0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DAC8775IRWFR

DAC8775IRWFR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFQFN72

  • 描述:

    IC DAC 16BIT ANLG A/V-OUT 72QFN

  • 数据手册
  • 价格&库存
DAC8775IRWFR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents DAC8775 SLVSBY7 – FEBRUARY 2017 DAC8775 Quad-Channel, 16-Bit Programmable Current Output and Voltage Output Digital-to-Analog Converter with Adaptive Power Management 1 Features 3 Description • The DAC8775 is a quad-channel precision, fully integrated, 16-bit, digital-to-analog converter (DAC) with adaptive power management, and is designed to meet the requirements of industrial control applications. The adaptive power management circuit, when enabled, minimizes the power dissipation of the chip. When programmed as a current output, the supply voltage on the current output driver is regulated between 4.5 V and 32 V based on continuous feedback of voltage on the current output pin via an integrated buck/boost converter. When programmed as a voltage output, this circuit generates a programmable supply voltage for the voltage output stage (±15 V). DAC8775 also contains an LDO to generate the digital supply (5 V) from a single power supply pin. 1 • • • • • • • • • • • • Output Current: – 0 mA to 24 mA; 3.5 mA to 23.5 mA; 0 mA to 20 mA; 4 mA to 20 mA; ±24 mA Output Voltage (with/without 20% over-range): – 0 V to 5 V; 0 V to 10 V; ±5 V; ±10 V – 0 V to 6 V; 0 V to 12 V; ±6 V; ±12 V Adaptive Power Management Single Wide Power Supply Pin (12 V – 36 V ) ±0.1% FSR Total Unadjusted Error (TUE) DNL: ±1 LSB Max Internal 5-V Reference (10 ppm/°C max) Internal 5-V Digital Power Supply Output CRC/Frame Error Check, Watchdog Timer Thermal Alarm, Open/Short Circuit for System Reliability Safe Actions on Alarm Condition Auto Learn Load Detection Wide Temperature Range: –40°C to +125°C DAC8775 is also implemented with a Highway Addressable Remote Transducer (HART) Signal Interface to superimpose an external HART signal on the current output. The slew rate of the current output DAC is register programmable. The device can operate with a single external power supply of +12 V to +36 V using the integrated buck/boost converters or with external power supplies when the buck/boost converters are disabled. 2 Applications • • • • • • 4-mA to 20-mA Current Loops Analog Output Modules Programmable Logic Controllers (PLCs) Building Automation Sensor Transmitters Process Control Device Information(1) PART NUMBER PACKAGE DAC8775 VQFN (72) BODY SIZE (NOM) 10.00 mm x 10.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Block Diagram REFOUT DVDD_EN DVDD Internal Reference ALARM CHANNEL - A Amp SDIN RESET CLR SYNC SDO SPI Shift Register Input Control Logic SCLK VNEG_IN_X LP_X LN_X VPOS_IN_X Buck/Boost Converters PVSS_X AGND_X DVDD LDO LDAC REFIN AVDD PVDD_X User Calibration Register IRANGE X DAC IAmp IENABLE Alarm Watchdog Timer DAC Input Register Current Source HART_IN_x CCOMP_X VENABLE VAmp Slew Rate Control VOUT_X VSENSEN_x Feedback Power On Reset IOUT_X VSENSEP_X CHANNEL - B CHANNEL - C CHANNEL - D AGND1 AGND2 AGND3 Copyright © 2016, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 8 8.4 Device Functional Modes........................................ 43 8.5 Register Maps ........................................................ 47 1 1 1 2 3 3 6 9 Application and Implementation ........................ 60 9.1 Application Information............................................ 60 9.2 Typical Application ................................................. 63 10 Power Supply Recommendations ..................... 67 11 Layout................................................................... 69 11.1 Layout Guidelines ................................................. 69 11.2 Layout Example .................................................... 70 Absolute Maximum Ratings ...................................... 6 ESD Ratings.............................................................. 6 Recommended Operating Conditions....................... 6 Thermal Information .................................................. 7 Electrical Characteristics........................................... 7 Timing Requirements: Write and Readback Mode . 13 Typical Characteristics ............................................ 15 12 Device and Documentation Support ................. 72 12.1 12.2 12.3 12.4 12.5 12.6 Detailed Description ............................................ 34 8.1 Overview ................................................................. 34 8.2 Functional Block Diagram ....................................... 34 8.3 Feature Description................................................. 34 Documentation Support ....................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 72 72 72 72 72 72 13 Mechanical, Packaging, and Orderable Information ........................................................... 73 4 Revision History 2 DATE REVISION NOTES February 2017 * Initial release. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 5 Device Comparison Table PRODUCT RESOLUTION DIFFERENTIAL NONLINEARITY (LSB) DAC8775 16 ±1 6 Pin Configuration and Functions DCDC_AGND_CD VNEG_IN_D VNEG_IN_C PBKG RESET ALARM DVDD DVDD_EN HARTIN_C CCOMP_C HARTIN_D CCOMP_D VSENSEP_C VSENSEN_C VSENSEP_D VSENSEN_D DAC_AGND_CD VNEG_IN_D 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 RWF Package 72-Pin VQFN Top View PVDD_D 1 54 IOUT_D LP_D 2 53 VPOS_IN_D PVSS_D 3 52 VOUT_D LN_D 4 51 VNEG_IN_C PVDD_C 5 50 IOUT_C LP_C 6 49 VPOS_IN_C PVSS_C 7 48 VOUT_C LN_C 8 47 REFOUT DCDC_AGND_AB (1) 33 34 35 36 DAC_AGND_AB VNEG_IN_A IOUT_A VSENSEP_A VPOS_IN_A 37 VSENSEN_A 38 18 32 17 PBKG VSENSEN_B PVDD_A 31 VOUT_A VSENSEP_B 39 30 16 29 LP_A CCOMP_A VNEG_IN_B HARTIN_A 40 28 15 CCOMP_B PVSS_A 27 IOUT_B HARTIN_B VPOS_IN_B 41 26 42 14 25 13 LN_A CLR PVDD_B SYNC VOUT_B 24 43 SDO 12 23 LP_B LDAC AVDD 22 44 21 11 SDIN PVSS_B SCLK REFGND 20 REFIN 45 VNEG_IN_B 46 Pad 19 Thermal 10 VNEG_IN_A 9 LN_B Not to scale Thermal pad should be connected to ground. