch and channel-to-channel crosstalk. The low-power DAC7552 operates from a single 2.7-V to 5.5-V supply. The DAC7552 output amplifiers can drive a 2-kΩ, 200-pF load rail-to-rail with 5-µs settling time; the output range is set using an external voltage reference. 1 2 2.7-V to 5.5-V Single Supply 12-Bit Linearity and Monotonicity Rail-to-Rail Voltage Output Settling Time: 5 µs (Max) Ultralow Glitch Energy: 0.1 nVs Ultralow Crosstalk: –100 dB Low Power: 440 µA (Max) Per-Channel Power Down: 2 µA (Max) Power-On Reset to Zero Scale SPI-Compatible Serial Interface: Up to 50 MHz Daisy-Chain Capability Asynchronous Hardware Clear Simultaneous or Sequential Update Specified Temperature Range: –40°C to 105°C Small 3-mm × 3-mm, 16-Lead QFN Package The 3-wire serial interface operates at clock rates up to 50 MHz and is compatible with SPI, QSPI, Microwire™, and DSP interface standards. The outputs of all DACs may be updated simultaneously or sequentially. The parts incorporate a power-on-reset circuit to ensure that the DAC outputs power up to zero volts and remain there until a valid write cycle to the device takes place. The parts contain a power-down feature that reduces the current consumption of the device to under 2 µA. APPLICATIONS • • • • • Portable Battery-Powered Instruments Digital Gain and Offset Adjustment Programmable Voltage and Current Sources Programmable Attenuators Industrial Process Control The small size and low-power operation makes the DAC7552 ideally suited for battery-operated portable applications. The power consumption is typically 1.5 mW at 5 V, 0.75 mW at 3 V, and reduces to 1 µW in power-down mode. The DAC7552 is available in a 16-lead QFN package and is specified over –40°C to 105°C. FUNCTIONAL BLOCK DIAGRAM VDD IOVDD VREFA _ Input Register SCLK DAC Register String DAC A Interface Logic SYNC _ Input Register SDIN SDO CLR DAC Register String DAC B Power-On Reset DAC7552 DCEN + GND + VFBA VOUT A VFBB VOUT B Power-Down Logic VREFB PD 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Microwire is a trademark of National Semiconductor Corporation. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ORDERING INFORMATION (1) PRODUCT PACKAGE PACKAGE DESIGNATOR SPECIFIED TEMPERATURE RANGE PACKAGE MARKING DAC7552 16 QFN RGT –40°C TO 105°C D752 (1) ORDERING NUMBER TRANSPORT MEDIA DAC7552IRGTT 250-piece Tape and Reel DAC7552IRGTR 3000-piece Tape and Reel For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) UNIT –0.3 V to 6 V VDD , IOVDD to GND Digital input voltage to GND –0.3 V to VDD + 0.3 V VOUT to GND –0.3 V to VDD+ 0.3 V Operating temperature range –40°C to 105°C Storage temperature range –65°C to 150°C Junction temperature (TJ Max) (1) 150°C Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS VDD = 2.7 V to 5.5 V, VREF = VDD, RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications –40°C to 105°C, unless otherwise specified PARAMETER TEST CONDITIONS MIN TYP MAX UNITS STATIC PERFORMANCE (1) Resolution 12 Relative accuracy Differential nonlinearity Specified monotonic by design ±0.35 ±1 LSB ±0.08 ±0.5 LSB ±12 mV ±12 mV Offset error Zero-scale error All zeroes loaded to DAC register Gain error Full-scale error Zero-scale error drift Gain temperature coefficient PSRR (1) 2 VDD = 5 V Bits ±0.15 %FSR ±0.5 %FSR 7 µV/°C 3 ppm of FSR/°C 0.75 mV/V Linearity tested using a reduced code range of 30 to 4065; output unloaded. