0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DAC7644E/1KG4

DAC7644E/1KG4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    BSSOP-48

  • 描述:

    16 Bit Digital to Analog Converter 4 48-SSOP

  • 数据手册
  • 价格&库存
DAC7644E/1KG4 数据手册
DAC7644 ® DAC 764 4 For most current data sheet and other product information, visit www.burr-brown.com 16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER FEATURES DESCRIPTION ● LOW POWER: 10mW ● UNIPOLAR OR BIPOLAR OPERATION The DAC7644 is a 16-bit, quad voltage output digitalto-analog converter with guaranteed 15-bit monotonic performance over the specified temperature range. It accepts 16-bit parallel input data, has double-buffered DAC input logic (allowing simultaneous update of all DACs), and provides a readback mode of the internal input registers. Programmable asynchronous reset clears all registers to a mid-scale code of 8000H or to a zeroscale of 0000H. The DAC7644 can operate from a single +5V supply or from +5V and –5V supplies. Low power and small size per DAC make the DAC7644 ideal for automatic test equipment, DAC-per-pin programmers, data acquisition systems, and closed-loop servo-control. The DAC7644 is available in a 48-lead SSOP package and offers guaranteed specifications over the –40°C to +85°C temperature range. ● SETTLING TIME: 10µs to 0.003% ● 15-BIT LINEARITY AND MONOTONICITY: –40°C to +85°C ● PROGRAMMABLE RESET TO MID-SCALE OR ZERO-SCALE ● DATA READBACK ● DOUBLE-BUFFERED DATA INPUTS APPLICATIONS ● PROCESS CONTROL ● CLOSED-LOOP SERVO-CONTROL ● MOTOR CONTROL ● DATA ACQUISITION SYSTEMS ● DAC-PER-PIN PROGRAMMERS VDD VSS VREFL AB Sense VCC VREFL AB VREFH AB VREFH AB Sense DAC7644 16 DATA I/O I/O Buffer Input Register A DAC Register A Input Register B DAC Register B DAC A VOUTA VOUTA Sense DAC B VOUTB VOUTB Sense A1 A0 CS Control Logic Input Register C DAC Register C DAC C VOUTC R/W VOUTC Sense Input Register D DAC Register D DAC D VOUTD VOUTD Sense AGND DGND RST RSTSEL LOADDACS VREFL CD Sense VREFL CD VREFH CD VREFH CD Sense International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 ® © 1999 Burr-Brown Corporation SBAS121 PDS-1535B 1 Printed in U.S.A. November, 1999 DAC7644 SPECIFICATIONS (Dual Supply) At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, and VREFL = –2.5V, unless otherwise noted. DAC7644E PARAMETER CONDITIONS ACCURACY Linearity Error Linearity Match Differential Linearity Error Monotonicity, TMIN to TMAX Bipolar Zero Error Bipolar Zero Error Drift Full-Scale Error Full-Scale Error Drift Bipolar Zero Matching Full Scale Matching Power Supply Rejection Ratio (PSRR) ANALOG OUTPUT Voltage Output Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration TYP MAX ±3 ±4 ±2 ±4 VREF = –2.5V, RL = 10kΩ, VSS = –5V VREFL –1.25 No Oscillation ±2 10 ±2 10 ±2 ±2 100 VREFH +1.25 VREFL + 1.25 –2.5 +2.5 VREFH – 1.25 8 0.5 2 60 40 f = 10kHz 7FFFH to 8000H or 8000H to 7FFFH DIGITAL INPUT VIH VIL IIH IIL UNITS ±2 ±2 ±1 ±3 ✻ ✻ ✻ ✻ ±1 ±1 ✻ ✻ ✻ ✻ ✻ ±2 ±2 ✻ LSB LSB LSB Bits mV ppm/°C mV ppm/°C mV mV ppm/V ✻ ✻ ✻ ✻ ✻ ✻ ✻ 10 POWER SUPPLY VDD VCC VSS ICC IDD ISS Power 3.6 +4.75 +4.75 –5.25 –2.3 TEMPERATURE RANGE Specified Performance –40 V mA pF mA ✻ ✻ V V µA µA ✻ µs LSB nV-s nV/√Hz nV-s ✻ 0.3 • VDD ±10 ±10 IOH = –0.8mA IOL = 1.2mA ✻ ✻ ✻ ✻ 0.7 • VDD DIGITAL OUTPUT VOH VOL ±2 ✻ ✻ ✻ 500 –500 To ±0.003%, 5V Output Step See Figure 5. MAX ✻ ✻ 500 –10, +30 Indefinite GND or VCC or VSS TYP 15 ±1 5 ±1 5 ±1 ±1 10 Channel-to-Channel Matching Channel-to-Channel Matching At Full Scale MIN ±3 14 REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current DYNAMIC PERFORMANCE Settling Time Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage DAC Glitch MIN DAC7644EB 4.5 0.3 +5.0 +5.0 –5.0 1.5 50 –1.5 15 ✻ 0.4 +5.25 +5.25 –4.75 2 ✻ ✻ ✻ ✻ 20 +85 ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ V V µA µA ✻ V V ✻ ✻ ✻ ✻ ✻ V V V mA µA mA mW ✻ °C ✻ Specifications same as DAC7644E. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ® DAC7644 2 SPECIFICATIONS (Single Supply) At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, and VREFL = 0V, unless otherwise noted. DAC7644E PARAMETER ACCURACY Linearity Error(1) Linearity Match Differential Linearity Error Monotonicity, TMIN to TMAX Zero Scale Error Zero Scale Error Drift Full-Scale Error Full-Scale Error Drift Zero Scale Matching Full-Scale Matching Power Supply Rejection Ratio (PSRR) ANALOG OUTPUT Voltage Output Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration CONDITIONS POWER SUPPLY VDD VCC VSS ICC IDD Power TEMPERATURE RANGE Specified Performance MAX ±3 ±4 ±2 ±4 VREFL = 0V, VSS = 0V, RL = 10kΩ 0 –1.25 No Oscillation MIN ±3 ±2 10 ±2 10 ±2 ±2 100 VREFH +1.25 VREFL + 1.25 0 +2.5 VREFH – 1.25 8 0.5 2 60 40 7FFFH to 8000H or 8000H to 7FFFH UNITS ±2 ±2 ±1 ±3 ✻ ✻ ✻ ✻ ±1 ±1 ✻ ✻ ✻ ✻ ✻ ±2 ±2 ✻ LSB LSB LSB Bits mV ppm/°C mV ppm/°C mV mV ppm/V ✻ ✻ ✻ ✻ ✻ ✻ ✻ 10 +4.75 +4.75 0 –40 V mA pF mA ✻ ✻ V V µA µA ✻ µs LSB nV-s nV/√Hz nV-s ✻ 0.3 • VDD ±10 ±10 3.6 ✻ ✻ ✻ ✻ 0.7 • VDD IOH = –0.8mA IOL = 1.2mA ±2 ✻ ✻ ✻ 250 –250 To ±0.003%, 2.5V Output Step See Figure 6. MAX ✻ ✻ 500 ±30 Indefinite GND or VCC TYP 15 ±1 5 ±1 5 ±1 ±1 10 Channel-to-Channel Matching Channel-to-Channel Matching At Full Scale DIGITAL INPUT VIH VIL IIH IIL DIGITAL OUTPUT VOH VOL DAC7644EB TYP 14 REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current DYNAMIC PERFORMANCE Settling Time Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage, f = 10kHz DAC Glitch MIN 4.5 0.3 +5.0 +5.0 0 1.5 50 7.5 ✻ 0.4 +5.25 +5.25 0 2 ✻ ✻ ✻ 10 +85 ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ V V µA µA ✻ V V ✻ ✻ ✻ ✻ ✻ V V V mA µA mW ✻ °C NOTE: (1) If VSS = 0V specification applies at Code 0040H and above due to possible negative zero-scale error. ✻ Specifications same as DAC7644E. ® 3 DAC7644 ELECTROSTATIC DISCHARGE SENSITIVITY ABSOLUTE MAXIMUM RATINGS(1) VCC and VDD to VSS .............................................................. –0.3V to 11V VCC and VDD to GND ........................................................... –0.3V to 5.5V VREFL to VSS ............................................................. –0.3V to (VCC – VSS) VCC to VREFH ............................................................ –0.3V to (VCC – VSS) VREFH to VREFL ......................................................... –0.3V to (VCC – VSS) Digital Input Voltage to GND ................................... –0.3V to VDD + 0.3V Digital Output Voltage to GND ................................. –0.3V to VDD + 0.3V Maximum Junction Temperature ................................................... +150°C Operating Temperature Range ........................................ –40°C to +85°C Storage Temperature Range ......................................... –65°C to +125°C Lead Temperature (soldering, 10s) ............................................... +300°C This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. PACKAGE/ORDERING INFORMATION PRODUCT LINEARITY ERROR (LSB) DIFFERENTIAL NONLINEARITY (LSB) DAC7644E PACKAGE PACKAGE DRAWING NUMBER(1) SPECIFICATION TEMPERATURE RANGE ±4 ±3 48-Lead SSOP 333 –40°C to +85°C " " " " " " DAC7644EB ±3 ±2 48-Lead SSOP 333 –40°C to +85°C " " " " " " ORDERING NUMBER(2) TRANSPORT MEDIA DAC7644E DAC7644E/1K DAC7644EB DAC7644EB/1K Rails Tape and Reel Rails Tape and Reel NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of “DAC7644/1K” will get a