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 3 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Pin Functions PIN NAME DESCRIPTION NO. PVDD_D 1 Buck-Boost Converter power switch supply D LP_D 2 External Inductor terminal - positive D PVSS_D 3 Ground for Buck-Boost converter switches D LN_D 4 External Inductor terminal - negative D PVDD_C 5 Buck-Boost Converter power switch supply C LP_C 6 External Inductor terminal - positive C PVSS_C 7 Ground for Buck-Boost converter switches C LN_C 8 External Inductor terminal - negative C DCDC_AGND_AB 9 Analog GND Buck-Boost converter Channels A and B LN_B 10 External Inductor terminal - negative B PVSS_B 11 Ground for Buck-Boost converter switches B LP_B 12 External Inductor terminal - positive B PVDD_B 13 Buck-Boost Converter power switch supply B LN_A 14 External Inductor terminal - negative A PVSS_A 15 Ground for Buck-Boost converter switches A LP_A 16 External Inductor terminal - positive A PVDD_A 17 Buck-Boost Converter power switch supply A PBKG 18 Chip substrate, connect to 0 V VNEG_IN_A 19 Negative power supply for VOUT_A and IOUT_A VNEG_IN_B 20 Negative power supply for VOUT_B and IOUT_A SCLK 21 Serial clock input of serial peripheral interface (SPI™). Data can be transferred at rates up to 25 MHz. Schmitt-Trigger logic input. SDIN 22 Serial data input. Data are clocked into the 24-bit input shift register on the falling edge of the serial clock input. Schmitt-Trigger logic input. LDAC 23 Load DAC latch control input. A logic low on this pin loads the input shift register data into the DAC register and updates the DAC output. SDO 24 Serial data output. Data are valid on the falling edge of SCLK. SYNC 25 SPI bus chip select input (active low). Data bits are not clocked into the serial shift register unless SYNC is low. When SYNC is high, SDO is in high-impedance status. CLR 26 Level Triggered clear pin (Active High). Clears all DAC channel to zero code or mid code (see DAC clear section) HARTIN_B 27 Input pin for HART modulation. for IOUT_B CCOMP_B 28 External compensation capacitor connection pin for VOUT_B . Addition of the external capacitor improves the stability with high capacitive loads at the VOUT_B pin by reducing the bandwidth of the output amplifier at the expense of increased settling time. HARTIN_A 29 Input pin for HART modulation. for IOUT_A CCOMP_A 30 External compensation capacitor connection pin for VOUT_A . Addition of the external capacitor improves the stability with high capacitive loads at the VOUT_A pin by reducing the bandwidth of the output amplifier at the expense of increased settling time. VSENSEP_B 31 Sense output pin for the positive voltage output (channel B) load connection. VSENSEN_B 32 Sense output pin for the negative voltage output (channel B) load connection. VSENSEP_A 33 Sense output pin for the positive voltage output (channel A) load connection. VSENSEN_A 34 Sense output pin for the negative voltage output (channel A) load connection. DAC_AGND_AB 35 Analog GND DAC Channels A and B VNEG_IN_A 36 Negative power supply for VOUT_A and IOUT_A IOUT_A 37 Current Output Pin (Channel A) VPOS_IN_A 38 Positive power supply for VOUT_A and IOUT_A VOUT_A 39 Voltage Output Pin (Channel A) VNEG_IN_B 40 Negative power supply for VOUT_B and IOUT_B 4 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Pin Functions (continued) PIN NAME DESCRIPTION NO. IOUT_B 41 Current Output Pin (Channel B) VPOS_IN_B 42 Positive power supply for VOUT_B and IOUT_B VOUT_B 43 Voltage Output Pin (Channel B) AVDD 44 Power supply for all analog circuitry of the device except buck-boost converters and output amplifiers REFGND 45 Reference ground REFIN 46 Reference input REFOUT 47 Internal reference output. Connects to REFIN when using internal reference. VOUT_C 48 Voltage Output Pin (Channel C) VPOS_IN_C 49 Positive power supply for VOUT_C and IOUT_C IOUT_C 50 Current Output Pin (Channel C) VNEG_IN_C 51 Negative power supply for VOUT_C and IOUT_C VOUT_D 52 Voltage Output Pin (Channel D) VPOS_IN_D 53 Positive power supply for VOUT_D and IOUT_D IOUT_D 54 Current Output Pin (Channel D) VNEG_IN_D 55 Negative power supply for VOUT_D and IOUT_D DAC_AGND_CD 56 Analog GND DAC Channels C and D VSENSEN_D 57 Sense output pin for the negative voltage output (channel D) load connection. VSENSEP_D 58 Sense output pin for the positive voltage output (channel D) load connection. VSENSEN_C 59 Sense output pin for the negative voltage output (channel C) load connection. VSENSEP_C 60 Sense output pin for the positive voltage output (channel C) load connection. CCOMP_D 61 External compensation capacitor connection pin for VOUT_D . Addition of the external capacitor improves the stability with high capacitive loads at the VOUT_D pin by reducing the bandwidth of the output amplifier at the expense of increased settling time. HARTIN_D 62 Input pin for HART modulation. for IOUT_D CCOMP_C 63 External compensation capacitor connection pin for VOUT_C . Addition of the external capacitor improves the stability with high capacitive loads at the VOUT_C pin by reducing the bandwidth of the output amplifier at the expense of increased settling time. HARTIN_C 64 Input pin for HART modulation. for IOUT_C DVDD_EN 65 Internal power-supply enable pin. Connect this pin to PBKG to disable the internal DVDD, or leave this pin unconnected to enable the internal DVDD. When this pin is connected to PBKG, an external supply must be connected to the DVDD pin. DVDD 66 Digital Supply pin (Input/Output) Internal DVDD enabled when DVDD_EN is floating, External DVDD must be supplied when DVDD_EN is connected to PBKG ALARM 67 ALARM pin. Open drain output. External pull-up resistor required (10 kΩ). The pin goes low (active) when the ALARM condition is detected on any of the outputs (OUT_A through OUT_D) (open circuit, over temperature, watchdog timeout, and others). RESET 68 Reset input (active low). Logic low on this pin causes the device to perform a reset. A hardware reset must be issued using this pin after power up. PBKG 69 Chip substrate, connect to 0 V VNEG_IN_C 70 Negative power supply for VOUT_C VNEG_IN_D 71 Negative power supply for VOUT_D DCDC_AGND_CD 72 Analog GND Buck-Boost converter Channels C and D Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 5 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Input voltage Output voltage Input current MIN MAX PVDD_x/AVDD to PBKG -0.3 40 PVSS_x/REFGND/DCDC_AGND_x/DAC_AGND_x to PBKG -0.3 0.3 VPOS_IN_x to VNEG_IN_x -0.3 40 VPOS_IN_x to PBKG -0.3 33 VNEG_IN_x to PBKG -20 0.3 VSENSEN_x