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com ELECTRICAL CHARACTERISTICS (continued) VDD = 2.7 V to 5.5 V, VREF = VDD, RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications –40°C to 105°C, unless otherwise specified PARAMETER TEST CONDITIONS MIN TYP MAX UNITS OUTPUT CHARACTERISTICS (2) Output voltage range Output voltage settling time 0 RL = 2 kΩ; 0 pF < CL < 200 pF Slew rate VREF V 5 µs 1.8 Capacitive load stability RL = ∞ RL = 2 kΩ Digital-to-analog glitch impulse 1 LSB change around major carry Channel-to-channel crosstalk 1-kHz full-scale sine wave, outputs unloaded V/µs 470 pF 1000 0.1 nV-s –100 dB Digital feedthrough 0.1 nV-s Output noise density (10-kHz offset frequency) 120 nV/rtHz –85 dB 1 Ω Total harmonic distortion FOUT = 1 kHz, FS = 1 MSPS, BW = 20 kHz DC output impedance Short-circuit current Power-up time VDD = 5 V 50 VDD = 3 V 20 Coming out of power-down mode, VDD = 5 V 15 Coming out of power-down mode, VDD = 3 V 15 mA µs REFERENCE INPUT VREF Input range Reference input impedance Reference current 0 VDD VREFA and VREFB shorted together 50 VREFA = VREFB = VDD = 5 V, VREFA and VREFB shorted together 100 250 VREFA = VREFB = VDD = 3 V, VREFA and VREFB shorted together 60 123 V kΩ µA LOGIC INPUTS (2) Input current VIN_L, Input low voltage IOVDD ≥ 2.7 V VIN_H, Input high voltage IOVDD ≥ 2.7 V ±1 µA 0.3 IOVDD V 0.7 IOVDD V Pin capacitance 3 pF 5.5 V POWER REQUIREMENTS VDD,, IOVDD (3) IDD(normal operation) VDD = 3.6 V to 5.5 V VDD = 2.7 V to 3.6 V 2.7 DAC active and excluding load current VIH = IOVDD and VIL = GND 300 440 250 400 0.2 2 0.05 2 µA IDD (all power-down modes) VDD = 3.6 V to 5.5 V VDD = 2.7 V to 3.6 V VIH = IOVDD and VIL = GND µA POWER EFFICIENCY IOUT/IDD (2) (3) ILOAD = 2 mA, VDD = 5 V 93% Specified by design and characterization, not production tested. For 1.8 V < IOVDD < 2.7 V, It is recommended that VIH = IOVDD, VIL = GND. IOVDD operates down to 1.8 V with slightly degraded timing, as long as VIH = IOVDD and VIL = GND. Copyright © 2005–2011, Texas Instruments Incorporated 3 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 TIMING CHARACTERISTICS (1) www.ti.com (2) VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND; all specifications –40°C to 105°C, unless otherwise specified PARAMETER t1 (3) TEST CONDITIONS SCLK cycle time t2 SCLK HIGH time t3 SCLK LOW time t4 SYNC falling edge to SCLK falling edge setup time t5 Data setup time t6 Data hold time t7 SCLK falling edge to SYNC rising edge t8 Minimum SYNC HIGH time t9 SCLK falling edge to SDO valid t10 CLR pulse width low (1) (2) (3) MIN VDD = 2.7 V to 3.6 V 20 VDD = 3.6 V to 5.5 V 20 VDD = 2.7 V to 3.6 V 10 VDD = 3.6 V to 5.5 V 10 VDD = 2.7 V to 3.6 V 10 VDD = 3.6 V to 5.5 V 10 VDD = 2.7 V to 3.6 V 4 VDD = 3.6 V to 5.5 V 4 VDD = 2.7 V to 3.6 V 5 VDD = 3.6 V to 5.5 V 5 VDD = 2.7 V to 3.6 V 4.5 VDD = 3.6 V to 5.5 V 4.5 VDD = 2.7 V to 3.6 V 0 VDD = 3.6 V to 5.5 V 0 VDD = 2.7 V to 3.6 V 20 VDD = 3.6 V to 5.5 V 20 VDD = 2.7 V to 3.6 V 10 VDD = 3.6 V to 5.5 V 10 VDD = 2.7 V to 3.6 V 10 VDD = 3.6 V to 5.5 V 10 TYP MAX UNITS ns ns ns ns ns ns ns ns ns ns All input signals are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Serial Write Operation timing diagram Figure 1. Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V. t1 SCLK t8 t2 t3 t4 t7 SYNC t5 SDIN D15 t6 D14 D13 D12 D11 D1 D0 D15 Input Word n t9 SDO D15 Input Word n+1 D14 D0 Input Word n Undefined CLR D0 t10 Figure 1. Serial Write Operation 4 Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com PIN DESCRIPTION VFBA VREFA CLR SDIN RGT PACKAGE (TOP VIEW) 1 16 15 14 13 12 2 11 3 10 4 9 6 7 8 SCLK SYNC IOVDD SDO DCEN 5 VFBB VREFB PD VOUTA VDD GND VOUTB Terminal Functions TERMINAL NO. (1) DESCRIPTION NAME 1 VOUTA Analog output voltage from DAC A 2 VDD Analog voltage supply input 3 GND (1) Ground 4 VOUTB Analog output voltage from DAC B 5 VFBB DAC B amplifier sense input. (For voltage output operation, connect to VOUTB externally.) 6 VREFB Positive reference voltage input for DAC B 7 PD Power-down 8 DCEN Daisy-chain enable 9 SDO Serial data output 10 IOVDD I/O voltage supply input. (For single supply operation, connect to VDD externally.) 