single 1000-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book. ® DAC7644 4 PIN CONFIGURATION Top View SSOP DB15 1 48 NC DB14 2 47 NC DB13 3 46 NC DB12 4 45 NC DB11 5 44 VOUTA Sense DB10 6 43 VOUTA DB9 7 42 VREFL AB Sense DB8 8 41 VREFL AB DB7 9 40 VREFH AB DB6 10 39 VREFH AB Sense DB5 11 38 VOUTB Sense DB4 12 37 VOUTB DB3 13 36 VOUTC Sense DB2 14 35 VOUTC DB1 15 34 VREFH CD Sense DB0 16 33 VREFH CD RSTSEL 17 32 VREFL CD RST 18 31 VREFL CD Sense LOADDACS 19 30 VOUTD Sense R/W 20 29 VOUTD A1 21 28 VSS A0 22 27 AGND CS 23 26 VCC DGND 24 25 VDD DAC7644 PIN DESCRIPTIONS PIN NAME DESCRIPTION PIN NAME 1 DB15 Data Bit 15, MSB 23 CS 2 DB14 Data Bit 14 24 DGND 3 DB13 Data Bit 13 25 VDD Positive Power Supply (digital) 4 DB12 Data Bit 12 26 VCC Positive Power Supply (analog) 5 DB11 Data Bit 11 27 AGND 6 DB10 Data Bit 10 28 VSS 7 DB9 Data Bit 9 29 VOUTD 8 DB8 Data Bit 8 30 VOUTD Sense 9 DB7 Data Bit 7 10 DB6 Data Bit 6 31 VREFL CD Sense 11 DB5 Data Bit 5 32 VREFL CD 12 DB4 Data Bit 4 33 VREFH CD 13 DB3 Data Bit 3 34 VREFH CD Sense 14 DB2 Data Bit 2 35 VOUTC 15 DB1 Data Bit 1 36 VOUTC Sense 16 DB0 17 RSTSEL 18 RST Data Bit 0, LSB Reset Select. Determines the action of RST. If HIGH, a RST command will set the DAC registers to mid-scale. If LOW, a RST command will set the DAC registers to zero. Analog Ground Negative Power Supply DAC D Voltage Output DAC D’s Output Amplifier Inverting Input. Used to close the feedback loop at the load. DAC C and D Reference Low Sense Input DAC C and D Reference Low Input DAC C and D Reference High Input DAC C and D Reference High Sense Input DAC C Voltage Output DAC C’s Output Amplifier Inverting Input. Used to close the feedback loop at the load. 37 VOUTB 38 VOUTB Sense 39 VREFH AB Sense 40 VREFH AB DAC A and B Reference High Input DAC A and B Reference Low Input DAC B Voltage Output DAC B’s Output Amplifier Inverting Input. Used to close the feedback loop at the load. DAC A and B Reference High Sense Input 41 VREFL AB 42 VREFL AB Sense 43 VOUTA 44 VOUTA Sense 45 NC No Connection 46 NC No Connection 47 NC No Connection 48 NC No Connection LOADDACS DAC Output Registers Load Control. Rising edge triggered. 20 R/W Enabled by the CS, Controls Data Read and Write from the Input Registers. 21 A1 Enabled by the CS, in Combination With A0 Selects the Individual DAC Input Registers. A0 Chip Select. Active LOW. Digital Ground Reset, Rising Edge Triggered. Depending on the state of RSTSEL, the DAC registers are set to either mid-scale or zero. 19 22 DESCRIPTION Enabled by the CS, in Combination With A1 Selects the Individual DAC Input Registers. DAC A and B Reference Low Sense Input DAC A Voltage Input DAC A’s Output Amplifier Inverting Input. Used to close the feedback loop at the load. ® 5 DAC7644 TYPICAL PERFORMANCE CURVES: VSS = 0V At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified. LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, +25°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, +25°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 DLE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, +85°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, +85°C) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 LE (LSB) LE (LSB) DLE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH +85°C DLE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, +25°C) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) DLE (LSB) LE (LSB) +25°C 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code ® DAC7644 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 6 TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified. LE (LSB) DLE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, –40°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, –40°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 DLE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, –40°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, –40°C) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 LE (LSB) LE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, +85°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, +85°C) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –40°C DLE (LSB) (cont) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) +85°C Digital Input Code 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code ® 7 DAC7644 TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified. FULL-SCALE ERROR vs TEMPERATURE ZERO-SCALE ERROR vs TEMPERATURE 2 2 Code (0040H) 1 DAC C DAC D UPO (mV) Positive Full-Scale Error (mV) 1.5 0.5 0 –0.5 DAC A –1 DAC B –1.5 1.5 1 DAC B DAC C 0.5 0 –0.5 DAC A DAC D –1 –1.5 –2 –2 –40 –25 0 25 55 –40 85 –25 0 25 55 Temperature (°C) Temperature (°C) VREFH CURRENT vs CODE (all DACs sent to indicated code) VREFL CURRENT vs CODE (all DACs sent to indicated code) 0.30 0.00 0.25 –0.05 VREF Current (mA) VREF Current (mA) Code (FFFFH) 0.20 0.15 0.10 85 –0.10 –0.15 –0.20 0.05 –0.25 0.00 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH –0.30 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code POSITIVE SUPPLY CURRENT vs DIGITAL INPUT CODE POSITIVE SUPPLY CURRENT vs TEMPERATURE 2 2 No Load Data = FFFFH (all DACs) No Load 1.5 1.5 ICC (mA) ICC (mA) All DACs 1 1 One DAC 0.5 0.5 0 0 –40 –25 0 25 55 85 0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Temperature (°C) Digital Input Code ® DAC7644 8 TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified. OUTPUT VOLTAGE vs SETTLING TIME (+2.5V to 2mV) OUTPUT VOLTAGE vs SETTLING TIME (0V to +2.5V) +5V LDAC 0 +5V LDAC 0 Output Voltage Output Voltage Large-Signal Settling Time: 0.5V/div Small-Signal Settling Time: 4LSB/div Small-Signal Settling Time: 4LSB/div Large-Signal Settling Time: 0.5V/div Time (2µs/div) Time (2µs/div) OUTPUT VOLTAGE vs MIDSCALE GLITCH PERFORMANCE OUTPUT VOLTAGE vs MIDSCALE GLITCH PERFORMANCE +5V LDAC 0 Output Voltage (50mV/div) Output Voltage (50mV/div) +5V LDAC 0 7FFFH to 8000H 8000H to 7FFFH Time (1µs/div) Time (1µs/div) BROADBAND NOISE OUTPUT NOISE VOLTAGE vs FREQUENCY Noise (nV/√Hz) Noise Voltage (50µV/div) 1000 100 BW = 10kHz Code = 8000H 10 10 Time (10µs/div) 100 1000 10000 100000 1000000 Frequency (Hz) ® 9 DAC7644 TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified. VOUT vs RLOAD 12 5 10 4 8 VOUT (V) Logic Supply Current (mA) LOGIC SUPPLY CURRENT vs LOGIC INPUT LEVEL FOR DATA BITS 6 3 Source 2 4 1 2 0 0.01 0 1 0 2 3 4 5 0.1 1 RLOAD (kΩ) Logic Input Level for Data Bits (V) ® DAC7644 Sink 10 10 100 TYPICAL PERFORMANCE CURVES: VSS = –5V At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified. LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, +25°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) +25°C 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, +25°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, +25°C) 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code +85°C LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, +85°C) LE (LSB) 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +85°C) 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code ® 11 DAC7644 TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified. +85°C (cont) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, +85°C) LE (LSB) 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, +85°C) 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, –40°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC B, –40°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 DLE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC C, –40°C) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC D, –40°C) LE (LSB) 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) DLE (LSB) LE (LSB) –40°C Digital Input Code 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code ® DAC7644 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 12 TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified. VREFL CURRENT vs CODE (all DACs sent to indicated code) +0.6 0.0 +0.5 –0.1 VREF Current (mA) VREF Current (mA) VREFH CURRENT vs CODE (all DACs sent to indicated code) +0.4 +0.3 +0.2 –0.4 –0.6 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 0.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code ZERO-SCALE ERROR vs TEMPERATURE (Code 8000H) POSITIVE FULL-SCALE ERROR vs TEMPERATURE (Code FFFFH) 2 2 1.5 1.5 1 DAC A 0.5 Positive Full-Scale Error (mV) Zero-Scale Error (mV) –0.3 –0.5 +0.1 DAC B 0 –0.5 DAC D –1 DAC C –1.5 1 DAC B DAC A 0.5 0 –0.5 DAC C –1 DAC D –1.5 –2 –2 –40 –25 0 25 55 –40 85 25 NEGATIVE FULL-SCALE ERROR vs TEMPERATURE (Code 0000H) POWER SUPPLY CURRENT vs TEMPERATURE DAC D DAC A IQ (mA) 0.5 0 –0.5 DAC B DAC C –1 –1.5 –2 –40 0 Temperature (°C) 1.5 1 –25 Temperature (°C) 2 Negative Full-Scale Error (mV) –0.2 –25 0 25 55 3 2.5 2 1.5 1 0.5 0 –0.5 –1 –1.5 –2 –2.5 –3 85 55 85 Data = FFFFH (all DACs) No Load ICC ISS –40 85 55 –25 0 25 Temperature (°C) Temperature (°C) ® 13 DAC7644 TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT) At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified. POSITIVE SUPPLY CURRENT vs DIGITAL INPUT CODE VOUT vs RLOAD 2 5 No Load 4 All DACs Source 3 1.5 ICC (mA) 1 0 –1 Sink –2 One DAC 1 0.5 –3 –4 0 0.1 1 10 0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH 100 RLOAD (kΩ) Digital Input Code OUTPUT VOLTAGE vs SETTLING TIME (–2.5V to +2.5V) OUTPUT VOLTAGE vs SETTLING TIME (+2.5V to –2.5V) Large-Signal Settling Time: 1V/div +5V LDAC 0 +5V LDAC 0 Output Voltage –5 0.01 Output Voltage VOUT (V) 2 Small-Signal Settling Time: 2LSB/div Small-Signal Settling Time: 2LSB/div Large-Signal Settling Time: 1V/div Time (2µs/div) Time (2µs/div) ® DAC7644 14 THEORY OF OPERATION by the external voltage references (VREFL and VREFH, respectively). The digital input is a 16-bit parallel word and the DAC input registers offer a readback capability. The converters can be powered from either a single +5V supply or a dual ±5V supply. The device offers a reset function which immediately sets all DAC output voltages and DAC registers to mid-scale code 8000H or to zero-scale, code 0000H. See Figures 2 and 3 for the basic operation of the DAC7644. The DAC7644 is a quad voltage output, 16-bit digital-toanalog converter (DAC). The architecture is an R-2R ladder configuration with the three MSB’s segmented followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network, segmented MSBs and output op amp (see Figure 1). The minimum voltage output (zero-scale) and maximum voltage output (full-scale) are set RF VOUT Sense VOUT R 2R 2R 2R 2R 2R 2R 2R 2R 2R VREFH VREFH Sense VREFL VREFL Sense FIGURE 1. DAC7644 Architecture. Data Bus 1 DB15 NC 48 2 DB14 NC 47 3 DB13 NC 46 4 DB12 NC 45 5 DB11 VOUTA Sense 44 6 DB10 VOUTA 43 7 DB9 VREFL AB Sense 42 8 DB8 VREFL AB 41 9 DB7 VREFH AB 40 10 DB6 VREFH AB Sense 39 11 DB5 VOUTB Sense 38 12 DB4 VOUTB 37 13 DB3 VOUTC Sense 36 14 DB2 VOUTC 35 15 DB1 VREFH CD Sense 34 16 DB0 VREFH CD 33 17 RSTSEL VREFL CD 32 VREFL CD Sense 31 VOUTD Sense 30 VOUTD 29 DAC7644 Reset DACs 18 RST Load DAC Registers 19 LOADDACS READ/WRITE 20 R/W 21 A1 VSS 