to PBKG VNEG_IN_x VPOS_IN_x VSENSEP_x to PBKG V VNEG_IN_x VPOS_IN_x DVDD to PBKG -0.3 6 REFOUT/REFIN to PBKG -0.3 6 Digital input voltage to PBKG -0.3 DVDD+0.3 VOUT_x to PBKG VNEG_IN_x VPOS_IN_x IOUT_x to PBKG VNEG_IN_x VPOS_IN_x SDO, ALARM to PBKG -0.3 DVDD+0.3 Current into any digital input pin -10 Power dissipation Operating junction temperature, TJ V 10 mA (TJmax – TA)/θJA W -40 150 Junction temperature range, TJmax 150 Storage temperature, Tstg (1) UNIT -65 °C 150 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22C101, all pins (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT POWER SUPPLY PVDD_x/AVDD_x to PBKG/PVSS_x (1) VPOS_IN_x to PBKG (1) VNEG_IN_x to PBKG (1) Positive supply voltage to ground range 12 36 V Positive supply voltage to ground range 12 33 V Negative supply voltage to substrate for current output mode -18 0 V Negative supply voltage to substrate for voltage output mode -18 -5 V 12 36 V -7 7 V VPOS_IN_x to VNEG_IN_x (1) VSENSEN_x to PBKG (1) 6 The minimum headroom spec for voltage output stage must be met The minimum headroom spec for voltage output stage and the compliance voltage for current output stage should be met. When BuckBoost converter is enabled VPOS_IN_x/VNEG_IN_x are generated internally to meet headroom and compliance specs. When BuckBoost converter is disabled VPOS_IN_x, AVDD, and PVDD must be tied together. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted) MIN DVDD to PBKG Digital supply voltage to substrate NOM MAX 2.7 UNIT 5.5 V DIGITAL INPUTS VIH Input high voltage VIL Input low voltage 2 V 0.6 V 4.95 5.05 V -40 125 °C REFERENCE INPUT REFIN to PBKG Reference input to substrate TEMPERATURE RANGE TA Operating temperature 7.4 Thermal Information DAC8775 THERMAL METRIC (1) RWF (VQFN) UNIT 72 PINS RθJA Junction-to-ambient thermal resistance 21.7 °C/W RθJC(top) Junction-to-case (top) thermal resistance 3.3 °C/W RθJB Junction-to-board thermal resistance 1.9 °C/W ΨJT Junction-to-top characterization parameter 0.1 °C/W ΨJB Junction-to-board characterization parameter 1.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 0.2 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Electrical Characteristics AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER TEST CONDITIONS MIN TYP MAX UNIT CURRENT OUTPUT 0 IOUT Output Current Ranges 24 mA 0 20 mA 3.5 23.5 mA -24 24 mA 4 20 mA Accuracy Resolution INL Relative Accuracy (1) DNL Differential Nonlinearity (1) 16 -12 12 LSB Bipolar range only -16 16 LSB Ensured monotonic -1 1 -0.14 0.14 %FSR -40℃ to +125℃, 4 to 20 mA -0.4 0.4 %FSR TA = +25℃, 4 to 20 mA -0.2 0.2 %FSR -0.12 0.12 %FSR -0.1 0.1 %FSR -40℃ to +125℃ TUE Total Unadjusted Error (1) TA = +25°C OE Offset Error (1) OE-TC Offset Error Temperature Coefficient (1) Bits All ranges except bipolar range -40℃ to +125℃ TA = +25°C -40℃ to +125℃ -0.05 0.05 4 LSB %FSR ppm FSR/ºC For current output all ranges except ±24 mA, low code of 256d and a high code of 65535d are used, for ±24 mA range low code of 0d and a high code of 65535d. For voltage output, low code of 256d and a high code of 65535d are used Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 7 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Electrical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER ZCE Zero Code Error ZCE-TC Zero Code Error Temperature Coefficient TEST CONDITIONS Gain Error (2) Gain Error Temperature Coefficient Positive Full Scale Error NFSE Negative Full Scale Error PFSE-TC Positive Full Scale Error Temperature Coefficient NFSE-TC Negative Full Scale Error Temperature Coefficient BPZE Bipolar Zero Error BPZE-TC Bipolar Zero Error Temperature Coefficient uA -18 18 uA TA = 25℃, 0x0000h into DAC 1.2 m%FSR TA = 25℃, 0x0000h into DAC, 4 to 20 mA 1.8 m%FSR 4 ppm/ºC 0x0000h into DAC, -40℃ to +125℃ -40℃ to +125℃, 4 to 20 mA TA = +25℃, 4 to 20 mA -0.125 0.125 %FSR -0.25 0.25 %FSR -0.2 0.2 %FSR -0.12 0.12 %FSR -40℃ to +125℃ 0xFFFFh into DAC, -40℃ to +125℃, 4 to 20 mA 3 ppm FSR/ºC -0.125 0.125 %FSR -0.25 0.25 %FSR 0xFFFFh into DAC, TA = 25℃ 0.016 %FSR 0xFFFFh into DAC, TA = 25℃, 4 to 20 mA 0.024 %FSR 0x0000h into DAC, Bipolar range only, -40℃ to +125℃ -0.125 0x0000h into DAC, Bipolar range only, TA = 25℃ 0.125 0.02 Bipolar range only %FSR ppm FSR/ºC 5 ppm FSR/ºC Bipolar range only, 0x8000h into DAC 40℃ to +125℃ -0.05 0.05 Bipolar range only, 0x8000h into DAC, TA = +25°C -0.02 0.02 %FSR 0x8000h into DAC,-40℃ to +125℃ Compliance Voltage Output = ±24 mA %FSR 5 4 Output = 24 mA VCL UNIT -40℃ to +125℃, 0x0000h into DAC, 4 to 20 mA 0xFFFFh into DAC, -40℃ to +125℃ PFSE MAX 15 TA = +25°C GE-TC TYP -15 -40℃ to +125℃ GE MIN -40℃ to +125℃, 0x0000h into DAC |VNEG_ IN_x|+3 All except ±24 mA range ppm/ºC VPOS_I N_x-3 V VPOS_I N_x-3 V 1.2 RL Resistive Load DC-PSRR DC Power Supply Rejection Ratio Code = 0x8000, 20 mA range 0.1 µA/V ZO Output Impedance Code = 0x8000 10 MΩ IOLEAK Output Current Leakage Iout is disabled or in power-down 1 nA ±24 mA range 0.625 KΩ HART INTERFACE VHART-IN HART Input Corresponding Output (2) 8 400 HART In = 500 mVpp 1.2 KHz 500 1 600 mVpp mApp No load, DVDD supply ramps up before VPOS_IN_x,and VNEG_IN_x, ramp rate of VPOS_IN_x,and VNEG_IN_x limited to 18 V/msec Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Electrical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VOLTAGE OUTPUT Voltage Output Ranges (normal mode) VOUT Voltage Output Ranges (Overrange mode) 0 5 V 0 10 V -5 5 V -10 10 V 0 6 V 0 12 V -6 6 V -12 12 V 12 LSB Accuracy Resolution 16 INL Relative Accuracy, INL (1) DNL Differential Nonlinearity, DNL (1) TUE ZCE ZCE-TC BPZE Total Unadjusted Error, TUE (1) Zero Code Error (3) Zero Code Error Temperature Coefficient Bipolar Zero Error BPZE-TC Bipolar Zero Error Temperature Coefficient GE Gain Error (1) GE-TC Gain Error Temperature Coefficient PFSE NFSE PFSE-TC NFSE-TC Positive Full Scale Error Negative Full Scale Error (3) Positive Full Scale Error Temperature Coefficient Negative Full Scale Error Temperature Coefficient Headroom (3) Bits -12 Ensured monotonic -40℃ to +125℃, VOUT unloaded TA = +25°C, VOUT unloaded Unipolar ranges only, VOUT unloaded, -40℃ to +125℃ -1 -0.1 1 ±0.05 LSB 0.1 %FSR -0.075 0.075 %FSR -2.5 2.5 Unipolar ranges only, VOUT unloaded, TA = 25℃ 0.14 Unipolar ranges only, -40℃ to +125℃ 2 mV mV ppm FSR/ºC Bipolar range only, 