11 SYNC Frame synchronization input. The falling edge of the SYNC pulse indicates the start of a serial data frame shifted out to the DAC7552 12 SCLK Serial clock input 13 SDIN Serial data input 14 CLR Asynchronous input to clear the DAC registers. When CLR is low, the DAC registers are set to 000H and the output voltage to 0 V. 15 VREFA Positive reference voltage input for DAC A 16 VFBA DAC A amplifier sense input. (For voltage output operation, connect to VOUTA externally.) Thermal pad should be connected to GND. Copyright © 2005–2011, Texas Instruments Incorporated 5 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs DIGITAL INPUT CODE 1 Channel A VREF = 4.096 V Linearity Error − LSB Linearity Error − LSB 1 VDD = 5 V 0.5 0 −0.5 0.25 0 −0.25 −0.5 0 512 1024 1536 2048 2560 3072 3584 4096 −0.5 0.5 0.25 0 −0.25 −0.5 0 512 1024 1536 2048 2560 3072 3584 Figure 2. Figure 3. LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs DIGITAL INPUT CODE 4096 1 Channel A VREF = 2.5 V VDD = 2.7 V Linearity Error − LSB Linearity Error − LSB 0.5 0 −0.5 Channel B VREF = 2.5 V VDD = 2.7 V 0.5 0 −0.5 −1 0.5 0.25 0 −0.25 0 512 1024 1536 2048 2560 3072 3584 4096 Differential Linearity Error − LSB Differential Linearity Error − LSB 0 Digital Input Code −1 6 VDD = 5 V Digital Input Code 1 −0.5 VREF = 4.096 V −1 0.5 Differential Linearity Error − LSB Differential Linearity Error − LSB −1 Channel B 0.5 0.5 0.25 0 −0.25 −0.5 0 512 1024 1536 2048 2560 Digital Input Code Digital Input Code Figure 4. Figure 5. 3072 3584 4096 Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) ZERO-SCALE ERROR vs FREE-AIR TEMPERATURE ZERO-SCALE ERROR vs FREE-AIR TEMPERATURE 3 3 VDD = 2.7 V, VREF = 2.5 V 2 2 Zero-Scale Error − mV Zero-Scale Error − mV VDD = 5 V, VREF = 4.096 V Channel A 1 Channel B 1 Channel A 0 0 Channel B −1 −40 −10 20 50 −1 −40 80 TA − Free-Air Temperature − °C 20 50 80 TA − Free-Air Temperature − °C Figure 6. Figure 7. FULL-SCALE ERROR vs FREE-AIR TEMPERATURE FULL-SCALE ERROR vs FREE-AIR TEMPERATURE 1 1 VDD = 2.7 V, VREF = 2.5 V Full-Scale Error − mV VDD = 5 V, VREF = 4.096 V Full-Scale Error − mV −10 0 Channel B −1 Channel A −2 −40 −10 20 50 TA − Free-Air Temperature − °C Figure 8. Copyright © 2005–2011, Texas Instruments Incorporated 80 0 Channel B Channel A −1 −2 −40 −10 20 50 80 TA − Free-Air Temperature − °C Figure 9. 7 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) SINK CURRENT AT NEGATIVE RAIL SOURCE CURRENT AT POSITIVE RAIL 0.2 5.50 Typical for All Channels VDD = 2.7 V, VREF = 2.5 V 0.15 VO − Output Voltage − V VO − Output Voltage − V Typical for All Channels 0.1 VDD = 5.5 V, VREF = 4.096 V VDD = VREF = 5.5 V 5.40 5.30 0.05 DAC Loaded with 000h 0 0 5 10 ISINK − Sink Current − mA DAC Loaded with FFFh 5.20 15 0 5 10 ISOURCE − Source Current − mA Figure 10. Figure 11. SOURCE CURRENT AT POSITIVE RAIL SUPPLY CURRENT vs DIGITAL INPUT CODE 2.7 15 400 Typical for All Channels VDD = 5.5 V, VREF = 4.096 V I DD − Supply Current − µ A VO − Output Voltage − V 350 2.6 VDD = VREF = 2.7 V 2.5 300 VDD = 2.7 V, VREF = 2.5 V 250 200 150 100 50 DAC Loaded with FFFh All Channels Powered, No Load 2.4 0 5 10 ISOURCE − Source Current − mA Figure 12. 8 15 0 0 512 1024 1536 2048 2560 3072 3584 4096 Digital Input Code Figure 13. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) SUPPLY CURRENT vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 400 400 I DD − Supply Current − µ A I DD − Supply Current − µ A All DACs Powered, No Load, VREF = 2.5 V 350 VDD = 5.5 V, VREF = 4.096 V 300 VDD = 2.7 V, VREF = 2.5 V 250 350 300 250 All Channels Powered, No Load 200 −40 −10 20 50 80 TA − Free-Air Temperature − °C 200 2.7 110 3.8 4.1 4.5 4.8 5.2 5.5 Figure 15. SUPPLY CURRENT vs LOGIC INPUT VOLTAGE HISTOGRAM OF CURRENT CONSUMPTION - 5.5 V 2000 TA = 255C, SCL Input (All Other Inputs = GND) VDD = 5.5 V, VREF = 4.096 V 1500 1200 f − Frequency − Hz I DD − Supply Current − µ A 3.4 VDD − Supply Volatge − V Figure 14. 1600 3.1 VDD = 5.5 V, VREF = 4.096 V 800 400 1000 500 VDD = 2.7 V, VREF = 2.5 V 0 0 0 1 2 3 4 VLOGIC − Logic Input Voltage − V Figure 16. Copyright © 2005–2011, Texas Instruments Incorporated 5 253 264 275 286 297 308 319 330 341 IDD − Current Consumption − mA Figure 17. 