28 22 A0 AGND 27 23 CS VCC 26 24 DGND VDD 25 Address Chips Select 0V to +2.5V +2.5000V 0V to +2.5V 0V to +2.5V +2.5000V 0V to +2.5V 0.1µF + 1µF +5V NC = No Connection FIGURE 2. Basic Single-Supply Operation of the DAC7644. ® 15 DAC7644 Data Bus 1 DB15 NC 48 2 DB14 NC 47 3 DB13 NC 46 4 DB12 NC 45 5 DB11 VOUTA Sense 44 6 DB10 VOUTA 43 7 DB9 VREFL AB Sense 42 8 DB8 VREFL AB 41 –2.5V 9 DB7 VREFH AB 40 +2.5V 10 DB6 VREFH AB Sense 39 11 DB5 VOUTB Sense 38 12 DB4 VOUTB 37 13 DB3 VOUTC Sense 36 14 DB2 VOUTC 35 15 DB1 VREFH CD Sense 34 VREFH CD 33 +2.5V –2.5V DAC7644 16 DB0 +5V 17 RSTSEL Reset DACs 18 RST Load DAC Registers 19 LOADDACS READ/WRITE 20 R/W 21 VREFL CD 32 VREFL CD Sense 31 VOUTD Sense 30 VOUTD 29 A1 VSS 28 22 A0 AGND 27 23 CS VCC 26 24 DGND VDD 25 Address Chips Select –2.5V to +2.5V –2.5V to +2.5V –2.5V to +2.5V –2.5V to +2.5V –5V 0.1µF 0.1µF + + 1.0µF 1.0µF +5V NC = No Connection FIGURE 3. Basic Dual-Supply Operation of the DAC7644. The DAC7644 offers a force and sense output configuration for the high open-loop gain output amplifier. This feature allows the loop around the output amplifier to be closed at the load (see Figure 4), thus ensuring an accurate output voltage. ANALOG OUTPUTS When VSS = –5V (dual supply operation), the output amplifier can swing to within 2.25V of the supply rails, guaranteed over the –40°C to +85°C temperature range. With VSS = 0V (single-supply operation), and with RLOAD also connected to ground, the output can swing to ground. Care must also be taken when measuring the zero-scale error when VSS = 0V. Since the output voltage cannot swing below ground, the output voltage may not change for the first few digital input codes (0000H, 0001H, 0002H, etc.) if the output amplifier has a negative offset. At the negative limit of –2mV, the first specified output starts at code 0040H. Due to the high accuracy of these D/A converters, system design problems such as grounding and contact resistance become very important. A 16-bit converter with a 2.5V fullscale range has a 1LSB value of 38µV. With a load current of 1mA, series wiring and connector resistance (see Figure 4) of only 40mΩ (RW2) will cause a voltage drop of 40µV. To understand what this means in terms of a system layout, the resistivity of a typical 1 ounce copper-clad printed circuit board is 1/2 mΩ per square. For a 1mA load, a 10 milli-inch wide printed circuit conductor 600 milli-inches long will result in a voltage drop of 30µV. NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 DAC7644 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 RW1 RW2 VOUT +V +2.5V RW1 RW2 VOUT FIGURE 4. Analog Output Closed-Loop Configuration (1/2 DAC7644). RW represents wiring resistances. ® DAC7644 16 REFERENCE INPUTS The current into the VREFH input and out of VREFL depends on the DAC output voltages and can vary from a few microamps to approximately 0.5mA. The reference input appears as a varying load to the reference. If the reference can sink or source the required current, a reference buffer is not required. The DAC7644 features a reference drive and sense connection such that the internal errors caused by the changing reference current and the circuit impedances can be minimized. Figures 5 through 12 show different reference configurations and the effect on the linearity and differential linearity. The reference inputs, VREFL and VREFH, can be any voltage between VSS + 2.5V and VCC – 2.5V provided that VREFH is at least 1.25V greater than VREFL. The minimum output of each DAC is equal to VREFL plus a small offset voltage (essentially, the offset of the output op amp). The maximum output is equal to VREFH plus a similar offset