0x8000h into DAC 40℃ to +125℃, VOUT unloaded -0.03 0.03 %FSR Bipolar range only, 0x8000h into DAC, TA = +25°C, VOUT unloaded -0.025 0.025 %FSR Bipolar range only, 0x8000h into DAC, -40℃ to +125℃, VOUT unloaded -40℃ to +125℃, VOUT unloaded TA = +25°C, VOUT unloaded 1 -0.1 0.1 %FSR -0.07 0.07 %FSR -40℃ to +125℃ 0xFFFFh into DAC, -40℃ to +125℃, VOUT unloaded 3 -0.1 0xFFFFh into DAC, TA = 25℃, VOUT unloaded Bipolar ranges only, 0x0000h into DAC, -40℃ to +125℃, VOUT unloaded ppm FSR/ºC ppm FSR/ºC 0.1 0.03 -0.06 %FSR %FSR 0.06 %FSR Bipolar ranges only, 0x0000h into DAC, TA = 25℃, VOUT unloaded 0.002 VOUT unloaded, -40℃ to +125℃ 2 ppm FSR/ºC 2 ppm FSR/ºC VOUT unloaded, -40℃ to +125℃ %FSR Output unloaded, VPOS_IN_x with respect to VOUT_x, 0xFFFFh into DAC, No load 0.5 V Output unloaded, VPOS_IN_x with respect to VOUT_x, 0xFFFFh into DAC, 1 kΩ load 3 V DAC code at 0d, this error includes offset error of the DAC since the DAC is linear between 0d to 65535d Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 9 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Electrical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER Footroom TEST CONDITIONS RL Capacitive Load Stability MAX UNIT V Unipolar ranges only, VNEG_IN_x with respect to VOUT_x, 0x0000h into DAC 5 V 17 23 mA SCLIM[1:0] = "01" (see register map) 8 11 mA SCLIM[1:0] = "10" (see register map) 22 28 mA SCLIM[1:0] = "11" (see register map) 26 34 mA Load CL TYP 3 SCLIM[1:0] = "00" (see register map) Short-Circuit Current MIN Bipolar, ranges only, VNEG_IN_x with respect to VOUT_x, 0x0000h into DAC 1 kΩ RL = Open 20 nF RL = 1 kΩ 20 nF 1 µF RL = 1 kΩ with External compensation capacitor (150 pF) connected Voltage output enabled, VOUT = Mid Scale, UP10V range ZO DC Output Impedance ILEAK Output Leakage (VOUT_x Pin) DC-PSRR DC Power Supply Rejection Ratio No output load VSENSEP Impedance VSENSEN Impedance 0.01 Ω Voltage output disabled (POC = '1') 50 MΩ Voltage output disabled (POC = '0') 30 kΩ Voltage output disabled (POC = '1') 1 nA 10 µV/V VOUT enabled Mid-Scale UP10 240 kΩ VOUT enabled Mid-Scale UP10 120 kΩ VOUT = Full scale, BP12V range, per channel 0.35 mA 100 pF EXTERNAL REFERENCE INPUT IREF External Reference Current Reference Input Capacitance INTERNAL REFERENCE OUTPUT VREF Reference Output VREF-TC Reference TC DAC Voltage Output Total Unadjusted Error (1) TUE TA = 25°C 4.99 5.01 TA = -40℃ to +125℃ -13 13 ppm/°C V TA = -25℃ to +125℃ -10 10 ppm/°C -40°C to +125°C, VOUT_x unloaded, Internal reference enabled 0.2 %FSR -40°C to +125°C, Internal reference enabled 0.2 %FSR -40°C to +125°C, Internal reference enabled, 4 mA to 20 mA range 0.5 %FSR Output Noise (0.1 Hz to 10 Hz) TA = 25°C 13 µV p-p Noise Spectral Density At 10 kHz, At 25°C DAC Current Output Total Unadjusted Error (1) CL Capacitive Load IL Load Current 200 nV/sqrtHz 600 nF ±5 mA 20 mA Short Circuit Current Ref-Out shorted to PBKG Load Regulation Sourcing and Sinking, TA = +25°C 5 µV/mA Line Regulation TA = +25°C 2 uV/V BUCK BOOST CONVERTER RON Switch On Resistanvce TA = +25°C 3 Ω ILEAK Switch Leakage Current TA = +25°C 20 nA L Inductor Between LP_x and LN_x 100 µH 10 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Electrical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER TEST CONDITIONS MIN TYP TA = +25°C, PVDD = AVDD = 36 V, Buck-Boost Converter enabled ILMAX Peak Inductor Current VO Output Voltage VO Output Voltage CL Load Capacitor VPOS_IN_x and VNEG_IN_x Start Up Time After enabling VPOS_IN_x and VNEG_IN_x with 10 µF load capacitor on these pins MAX 0.5 UNIT A VPOS_IN_x minimum 4 V VPOS_IN_x maximum 32 V VNEG_IN_x minimum -18 V VNEG_IN_x maximum -5 V 10 µF 3 ms 5 V DVDD LDO VO Output Voltage ILOAD Load Current 10 mA CL Load Capacitor 0.2 nF THERMAL ALARM Trip Point 150 °C Hysteresis 15 °C 0.4 V DIGITAL INPUTS Hysteresis Voltage Input Current Input Current (DVDD_EN) Pin Capacitance -5 5 µA -10 10 µA Per pin 10 pF DIGITAL OUTPUTS SDO VOL Output Low Voltage VOH Output High Voltage ILEAK High Impedance Leakage Sinking 200 µA Sourcing 200 µA 0.4 DVDD0.5 V -5 High Impedance Output Capacitance V 5 10 µA pF ALARM VOL Output Low Voltage 0.4 V ILEAK High Impedance Leakage At 2.5 mA 50 µA High Impedance Output Capacitance 10 pF 5 mA POWER REQUIREMENTS IAVDD+IP VDD Current Flowing into AVDD and PVDD All Buck-Boost converter positive output enabled, IOUT_x mode operation, All IOUT channels enabled, 0 mA, PVDD = AVDD = 12 V, Internal reference, VNEG_IN_x = 0 V All IOUT Active, 0 mA, 0 to 24 mA range, VNEG_IN_x = 0 V IPVDD_x Current Flowing into PVDD IDVDD Current Flowing into DVDD IVPOS_IN _x Buck-Boost converter enabled, Peak current 0.1 All digital pins at DVDD, DVDD = 5.5 V 1.8 VOUT active, No load, 0 to 10 V range, Mid scale code 5 0.5 Buck-Boost converter disabled IOUT active, 0 mA, 0 to 24 mA range Current Flowing into VPOS_IN_x 3.5 mA A mA mA 1.2 mA 3 mA Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 11 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Electrical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V. VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40℃ to +125℃, unless otherwise noted. REFIN= +5 V external;, Buck-Boost Converter disabled unless otherwise stated PARAMETER TEST CONDITIONS IVNEG_IN Current Flowing into VNEG_IN_x _x MIN TYP IOUT active, 0 mA, ±24 mA range VOUT active, No load, 0 to 10 V range, Mid scale code MAX UNIT 1.2 mA 3 mA 1.1 W PDISS Power Dissipation (PVDD+AVDD) All Buck-Boost converter positive output enabled, IOUT_x mode operation, All IOUT channels enabled, Rload = 1 Ω, 24 mA, PVDD = AVDD = 12 V, Internal reference, VNEG_IN_x = 0V IVSENSE P Current Flowing into VSENSEP VOUT disabled 40 nA IVSENSE N Current Flowing into VSENSEN VOUT disabled 20 nA 0.86 DYNAMIC PERFORMANCE Voltage Output Tsett Output Voltage Settling Time Output Voltage Ripple SR Slew Rate Power-On Glitch Magnitude 0 to10 V, to ±0.03% FSR RL = 1K||CL = 200 pF 15 µs 0 to 5 V, to ±0.03% FSR RL = 1K||CL = 200 pF 10 µs -5 to 5 V, to ±0.03% FSR RL = 1K||CL = 200 pF 15 µs -10 to 10 V, to ±0.03% FSR RL = 1K||CL = 200 pF 30 µs Buck-Boost converter enabled, 50 KHz, 20dB/decade filter on VPOS_IN_x 2 mVpp RL = 1K||CL = 200 pF 1 V/µs (2) 0.1 Power-off Glitch Magnitude (4) Channel to Channel DC Crosstalk Full scale swing on adjacent channel Code-to-Code Glitch Digital Feedthrough AC-PSRR V 0.8 V 2 m%FSR 0.15 µV-sec 1 nV-sec LSB p-p Output Noise (0.1 Hz to 10 Hz bandwidth) UP10V, Mid scale 0.1 Output Noise (100 kHz bandwidth) UP10V, Mid scale 200 µVrms Output Noise Spectral Density BP20V Measured at 10 kHz, Mid scale 200 nV/sqrtHz AC Power Supply Rejection Ratio 200 mV 50/60Hz Sine wave superimposed on power supply voltage. (AC analysis) -75 dB 24 mA Step, to 0.1% FSR, no L 10 µs 24 mA Step, to 0.1% FSR , L = 1 mH, CL = 22 nF 50 µs 8 µApp Current Output Tsett Output Current Settling Time Output Current Ripple Inductive Load (5) L AC-PSRR (4) (5) 12 Buck-Boost converter enabled, 50 KHz, 20dB/decade filter on VPOS_IN_x AC Power Supply Rejection Ratio 50 200 mV 50/60Hz Sine wave superimposed on power supply voltage. -75 mH dB Vout disabled, no load, ramp rate of VPOS_IN_x,and VNEG_IN_x limited to 18 V/msec 680 nF is required at IOUT pin for 50 mH pure inductor load. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 7.6 Timing Requirements: Write and Readback Mode At TA = –40°C to +125°C and DVDD = +2.7 V to +5.5 V, unless otherwise noted. PARAMETER TEST CONDITIONS MIN MAX UNIT 25 MHz fSCLK Max clock frequency t1 SCLK cycle time 40 ns t2 SCLK high time 18 ns t3 SCLK low time 18 ns t4 SYNC falling edge to SCLK falling edge setup time 15 ns t5 24th/32nd SCLK falling edge to SYNC rising edge 13 ns t6 SYNC high time 40 ns t7 Data setup time 8 ns t8 Data hold time 5 ns t9 SYNC rising edge to LDAC falling edge 33 ns t10 LDAC pulse width low 10 t11 LDAC falling edge to DAC output response time ns 50 See Electrical Characteristics ns t12 DAC output settling time t13 CLR high time t14 CLR activation time 50 ns t15 SCLK rising edge to SDO valid 14 ns t16 SYNC rising edge to DAC output response time 50 ns t17 LDAC falling edge to SYNC rising edge t18 t19 10 µs ns 100 ns RESET pulse width 10 ns SYNC rising edge to CLR falling/rising edge 60 ns t1 SCLK 1 t6 2 24 t3 t4 t5 t2 SYNC t7 SDIN t8 t19 MSB LSB LDAC = 0 t12 t16 VOUT_x t10 t9 LDAC t17 t11 VOUT_x t13 t19 t19 CLR t14 VOUT_x t18 RESET VOUT_x Figure 1. Write Mode Timing Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 13 DAC8775 SLVSBY7 – FEBRUARY 2017 SCLK 1 www.ti.com 2 24 1 2 24 SYNC Read Command SDIN MSB NOP Command LSB MSB LSB Readback Data SDO MSB GARBAGE LSB t15 Figure 2. Readback Mode Timing 14 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 7.7 Typical Characteristics AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated. 1.0 8 3.5 mA to 23.5 mA 6 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA 0.6 ±24 mA DNL Error (LSB) INL Error (LSB) 4 0.8 2 0 -2 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA ±24 mA 0.4 0.2 0.0 -0.2 -0.4 -4 -0.6 -6 -0.8 -8 -1.0 0 8192 16384 24576 32768 40960 49152 57344 0 65536 DAC Code Figure 3. IOUT Linearity Error vs Digital Input Code 16384 24576 8.0 15 6.0 INL Error (LSB) -5 49152 57344 65536 C001 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA ±24 mA 4.0 0 40960 Figure 4. IOUT Differential Linearity Error vs Digital Input Code 20 5 32768 DAC Code 10 TUE (m%FSR) 8192 C002 2.0 0.0 -2.0 -10 3.5 mA to 23.5 mA 4 mA to 20 mA -4.0 -15 0 mA to 24 mA 0 mA to 20 mA -6.0 ±24 mA -20 -8.0 0 8192 16384 24576 32768 40960 49152 57344 DAC Code 65536 ±40 ±10 5 0.8 40.0 0.6 30.0 0.4 20.0 TUE (m%FSR ) 50.0 0.0 -0.2 -0.4 35 50 65 80 95 110 125 C007 Figure 6. IOUT Linearity Error vs Temperature 1.0 0.2 20 Temperature (oC) Figure 5. IOUT Total Unadjusted Error vs Digital Input Code DNL Error (LSB) ±25 C003 10.0 0.0 -10.0 -20.0 -0.6 -0.8 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA -30.0 -40.0 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA ±24 mA ±24 mA -1.0 3.5 mA to 23.5 mA -50.0 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) 80 95 110 125 ±40 Figure 7. IOUT Differential Linearity Error vs Temperature ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) C007 125 C007 Figure 8. IOUT Total Unadjusted Error vs Temperature Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 15 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) 50 50 40 40 30 30 Gain Error (m%FSR) Offset Error (m%FSR) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN= +5 V external, Buck-Boost Converter disabled, unless otherwise stated. 20 10 0 ±10 ±20 ±30 ±40 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA 20 10 0 ±10 ±20 ±30 ±40 ±24 mA ±50 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 ±40 ±25 ±10 5 50 4.0 40 3.0 30 2.0 1.0 0.0 -1.0 -2.0 0 mA to 24 mA -4.0 0 mA to 20 mA 35 50 65 80 95 110 125 C007 Figure 10. IOUT Gain Error vs Temperature 5.0 -3.0 20 Temperature (oC) Full Scale Error (m%FSR) Zero Code Error (µA) 0 mA to 20 mA ±24 mA C007 Figure 9. IOUT Offset Error vs Temperature 20 10 0 ±10 ±20 ±30 ±40 -5.0 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA ±24 mA ±50 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 ±40 ±10 5 40 Negative Full Scale Error (m%FSR) 24 12 6 0 ±6 ±12 ±24 mA ±24 ±30 35 50 65 80 95 110 125 C007 Figure 12. IOUT Full Scale Error vs Temperature 50 18 20 Temperature (oC) 30 ±18 ±25 C007 Figure 11. IOUT Zero Code Error vs Temperature Bipolar Zero Error (m%FSR) 4 mA to 20 mA 0 mA to 24 mA ±50 ±40 30 20 10 0 ±10 ±20 ±30 ±24 mA ±40 ±50 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) 80 95 110 125 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) C007 Figure 13. IOUT Bipolar Zero Error vs Temperature 16 3.5 mA to 23.5 mA 80 95 110 125 C007 Figure 14. IOUT Negative Full Scale Error vs Temperature Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x = VPOS_IN_x , VNEG_IN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT R L = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated. 1.0 8.0 0.8 6.0 0.6 4.0 DNL Error (LSB) INL Error (LSB) 0.4 2.0 0.0 -2.0 -4.0 -6.0 0.2 0.0 -0.2 -0.4 3.5 mA to 23.5 mA 4 mA to 20 mA -0.6 0 mA to 24 mA 0 mA to 20 mA -0.8 -8.0 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA -1.0 12 14 16 18 20 22 24 26 28 30 VPOS (V) 12 32 14 16 18 20 22 24 26 28 30 VPOS (V) C015 Figure 15. IOUT Linearity Error vs Power Supplies 32 C015 Figure 16. IOUT Differential Linearity Error vs Power Supplies 1.0 8.0 0.8 6.0 0.6 4.0 DNL Error (LSB) INL Error (LSB) 0.4 2.0 0.0 -2.0 -4.0 ±24 mA 0.0 -0.2 -0.4 -0.6 -6.0 ±24 mA -0.8 -8.0 -1.0 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 VPOS (V) 12 18 