9 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) HISTOGRAM OF CURRENT CONSUMPTION - 2.7 V TOTAL ERROR - 5 V 4 1500 VDD = 5 V, VREF = 4.096 V, TA = 255C VDD = 2.7 V, VREF = 2.5 V Total Error − mV f − Frequency − Hz 2 1000 Channel A Output 0 Channel B Output 500 −2 0 −4 0 239 249 259 269 279 289 299 309 319 IDD − Current Consumption − mA Figure 18. 512 1024 1536 2048 2560 3072 3584 4095 Digital Input Code Figure 19. TOTAL ERROR - 2.7 V EXITING POWER-DOWN MODE 4 5 VDD = 5 V, VREF = 4.096 V, Power-Up Code 4000 VDD = 2.7 V, VREF = 2.5 V, TA = 255C Total Error − mV Channel A Output 0 Channel B Output −2 3 2 1 0 −4 0 512 1024 1536 2048 2560 3072 3584 4095 Digital Input Code Figure 20. 10 VO − Output Voltage − V 4 2 t − Time − 4 s/div Figure 21. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) LARGE-SIGNAL SETTLING TIME - 5 V LARGE-SIGNAL SETTLING TIME - 2.7 V 5 3 VDD = 2.7 V, VREF = 2.5 V Output Loaded With 200 pF to GND Code 41 to 4055 VDD = 5 V, VREF = 4.096 V Output Loaded With 200 pF to GND Code 41 to 4055 VO − Output Voltage − V VO − Output Voltage − V 4 3 2 2 1 1 0 0 t − Time − 5 s/div t − Time − 5 s/div Figure 23. MIDSCALE GLITCH WORST-CASE GLITCH VO - VO - (5 mV/Div) (5 mV/Div) Figure 22. Trigger Pulse Trigger Pulse Time - (400 nS/Div) Figure 24. Copyright © 2005–2011, Texas Instruments Incorporated Time - (400 nS/Div) Figure 25. 11 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) CHANNEL-TO-CHANNEL CROSSTALK FOR A FULL-SCALE SWING VO - VO - (5 mV/Div) (5 mV/Div) DIGITAL FEEDTHROUGH ERROR Trigger Pulse Trigger Pulse Time - (400 nS/Div) Time - (400 nS/Div) Figure 26. Figure 27. TOTAL HARMONIC DISTORTION vs OUTPUT FREQUENCY THD − Total Harmonic Distortion − dB −40 VDD = 5 V, VREF = 4.096 V −1 dB FSR Digital Input, Fs = 1 Msps Measurement Bandwidth = 20 kHz −50 −60 −70 THD −80 −90 −100 12 2nd Harmonic 3rd Harmonic 0 1 2 3 4 5 6 7 8 Output Frequency (Tone) − kHz Figure 28. 9 10 Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com TYPICAL CHARACTERISTICS (continued) 3-Wire Serial Interface The DAC7552 digital interface is a standard 3-wire SPI/QSPI/Microwire/DSP-compatible interface. Table 1. Serial Interface Programming CONTROL DATA BITS DAC(s) FUNCTION DB15 DB14 DB13 DB12 DB11-DB10 0 0 0 0 data A Single Channel Store. The input register of channel A is updated. 0 0 1 0 data B Single Channel Store. The input register of channel B is updated. 0 1 0 0 data A Single Channel Update. The input and DAC registers of channel A are updated. 0 1 1 0 data A–B 1 0 0 0 data B 1 0 1 0 data A–B Single Channel Update. The input and DAC registers of channel B are updated and the DAC register of channel A is updated with input register data. 1 1 0 0 data A–B All Channel Update. The input and DAC registers of channels A and B are updated. 1 1 1 0 data A–B All Channel DAC Update. The DAC register of channels A and B are updated with input register data. Single Channel Update. The input and DAC registers of channel A are updated and the DAC register of channel B is updated with input register data. Single Channel Update. The input and DAC registers of channel B are updated. POWER-DOWN MODE In power-down mode, the DAC outputs are programmed to one of three output impedances, 1 kΩ, 100 kΩ, or floating. Table 2. Power-Down Mode Control EXTENDED CONTROL DATA BITS FUNCTION DB15 DB14 DB13 DB12 DB11 DB10 DB9-DB0 0 0 X 1 0 0 X PWD Hi-Z (all channels) 0 0 X 1 0 1 X PWD 1 kΩ (all channels) 0 0 X 1 1 0 X PWD 100 kΩ (all channels) 0 0 X 1 1 1 X PWD Hi-Z (all channels) 0 1 X 1 0 0 X PWD Hi-Z (selected channel = A) 0 1 X 1 0 1 X PWD 1 kΩ (selected channel = A) 0 1 X 1 1 0 X PWD 100 kΩ (selected channel = A) 0 1 X 1 1 1 X PWD Hi-Z (selected channel = A) 1 0 X 1 0 0 X PWD Hi-Z (selected channel = B) 1 0 X 1 0 1 X PWD 1 kΩ (selected channel = B) 1 0 X 1 