voltage. Note that VSS (the negative power supply) must either be connected to ground or must be in the range of –4.75V to –5.25V. The voltage on VSS sets several bias points within the converter. If VSS is not in one of these two configurations, the bias values may be in error and proper operation of the device is not guaranteed. NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 DAC7644 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 +V OPA2234 VOUT –2.5V 500pF –V +V 500pF VOUT +2.5V –V FIGURE 5. Dual Supply Configuration-Buffered References, used for Dual Supply Performance Curves (1/2 DAC7644). NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 DAC7644 +V OPA2350 VOUT 100Ω 2kΩ 2200pF 1000pF 0.050V 100Ω +V 98kΩ 1000pF 2200pF +2.5V VOUT NOTE: VREFL has been chosen to be 50mV to allow for current sinking voltage drops across the 100Ω resistor and the output stage of the buffer op amp. FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV (1/2 DAC7644). ® 17 DAC7644 LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) LE (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code FIGURE 8. Integral Linearity and Differential Linearity Error Curves for Figure 9. FIGURE 7. Integral Linearity and Differential Linearity Error Curves for Figure 6. NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 DAC7644 +V OPA2350 VOUT 100Ω +V 2200pF +1.25V 1000pF VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 100Ω 1000pF +V 2200pF +2.5V VOUT FIGURE 9. Single-Supply Buffered Reference with VREFL = +1.25V and VREFH = +2.5V (1/2 DAC7644). NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 DAC7644 VOUT +V OPA350 +2.5V 1000pF 2200pF VOUT FIGURE 10. Single-Supply Buffered VREFH (1/2 DAC7644). ® DAC7644 +V 100Ω 18 LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) LE (LSB) 3.0 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH DLE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (DAC A, +25°C) 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH Digital Input Code Digital Input Code FIGURE 13. Linearity and Differential Linearity Error Curves for Figure 12. FIGURE 11. Linearity and Differential Linearity Error Curves for Figure 10. NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 DAC7644 DIGITAL INTERFACE Table I shows the basic control logic for the DAC7644. Note that each internal register is edge triggered and not level triggered. When the LOADDACS signal is transitioned to HIGH, the digital word currently in the register is latched. The first set of registers (the input registers) are triggered via the A0, A1, R/W, and CS inputs. Only one of these registers is transparent at any given time. VOUT The double-buffered architecture is designed mainly so each DAC input register can be written to at any time and then all DAC voltages updated simultaneously by the rising edge of LOADDACS. It also allows a DAC input register to be written to at any point and the DAC voltages to be synchronously changed via a trigger signal connected to LOADDACS. +V +2.5V VOUT FIGURE 12. Low Cost Single-Supply Configuration. A1 A0 R/W CS RST L L H H L L H H X X X X L H L H L H L H X X X X L L L L H H H H X X X X L L L L L L L L H H X X H H H H H H H H H H ↑ ↑ RSTSEL LOADDACS X X X X X X X X X X L H X X X X X X X X ↑ H X X INPUT REGISTER DAC REGISTER MODE DAC Write Write Write Write Read Read Read Read Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Write Hold Reset to Zero Reset to Midscale Write Input Write Input Write Input Write Input Read Input Read Input Read Input Read Input Update Hold Reset to Zero Reset to Midscale A B C D A B C D All All All All TABLE I. DAC7644 Logic Truth Table. ® 19 DAC7644 