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 VPOS (V) C015 |VPOS_IN_x| = |VNEG_IN_x| 18 C015 |VPOS_IN_x| = |VNEG_IN_x| Figure 17. IOUT Linearity Error vs Power Supplies Figure 18. IOUT Differential Linearity Error vs Power Supplies 50.0 50.0 40.0 40.0 30.0 30.0 20.0 20.0 TUE (m%FSR) TUE (m%FSR) 0.2 10.0 0.0 -10.0 -20.0 10.0 0.0 -10.0 -20.0 -30.0 3.5 mA to 23.5 mA 4 mA to 20 mA -30.0 -40.0 0 mA to 24 mA 0 mA to 20 mA -40.0 -50.0 ±24 mA -50.0 12 14 16 18 20 22 24 VPOS (V) 26 28 30 32 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 VPOS (V) C015 18 C015 |VPOS_IN_x| = |VNEG_IN_x| Figure 19. IOUT Total Unadjusted Error vs Power Supplies Figure 20. IOUT Total Unadjusted Error vs Power Supplies Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 17 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated. 30 2.5 2.0 1.5 VPOS/ VNEG IDD (mA) VPOS/ VNEG IDD (mA) 20 10 0 ±10 IDD-VPOS ±20 1.0 0.5 0.0 -0.5 -1.0 IDD-VPOS -1.5 IDD-VNEG IDD-VNEG -2.0 -2.5 ±30 0 8192 16384 24576 32768 40960 49152 57344 DAC Code 65536 ±40 ±25 ±10 5 20 ±24 mA Range 35 50 65 Temperature (oC) C001 80 95 110 125 C001 ±24 mA Range, Mid Scale Code Figure 21. IOUT Power Supply Current vs Digital Input Code Figure 22. IOUT Power Supply Current vs Temperature 2.5 2.0 VPOS/ VNEG IDD (mA) 1.5 1.0 0.5 0.0 -0.5 -1.0 IDD-VPOS -1.5 IDD-VNEG -2.0 -2.5 12 13 14 15 16 17 VPOS (V) 18 C001 |VPOS_IN_x| = |VNEG_IN_x|, ±24 mA Range, Mid Scale Code Figure 23. IOUT Power Supply Current vs Power Supplies Voltages 18 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated. 0 mA to 24 mA (5 mA/div) SYNC (5 V/div) small signal settling (0.1 %FSR/div) -24 mA to +24 mA (10 mA/div) SYNC (5 V/div) Time (2µs/ div) Time (2 µs/div) C001 C001 0-24 mA Range AVDD/PVDD_x/VPOS_IN_x = +18 V, VNEG_IN_x = –18 V, IOUT RL = 625 Ω Figure 24. IOUT Full-Scale Settling Time, Rising Edge Figure 25. IOUT Full-Scale Settling Time, Rising Edge +24 mA to -24 mA (10 mA/div) SYNC (5 V/div) 24 mA to 0 mA (5 mA/div) SYNC (5 V/div) small signal settling (0.1 %FSR/div) Time (2 µs/div) Time (2 µs/div) C001 0-24 mA Range C001 AVDD/PVDD_x/VPOS_IN_x = +18 V, VNEG_IN_x = –18 V, IOUT RL = 625 Ω Figure 26. IOUT Full-Scale Settling Time, Falling Edge Figure 27. IOUT Full-Scale Settling Time, Falling Edge IOUT (200 µA/div) IOUT (400 µA/div) SYNC (5 V/div) SYNC (5 V/div) Time (800 ns/div) Time (800 ns/div) C005 C005 0-24 mA Range, 8000h - 7FFFh 0-24 mA Range, 7FFFh - 8000h Figure 28. IOUT Glitch Impulse, Rising Edge, 1LSB Step Figure 29. IOUT Glitch Impulse, Falling Edge, 1LSB Step Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 19 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated. IOUT (8 µA/div) SYNC (5 V/div) AVDD (5 V/div) IOUT (300 nA/div) Time (2 ms/div) Time (800 ns/div) C005 C004 0-24 mA Range Figure 30. IOUT Power-On Glitch Figure 31. IOUT Enable Glitch 2500 IOUT (20 nA/div) Noise PSD (nV/ sqrt-Hz) 2000 IOUT = 24 mA IOUT = 12 mA 1500 IOUT = 0 mA 1000 500 0 Time (1 s/div) 10 100 1000 10000 100000 1000000 Frequency (Hz) C001 C001 0-24 mA Range 0-24mA Range, Mid Scale Code Figure 33. IOUT Noise Density vs Frequency Figure 32. IOUT Noise, 0.1 Hz to 10 Hz IOUT (3 µA/div) SCLK (5 V/div) Time (4 µs/div) C004 0-24 mA Range, Mid Scale Code, SCLK = 1 MHz Figure 34. Clock Feedthrough IOUT, 1MHz 20 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated. 1.0 8 6 4 mA to 20 mA 0.8 0 mA to 24 mA 0 mA to 20 mA 0.6 ±24 mA DNL Error (LSB) INL Error (LSB) 4 3.5 mA to 23.5 mA 2 0 -2 0.4 0.2 0.0 -0.2 -0.4 -4 -0.6 -6 -0.8 -8 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA ±24 mA -1.0 0 8192 16384 24576 32768 40960 49152 57344 DAC Code 0 65536 8192 16384 24576 32768 40960 49152 57344 65536 DAC Code C002 Figure 35. IOUT Linearity Error vs Digital Input Code C001 Figure 36. IOUT Differential Linearity Error vs Digital Input Code 20 15 3.5 mA to 23.5 mA 4 mA to 20 mA 0 mA to 24 mA 0 mA to 20 mA 10 TUE (m%FSR) ±24 mA 5 0 -5 -10 -15 -20 0 8192 16384 24576 32768 40960 49152 DAC Code 57344 65536 C003 Figure 37. IOUT Total Unadjusted Error vs Digital Input Code Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 21 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250 Ω, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated. -24 mA to +24 mA (8 mA/div) 0 mA to 24 mA (8 mA/div) VNEG (5 V/div) VPOS (2 V/div) VPOS (5 V/div) Time (200 µs/div) Time (1 ms/div) C001 0-24 mA Range C001 IOUT RL = 625 Ω Figure 38. IOUT Full-Scale Settling Time, Rising Edge Figure 39. IOUT Full-Scale Settling Time, Rising Edge +24 mA to -24 mA (8 mA/div) VNEG (5 V/div) VPOS (5 V/div) 24 mA to 0 mA (8 mA/div) VPOS (2 V/div) Time (2 µs/div) Time (1 ms/div) C001 0-24 mA Range C001 IOUT RL = 625 Ω Figure 40. IOUT Full-Scale Settling Time, Falling Edge Figure 41. IOUT Full-Scale Settling Time, Falling Edge 2500 VPOS (20 mV/div) IOUT (4 µA/div) Noise PSD (nV/ sqrt-Hz) 2000 IOUT = 24 mA IOUT = 12 mA 1500 IOUT = 0 mA 1000 500 0 10 100 1000 10000 100000 Time (1 µs/div) 1000000 Frequency (Hz) C001 C001 0-24 mA Range 0-24 mA Range, Mid Scale Code Figure 42. IOUT Noise Density vs Frequency 22 Submit Documentation Feedback Figure 43. IOUT Ripple Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA = 25℃, REFIN = +5 V external;, Buck-Boost Converter disabled unless otherwise stated. 1.0 8 0.8 6 0.6 DNL Error (LSB) INL Error (LSB) 4 2 0 -2 -4 -6 0.2 0.0 -0.2 -0.4 ±10 V ±5 V -0.6 ±10 V ±5 V 0 V to 10 V 0 V to 5 V -0.8 0 V to 10 V 0 V to 5 V -1.0 -8 0 8192 16384 24576 32768 40960 49152 57344 0 65536 DAC Code 6.0 10 4.0 INL Error (LSB) 15 5 0 -5 -10 32768 40960 49152 57344 65536 C001 2.0 0.0 -2.0 -4.0 ±10 V ±5 V -6.0 0 V to 10 V 0 V to 5 V ±5 V 0 V to 10 V 0 V to 5 V -8.0 -20 0 8192 16384 24576 32768 40960 49152 57344 ±40 65536 ±25 ±10 5 20 35 50 65 80 95 110 125 Temperature (oC) DAC Code C007 C003 Figure 47. VOUT Linearity Error vs Temperature Figure 46. VOUT Total Unadjusted Error vs Digital Input Code 1.0 50.0 0.8 40.0 0.6 30.0 0.4 20.0 TUE (m%FSR ) DNL Error (LSB) 24576 Figure 45. VOUT Differential Linearity Error vs Digital Input Code 8.0 -15 16384 DAC Code 20 ±10 V 8192 C002 Figure 44. VOUT Linearity Error vs Digital Input Code TUE (m%FSR) 0.4 0.2 0.0 -0.2 -0.4 ±10 V ±5 V 0 V to 10 V 0 V to 5 V 10.0 0.0 -10.0 -20.0 -0.6 ±10 V ±5 V -30.0 -0.8 0 V to 10 V 0 V to 5 V -40.0 -1.0 -50.0 