1 0 X PWD 100 kΩ (selected channel = B) 1 0 X 1 1 1 X PWD Hi-Z (selected channel = B) 1 1 X 1 0 0 X PWD Hi-Z (all channels) 1 1 X 1 0 1 X PWD 1 kΩ (all channels) 1 1 X 1 1 0 X PWD 100 kΩ (all channels) 1 1 X 1 1 1 X PWD Hi-Z (all channels) Copyright © 2005–2011, Texas Instruments Incorporated 13 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com THEORY OF OPERATION D/A SECTION DAC External Reference Input The architecture of the DAC7552 consists of a string DAC followed by an output buffer amplifier. Figure 29 shows a generalized block diagram of the DAC architecture. Two separate reference pins are provided for two DACs, providing maximum flexibility. VREFA serves DAC A and VREFB serves DAC B. VREFA and VREFB can be externally shorted together for simplicity. VREF 100 kW VFB It is recommended to use a buffered reference in the external circuit (e.g., REF3140). The input impedance is typically 100 kΩ for each reference input pin. VOUT Amplifier Sense Input 100 kW 50 kW _ Ref + Resistor String Ref − DAC Register + GND Figure 29. Typical DAC Architecture The input coding to the DAC7552 is unsigned binary, which gives the ideal output voltage as: VOUT = VREF × D/4096 Where D = decimal equivalent of the binary code that is loaded to the DAC register which can range from 0 to 4095. To Output Amplifier VREF R R R R GND Figure 30. Typical Resistor String RESISTOR STRING The resistor string section is shown in Figure 30. It is simply a string of resistors, each of value R. The digital code loaded to the DAC register determines at which node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is specified monotonic. The DAC7552 architecture uses two separate resistor strings to minimize channel-to-channel crosstalk. OUTPUT BUFFER AMPLIFIERS The output amplifier is capable of generating rail-to-rail voltages on its output, which gives an output range of 0 V to VDD. It is capable of driving a load of 2 kΩ in parallel with up to 1000 pF to GND. The source and sink capabilities of the output amplifier can be seen in the typical curves. The slew rate is 1.8 V/µs with a typical settling time of 3 µs with the output unloaded. 14 The DAC7552 contains two amplifier feedback input pins, VFBA and VFBB. For voltage output operation, VFBA and VFBB must externally connect to VOUTA and VOUTB, respectively. For better DC accuracy, these connections should be made at load points. The VFBA and VFBB pins are also useful for a variety of applications, including digitally controlled current sources. Each feedback input pin is internally connected to the DAC amplifier's negative input terminal through a 100-kΩ resistor; and, the amplifier's negative input terminal internally connects to ground through another 100-kΩ resistor (See Figure 29). This forms a gain-of-two, noninverting amplifier configuration. Overall gain remains one because the resistor string has a divide-by-two configuration. The resistance seen at each VFBx pin is approximately 200 kΩ to ground. Power-On Reset On power up, all internal registers are cleared and all channels are updated with zero-scale voltages. Until valid data is written, all DAC outputs remain in this state. This is particularly useful in applications where it is important to know the state of the DAC outputs while the device is powering up. In order not to turn on ESD protection devices, VDD should be applied before any other pin is brought high. Power Down The DAC7552 has a flexible power-down capability as described in Table 2. Individual channels could be powered down separately or all channels could be powered down simultaneously. During a power-down condition, the user has flexibility to select the output impedance of each channel. During power-down operation, each channel can have either 1-kΩ, 100-kΩ, or Hi-Z output impedance to ground. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 www.ti.com Asynchronous Clear The DAC7552 output is asynchronously set to zero-scale voltage immediately after the CLR pin is brought low. The CLR signal resets all internal registers and therefore behaves like the Power-On Reset. The DAC7552 updates at the first rising edge of the SYNC signal that occurs after the CLR pin is brought back to high. IOVDD and Level Shifters The DAC7552 can be used with different logic families that require a wide range of supply voltages (from 1.8 V to 5.5 V). To enable this useful feature, the IOVDD pin must be connected to the logic supply voltage of the system. All DAC7552 digital input and output pins are equipped with level-shifter circuits. Level shifters at the input pins ensure that external logic high voltages are translated to the internal logic high voltage, with no additional power dissipation. Similarly, the level shifter for the SDO pin translates the internal logic high voltage (AVDD) to the external logic high level (IOVDD). For single-supply operation, the IOVDD pin can be tied to the AVDD pin. SERIAL INTERFACE The DAC7552 is controlled over a versatile 3-wire serial interface, which operates at clock rates up to 50 MHz and is compatible with SPI, QSPI, Microwire, and DSP interface standards. In daisy-chain mode (DCEN = 1), the DAC7552 requires a falling SCLK edge after the rising SYNC, in order to initialize the serial interface for the next update. 16-Bit Word and Input Shift Register The input shift register is 16 bits wide. DAC data is loaded into the device as a 16-bit word under the control of a serial clock input, SCLK, as shown in the Figure 1 timing diagram. The 16-bit word, illustrated in Table 1, consists of four control bits followed by 12 bits of DAC data. The data format is straight binary with all zeroes corresponding to 0-V output and all ones corresponding to full-scale output (VREF – 1 LSB). Data is loaded MSB first (bit 15) where the first two bits (DB15 and DB14) determine if the input register, DAC register, or both are updated with shift register input data. Bit 13 (DB13) determines whether the data is for DAC A, DAC B, or both DACs. Bit 12 (DB12) determines either normal mode or power-down mode (see Table 2). All channels are updated when bits 15 and 14 (DB15 and DB14) are high. Copyright © 2005–2011, Texas Instruments Incorporated SLAS442D – JANUARY 2005 – REVISED JUNE 2011 The SYNC input is a level-triggered input that acts as a frame synchronization signal and chip enable. Data can only be transferred into the device while SYNC is low. To start the serial data transfer, SYNC should be taken low, observing the minimum SYNC to SCLK falling edge setup time, t4. After SYNC goes low, serial data is shifted into the device's input shift register on the falling edges of SCLK for 16 clock pulses. The state of the daisy chain enable pin, DCEN, determines when the input data word is latched into the converter and when the output can be updated. When DCEN is low, daisy chain mode is disabled and the SDO pin is brought to a Hi-Z state. The first 16 data bits that follow the first falling edge of SYNC are stored in the shift register. Immediately following the 16th falling edge of SCLK, the converter latches the data word into the DAC and it updates immediately. If SYNC is brought high before the 16th data bit, the data word is ignored and no action occurs. When DCEN is high, daisy chain mode is enabled causing data that is input to the shift register to be passed through and shifted out. The SDO pin becomes active and outputs the SDIN data with a 16 clock cycle delay. In this case, a rising edge of SYNC is required in order to load the shift register data into the DAC. The loaded data consists of the last 16 data bits received into the shift register before the rising edge of SYNC. If daisy-chain operation is not needed, DCEN should permanently be tied to a logic low voltage. Daisy-Chain