DIGITAL TIMING Figure 14 and Table II provide detailed timing for the digital interface of the DAC7644. VOUT = VREF L + DIGITAL INPUT CODING The DAC7644 input data is in Straight Binary format. The output voltage is given by Equation 1. (VREF H – VREF L) • N (1) 65, 536 where N is the digital input code. This equation does not include the effects of offset (zero-scale) or gain (full-scale) errors. tWCS CS tWS tWH tAS tAH R/W tRCS CS tRDH tRDS A0/A1 R/W tLS tLWD tAH tAS tLX ±0.003% of FSR Error Band LOADDACS A0/A1 tDH tDS tDZ Data In tS Data Valid Data Out tLH tCSD VOUT Data Read Timing Data Write Timing tSS ±0.003% of FSR Error Band tSH RESET SEL tRSH tRSS RST +FS VOUT,RESET SEL LOW –FS +FS MS VOUT,RESET SEL HIGH –FS DAC7644 Reset Timing FIGURE 14. Digital Input and Output Timing. SYMBOL DESCRIPTION MIN tRCS tRDS t RDH tDZ tCSD tWCS tWS tWH tAS tAH tLS tLH tLX tDS tDH tLWD tSS tSH t RSS tRSH tS CS LOW for Read R/W HIGH to CS LOW R/W HIGH after CS HIGH CS HIGH to Data Bus in High Impedance CS LOW to Data Bus Valid CS LOW for Write R/W LOW to CS LOW R/W LOW after CS HIGH Address Valid to CS LOW Address Valid after CS HIGH CS LOW to LOADDACS HIGH CS LOW after LOADDACS HIGH LOADDACS HIGH Data Valid to CS LOW Data Valid after CS HIGH LOADDACS LOW RSTSEL Valid Before RESET HIGH RSTSEL Valid After RESET HIGH RESET LOW Before RESET HIGH RESET LOW After RESET HIGH Settling Time 150 10 10 10 TABLE II. Timing Specifications (TA = –40°C to +85°C). ® DAC7644 20 TYP 100 MAX 100 150 40 0 10 0 10 30 100 100 0 10 100 0 200 10 10 10 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns µs DIGITALLY-PROGRAMMABLE CURRENT SOURCE Figure 15 shows a DAC7644 in a 4mA to 20mA current output configuration. The output current can be determined by Equation 3: (3) The DAC7644 offers a unique set of features that allows a wide range of flexibility in designing applications circuits such as programmable current sources. The DAC7644 offers both a differential reference input as well as an open-loop configuration around the output amplifier. The open-loop configuration around the output amplifier allows transistor to be placed within the loop to implement a digitallyprogrammable, uni-directional current source. The availability of a differential reference also allows programmability for both the full-scale and zero-scale currents. The output current is calculated as:   V H – VREF L   N Value   I OUT =   REF   •  R SENSE 65, 536      2.5V – 0.5V   N Value    0.5V  • I OUT =    +   125Ω   65, 536    125Ω  At full-scale, the output current is 16mA plus the 4mA for the zero current. At zero scale the output current is the offset current of 4mA (0.5V/125Ω). (2) + (VREF L / R SENSE ) IOUT VPROGRAMMED NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 VOUTB Sense 38 VOUTB 37 125Ω DAC7644 +V OPA2350 100Ω 20kΩ 2200pF 1000pF +0.5V 100Ω 1000pF 80kΩ 2200pF +V +2.5V IOUT VPROGRAMMED 125Ω GND FIGURE 15. 4-to-20mA Digitally Controlled Current Source (1/2 DAC7644). ® 21 DAC7644 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) DAC7644E ACTIVE SSOP DL 48 25 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 DAC7644E B Samples DAC7644E/1K ACTIVE SSOP DL 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 DAC7644E B Samples DAC7644EB ACTIVE SSOP DL 48 25 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 DAC7644E B Samples DAC7644EB/1K ACTIVE SSOP DL 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 DAC7644E B Samples DAC7644EB/1KG4 ACTIVE SSOP DL 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 DAC7644E B Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
DAC7644E/1KG4 价格&库存

很抱歉,暂时无法提供与“DAC7644E/1KG4”相匹配的价格&库存,您可以联系我们找货

免费人工找货