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) 80 95 110 125 ±40 ±10 5 20 35 50 65 80 95 110 Temperature (oC) C007 Figure 48. VOUT Differential Linearity Error vs Temperature ±25 125 C007 Figure 49. VOUT Total Unadjusted Error vs Temperature Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 23 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA = 25℃, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated. 50 2.0 40 1.6 ±5 V 0 V to 10 V 0 V to 5 V 1.2 Zero Code Error (mV) Gain Error (m%FSR) 30 ±10 V 20 10 0 ±10 ±20 0.0 -0.4 -0.8 -1.2 0 V to 10 V ±40 -1.6 0 V to 5 V -2.0 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) C007 Figure 50. VOUT Gain Error vs Temperature 125 C007 Figure 51. VOUT Zero Code Error vs Temperature 50 30 40 ±10 V ±5 V 24 30 0 V to 10 V 0 V to 5 V 18 Bipolar Zero Error (m%FSR) Full Scale Error (m%FSR) 0.4 ±30 ±50 20 10 0 ±10 ±20 ±30 ±40 ±50 12 6 0 ±6 ±12 ±18 ±10 V ±24 ±5 V ±30 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 ±40 ±25 ±10 5 20 40 20 30 15 20 10 10 5 VOUT (V) 25 ±10 50 65 80 95 110 125 C007 Figure 53. VOUT Bipolar Zero Error vs Temperature 50 0 35 Temperature (oC) C007 Figure 52. VOUT Full Scale Error vs Temperature Negative Full Scale Error (m%FSR) 0.8 0 ±5 ±10 ±20 ±15 ±30 ±10 V ±5 V ±40 ±20 ±50 ±25 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) 80 95 110 125 SCLM = b'00 SCLM = b'11 ±40 ±32 ±24 ±16 SCLM = b'10 SCLM = b'01 ±8 0 8 16 VOUT Load Current (mA) C007 24 32 40 C001 ±10-V Range, Full Scale Code for VOUT sourcing & Zero Scale Code for VOUT Sinking Figure 54. VOUT Negative Full Scale Error vs Temperature Figure 55. VOUT Output Voltage vs Load Current 24 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA = 25℃, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated. 1.0 8.0 0.8 6.0 0.6 4.0 DNL Error (LSB) INL Error (LSB) 0.4 2.0 0.0 -2.0 0.2 0.0 -0.2 -0.4 -4.0 -6.0 ±10 V ±5 V -0.6 ±10 V ±5 V 0 V to 10 V 0 V to 5 V -0.8 0 V to 10 V 0 V to 5 V -8.0 -1.0 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 VPOS (V) 12 18 12.5 13 13.5 14 14.5 |VPOS_IN_x| = VNEG_IN_x 15 15.5 16 16.5 17 17.5 VPOS (V) C015 18 C015 |VPOS_IN_x| = VNEG_IN_x Figure 56. VOUT Linearity Error vs Power Supplies Figure 57. VOUT Differential Linearity Error vs Power Supplies 50.0 4 40.0 3 VPOS/ VNEG IDD (mA) 30.0 TUE (m%FSR) 20.0 10.0 0.0 -10.0 -20.0 -30.0 ±10 V ±5 V -40.0 0 V to 10 V 0 V to 5 V 1 IDD-VPOS 0 IDD-VNEG ±1 ±2 ±3 -50.0 ±4 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 VPOS (V) 18 0 8192 16384 24576 32768 40960 49152 57344 DAC Code C015 |VPOS_IN_x| = VNEG_IN_x 65536 C001 |VPOS_IN_x| = VNEG_IN_x, 10-V Range Figure 58. VOUT Total Unadjusted Error vs Power Supplies Figure 59. VOUT Power Supply Current vs Digital Input Code 5 5.0 4 4.0 3 3.0 VPOS/ VNEG IDD (mA) VPOS/ VNEG IDD (mA) 2 2 1 IDD-VPOS 0 IDD-VNEG ±1 ±2 2.0 1.0 IDD-VPOS 0.0 IDD-VNEG -1.0 -2.0 ±3 -3.0 ±4 -4.0 -5.0 ±5 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 12 Figure 60. VOUT Power Supply Current vs Temperature 14 15 16 17 VPOS (V) C001 |VPOS_IN_x| = VNEG_IN_x, 10-V Range, Mid Scale Code 13 18 C001 |VPOS_IN_x| = VNEG_IN_x, 10-V Range, Mid Scale Code Figure 61. VOUT Power Supply Current vs Power Supplies Voltages Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 25 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA = 25℃, REFIN = +5 V external;, Buck-Boost Converter disabled unless otherwise stated. VOUT (2 V/div) VOUT (2 V/div) SYNC (5 V/div) SYNC (5 V/div small signal settling (0.1 %FSR/div) small signal settling (0.1 %FSR/div) Time (4 µs/div) Time (4 µs/div) C001 10-V Range, Load 1K//200pF C001 10-V Range, Load 1K//200pF Figure 62. VOUT Full-Scale Settling Time, Rising Edge Figure 63. VOUT Full-Scale Settling Time, Falling Edge VOUT (50 mV/div) VOUT (50 mV/div) SYNC (5 V/div) SYNC (2 V/div) Time (800 ns/div) Time (800 ns/div) C005 10-V Range, 7FFFh - 8000h C005 10-V Range, 8000h - 7FFFh Figure 64. VOUT Glitch Impulse, Rising Edge, 1LSB Step Figure 65. VOUT Glitch Impulse, Falling Edge, 1LSB Step VOUT (0.2 V/div) SYNC (5 V/div) AVDD (5 V/div) VOUT (2 mV/div) Time (1 ms/div) Time (2 µs/div) C005 C004 10V Range Figure 66. VOUT Power-On Glitch 26 Submit Documentation Feedback Figure 67. VOUT Enable Glitch Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA = 25℃, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated. 1000 900 Noise PSD (nV/ sqrt-Hz) 800 VOUT (5 µv/div) 700 600 500 VOUT = 10 V 400 VOUT = 5 V 300 VOUT = 0 V 200 100 0 Time (1 s/div) 10 100 1000 10000 100000 1000000 Frequency (Hz) C001 C001 10-V Range 10-V Range, Mid Scale Code Figure 69. VOUT Noise Density vs Frequency Figure 68. VOUT Noise, 0.1 Hz to 10 Hz VOUT (2 mV/div) SCLK (5 V/div) Time (4 µs/div) C004 10-V Range, Mid Scale Code, SCLK = 1MHz Figure 70. Clock Feedthrough VOUT, 1MHz Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 27 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x = +15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; T A = 25℃, REFIN = +5 V external; Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated. 1.0 8 6 ±10 V ±5 V 0.8 0 V to 10 V 0 V to 5 V 0.6 DNL Error (LSB) INL Error (LSB) 4 2 0 -2 0.4 0.2 0.0 -0.2 -0.4 -4 -6 -8 ±10 V ±5 V -0.8 0 V to 10 V 0 V to 5 V -1.0 0 8192 16384 24576 32768 40960 49152 57344 DAC Code 0 65536 16384 24576 15 3000 Noise PSD (nV/ sqrt-Hz) 10 5 0 -5 ±5 V 0 V to 10 V 0 V to 5 V 40960 49152 57344 65536 C001 Figure 72. VOUT Differential Linearity Error vs Digital Input Code 3500 ±10 V 32768 DAC Code 20 -10 8192 C002 Figure 71. VOUT Linearity Error vs Digital Input Code TUE (m%FSR) -0.6 VOUT = 10 V 2500 VOUT = 5 V 2000 VOUT = 0 V 1500 1000 500 -15 -20 0 0 8192 16384 24576 32768 DAC Code 40960 49152 57344 10 65536 100 1000 10000 100000 1000000 Frequency (Hz) C003 C001 10-V Range Figure 73. VOUT Total Unadjusted Error vs Digital Input Code Figure 74. VOUT Noise Density vs Frequency VNEG (0.2 V/div) VPOS (0.2 V/div) VOUT (1 mV/div) Time (1 ms/div) C001 10-V Range, Mid Scale Code Figure 75. VOUT Ripple 28 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) 5.004 5.015 5.002 5.012 Reference Output Voltage (V) Reference Output Voltage (V) AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT disabled, IOUT disabled, TA = 25℃, Buck-Boost Converter disabled, unless otherwise stated. 