Operation When DCEN pin is brought high, daisy chaining is enabled. Serial Data Output (SDO) pin is provided to daisy-chain multiple DAC7552 devices in a system. As long as SYNC is high or DCEN is low, the SDO pin is in a high-impedance state. When SYNC is brought low the output of the internal shift register is tied to the SDO pin. As long as SYNC is low and DCEN is high, SDO duplicates SDIN signal with a 16-cycle delay. To support multiple devices in a daisy chain, SCLK and SYNC signals are shared across all devices, and SDO of one DAC7552 should be tied to the SDIN of the next DAC7552. For n devices in such a daisy chain, 16n SCLK cycles are required to shift the entire input data stream. After 16n SCLK falling edges are received, following a falling SYNC, the data stream becomes complete and SYNC can be brought high to update n devices simultaneously. SDO operation is specified at a maximum SCLK speed of 10 MHz. 15 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 INTEGRAL AND DIFFERENTIAL LINEARITY The DAC7552 uses precision thin-film resistors providing exceptional linearity and monotonicity. Integral linearity error is typically within (+/-) 0.35 LSBs, and differential linearity error is typically within (+/-) 0.08 LSBs. www.ti.com Generating ±5-V, ±10-V, and ± 12-V Outputs For Precision Industrial Control Industrial control applications can require multiple feedback loops consisting of sensors, ADCs, MCUs, DACs, and actuators. Loop accuracy and loop speed are the two important parameters of such control loops. GLITCH ENERGY Loop Accuracy: The DAC7552 uses a proprietary architecture that minimizes glitch energy. The code-to-code glitches are so low, they are usually buried within the wide-band noise and cannot be easily detected. The DAC7552 glitch is typically well under 0.1 nV-s. Such low glitch energy provides more than 10X improvement over industry alternatives. In a control loop, the ADC has to be accurate. Offset, gain, and the integral linearity errors of the DAC are not factors in determining the accuracy of the loop. As long as a voltage exists in the transfer curve of a monotonic DAC, the loop can find it and settle to it. On the other hand, DAC resolution and differential linearity do determine the loop accuracy, because each DAC step determines the minimum incremental change the loop can generate. A DNL error less than –1 LSB (non-monotonicity) can create loop instability. A DNL error greater than +1 LSB implies unnecessarily large voltage steps and missed voltage targets. With high DNL errors, the loop loses its stability, resolution, and accuracy. Offering 12-bit ensured monotonicity and ± 0.08 LSB typical DNL error, 755X DACs are great choices for precision control loops. CHANNEL-TO-CHANNEL CROSSTALK The DAC7552 architecture is designed to minimize channel-to-channel crosstalk. The voltage change in one channel does not affect the voltage output in another channel. The DC crosstalk is in the order of a few microvolts. AC crosstalk is also less than –100 dBs. This provides orders of magnitude improvement over certain competing architectures. APPLICATION INFORMATION Loop Speed: DAC SPI Interfacing Many factors determine control loop speed. Typically, the ADC's conversion time and the MCU's computation time are the two major factors that dominate the time constant of the loop. DAC settling time is rarely a dominant factor because ADC conversion times usually exceed DAC conversion times. DAC offset, gain, and linearity errors can slow the loop down only during the start-up. Once the loop reaches its steady-state operation, these errors do not affect loop speed any further. Depending on the ringing characteristics of the loop's transfer function, DAC glitches can also slow the loop down. With its 1 MSPS (small-signal) maximum data update rate, DAC7552 can support high-speed control loops. Ultralow glitch energy of the DAC7552 significantly improves loop stability and loop settling time. Care must be taken with the digital control signals that are applied directly to the DAC, especially with the SYNC pin. The SYNC pin must not be toggled without having a full SCLK pulse in between. If this condition is violated, the SPI interface locks up in an erroneous state, causing the DAC to behave incorrectly and possibly have errors. The DAC can be recovered from this faulty state by writing a valid SPI command or using the SYNC pin correctly; communication is then restored. Avoid glitches and transients on the SYNC line to ensure proper operation. Waveform Generation Due to its exceptional linearity, low glitch, and low crosstalk, the DAC7552 is well suited for waveform generation (from DC to 10 kHz). The DAC7552 large-signal settling time is 5 µs, supporting an update rate of 200 KSPS. However, the update rates can exceed 1 MSPS if the waveform to be generated consists of small voltage steps between consecutive DAC updates. To obtain a high dynamic range, REF3140 (4.096 V) or REF02 (5 V) are recommended for reference voltage generation. 16 Generating Industrial Voltage Ranges: For control loop applications, DAC gain and offset errors are not important parameters. This could be exploited to lower trim and calibration costs in a high-voltage control circuit design. Using an operational amplifier (OPA130), and a voltage reference (REF3140), the DAC7552 can generate the wide voltage swings required by the control loop. Copyright © 2005–2011, Texas Instruments Incorporated DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com Fixed R1 and R2 resistors can be used to coarsely set the gain required in the first term of the equation. Once R2 and R1 set the gain to include some minimal over-range, a DAC7552 channel could be used to set the required offset voltage. Residual errors are not an issue for loop accuracy because offset and gain errors could be tolerated. One DAC7552 channel can provide the Vtail voltage, while the other DAC7552 channel can provide Vdac voltage to help generate the high-voltage outputs. Vtail DAC7552 R1 REF3140 R2 VREF VREFH DAC7552 _ Vdac + VOUT OPA130 For ±5-V operation: R1=10 kΩ, R2 = 15 kΩ, Vtail = 3.33 V, VREF= 4.096 V Figure 31. Low-cost, Wide-swing Voltage Generator for Control Loop Applications For ±10-V operation: R1=10 kΩ, R2 = 39 kΩ, Vtail = 2.56 V, VREF = 4.096 V The output voltage of the configuration is given by: ǒ Ǔ V out + V REF R2 ) 1 Din * V tail R2 4096 R1 R1 Copyright © 2005–2011, Texas Instruments Incorporated (1) For ±12-V operation: R1=10 kΩ, R2 = 49 kΩ, Vtail = 2.45 V, VREF = 4.096 V 17 DAC7552 SLAS442D – JANUARY 2005 – REVISED JUNE 2011 www.ti.com REVISION HISTORY Changes from Revision C (December 2005) to Revision D Page • Changed to Revision D, June 2011 ...................................................................................................................................... 1 • Changed row 4, DAC(s) column from A to A-B, row 5, from A to B and row 6, from B to A-B .......................................... 13 • Changed wording in 3rd and 4th paragraphs in "16-Bit Word and Input Shift Register" section ....................................... 15 • Added new sub section "DAC SPI Interfacing" and 1 paragraph directly under APPLICATION INFORMATION ............. 16 18 Copyright © 2005–2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) DAC7552IRGTR ACTIVE VQFN RGT 16 3000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 105 D752 Samples DAC7552IRGTT ACTIVE VQFN RGT 16 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 105 D752 Samples DAC7552IRGTTG4 ACTIVE VQFN RGT 16 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 105 D752 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
DAC7552IRGTR 价格&库存

很抱歉,暂时无法提供与“DAC7552IRGTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货