5.000 4.998 4.996 4.994 4.992 4.990 4.988 5.009 5.006 5.003 VREF 5.000 4.997 4.994 4.991 4.986 4.988 4.984 4.985 ±40 ±25 ±10 5 20 35 50 65 80 95 110 Temperature (oC) 125 ±5 ±4 ±3 ±2 ±1 0 1 2 3 4 5 Load Current (mA) C001 C001 30 Units Figure 76. Internal Reference Voltage vs Temperature Figure 77. Internal Reference Voltage vs Load Current 5.015 2500 5.009 2000 Noise PSD (nV/ sqrt-Hz) Reference Output Voltage (V) 5.012 5.006 5.003 VREF 5.000 4.997 4.994 4.991 VREF 1500 1000 500 4.988 4.985 0 12 15 18 21 24 AVDD (V) 27 30 33 10 36 100 1000 Figure 78. Internal Reference Voltage vs Power Supply 10000 100000 1000000 Frequency (Hz) C001 C001 Figure 79. Internal Reference Noise Density vs Frequency VREF (5 µv/div) Time (1 s/div) C001 Figure 80. Internal Reference Noise, 0.1 Hz to 10 Hz Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 29 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250Ω, TA = 25℃, BuckBoost Converter enabled (Full Tracking Mode), unless otherwise stated. 2500 VPOS (20 mV/div) Noise PSD (nV/ sqrt-Hz) 2000 VREF VREF (1mV/ div) 1500 1000 500 0 10 100 1000 10000 Frequency (Hz) 100000 Time (1 µs/div) 1000000 C001 C001 0-24 mA Range, Full Scale Code on all channels 0-24 mA Range, Full Scale Code on all channels Figure 81. Internal Reference Noise Density vs Frequency 30 Submit Documentation Feedback Figure 82. Internal Reference Ripple Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, TA = 25℃, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated. VNEG (2 V/div) VNEG (2 V/div) VPOS (1 V/div) VPOS (1 V/div) SYNC (5 V/div) SYNC (5 V/div) Time (2 ms/div) Time (2 ms/div) C001 C001 Figure 83. Buck-Boost Converter Power-On (IOUT Mode) Figure 84. Buck-Boost Converter Power-On (VOUT Mode) 4000 160 IOUT = 24 mA, 1k 140 IOUT = 12 mA, 1k 120 IOUT = 24 mA, 250 100 IOUT = 12 mA, 250 VPOS Noise PSD (µV/ sqrt-Hz) VPOS Noise PSD (µV/ sqrt-Hz) 180 IOUT = 0 mA 80 60 40 20 3500 VOUT = 10 V 3000 VOUT = 5 V VOUT = 0 V 2500 2000 1500 1000 500 0 0 ±20 10 100 1000 10000 100000 1000000 Frequency (Hz) 10 100 1000 10000 100000 1000000 Frequency (Hz) C001 0-24 mA Range, RL = 250 Ω C001 10-V Range, No Load Figure 85. VPOS Noise Density (IOUT Mode) vs Frequency Figure 86. VPOS Noise Density (VOUT Mode) vs Frequency 450 VNEG Noise PSD (µV/ sqrt-Hz) 400 VOUT = 10 V 350 VOUT = 5 V 300 VOUT = 0 V 250 200 150 100 50 0 10 100 1000 10000 Frequency (Hz) 100000 1000000 C001 10-V Range, No Load Figure 87. VNEG Noise Density (VOUT Mode) vs Frequency Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 31 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Typical Characteristics (continued) AVDD/PVDD_x = +15 V, VNEG_IN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT enabled 0-24 mA Range, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter VPOS_IN_x enabled (Full Tracking Mode), unless otherwise stated. 100 100 90 PVDD =12V, RL=1k PVDD=24V, RL=250 PVDD=24V, RL=1k PVDD =36V, RL=250 PVDD =36V, RL=1k 90 80 80 70 VPOS Efficiency (%) IOUT Efficiency (%) PVDD =12V, RL=250 60 50 40 30 60 50 40 PVDD =12V, RL=250 30 20 20 10 10 PVDD =12V, RL=1k PVDD=24V, RL=250 PVDD=24V, RL=1k PVDD =36V, RL=250 PVDD =36V, RL=1k 0 0 0 2 4 6 8 10 12 14 16 18 20 22 IOUT (mA) 24 0 2 Figure 88. IOUT Efficiency vs Load Current 8 10 12 14 16 18 20 22 IOUT (mA) 24 C001 Figure 89. VPOS Efficiency (IOUT Mode) vs Load Current PVDD =12V, RL=250 PVDD =12V, RL=1k PVDD=24V, RL=250 PVDD=24V, RL=1k PVDD =36V, RL=250 PVDD =36V, RL=1k 90 VPOS DCDC Efficiency (%) 80 70 60 50 40 30 80 70 60 50 40 30 PVDD =12V, RL=250 PVDD =12V, RL=1k 20 PVDD=24V, RL=250 PVDD=24V, RL=1k 10 10 PVDD =36V, RL=250 PVDD =36V, RL=1k 0 0 20 ±40 ±25 5 ±10 20 35 50 65 80 95 110 Temperature (oC) Full Scale Code 125 ±40 ±25 ±10 5 IOUT = 24 mA Full Scale Code Figure 90. IOUT Efficiency vs Temperature 20 35 50 65 80 95 110 Temperature (oC) C001 125 C001 IOUT = 24 mA Figure 91. VPOS Efficiency (IOUT Mode) vs Temperature 2500 4000 PVDD=12V, RL=250 2250 PVDD=12V, RL=1k PVDD Power Dissipation (mW) PVDD Power Dissipation (mW) 6 100 90 2000 PVDD=24V, RL=250 1750 PVDD=24V, RL=1k 1500 PVDD=36V, RL=250 1250 PVDD=36V, RL=1k 1000 750 500 250 3600 PVDD=12V, RL=250 PVDD=12V, RL=1k 3200 PVDD=24V, RL=250 PVDD=24V, RL=1k 2800 PVDD=36V, RL=250 PVDD=36V, RL=1k 2400 2000 1600 1200 800 400 0 0 0 2 4 6 8 10 12 14 IOUT (mA) Full Scale Code 16 18 20 22 24 ±40 ±25 ±10 5 20 35 50 65 Temperature (oC) C001 IOUT = 24 mA 80 95 110 125 C001 Full Scale Code, 24 mA on all channels Figure 92. PVDD Power Loss (IOUT Mode) vs Load Current 32 4 C001 100 IOUT Efficiency (%) 70 Figure 93. PVDD Power Loss (IOUT Mode) vs Temperature Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Typical Characteristics (continued) 50 100 46 90 42 80 PVDD = 12 V 38 70 PVDD = 24 V 60 PVDD = 36 V VPOS Efficiency (%) Die Temperature (oC) AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT enabled, 10-V Range, Load 1K//200pF, IOUT disabled, TA = 25℃, REFIN = +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated. 34 30 26 50 40 22 PVDD=12V, RL=250 PVDD=12V, RL=1k 18 PVDD=24V, RL=250 PVDD=24V, RL=1k 20 14 PVDD=36V, RL=250 PVDD=36V, RL=1k 10 10 30 0 0 2 4 6 8 10 12 14 16 18 20 22 IOUT (mA) 24 0 1 2 3 4 5 6 7 8 9 VOUT Load (mA) C001 10 C001 VOUT disabled, IOUT = 24 mA (all channels), VNEG_IN_x = 0 V Figure 94. Intenal Die Temperature (IOUT Mode) vs Load Current Figure 95. VPOS Efficiency (VOUT Mode) vs Load Current 2000 1800 PVDD = 12 V 1800 1600 PVDD = 24 V 1600 1400 PVDD = 36 V PVDD Power Dissipation (mW) PVDD Power Dissipation (mW) 2000 1200 1000 800 600 400 200 0 1400 1200 1000 800 600 PVDD = 12 V 400 PVDD = 24 V 200 PVDD = 36 V 0 0 1 2 3 4 5 6 7 8 9 VOUT Load (mA) 10 ±40 ±25 ±10 5 20 Full Scale Code on all channels 35 50 65 80 95 110 Temperature (oC) C001 125 C001 Full Scale Code on all channels Figure 96. PVDD Power Loss (VOUT Mode) vs Load Current Figure 97. PVDD Power Loss (VOUT Mode) vs Temperature 50 3.60 46 3.40 42 3.20 38 3.00 I-DVDD (mA) Die Temperature (oC) Forward Sweep 34 30 Reverse Sweep 2.80 2.60 26 PVDD = 12 V 22 PVDD = 24 V 2.20 18 PVDD = 36 V 2.00 2.40 1.80 14 1.60 10 0 1 2 3 4 5 6 VOUT Load (mA) 7 8 9 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Logic Level (V) C001 5.5 C001 All channels enabled Figure 98. Internal Die Temperature (VOUT Mode) vs Load Current Figure 99. Power Supply Current (DVDD) vs Input Logic Level Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 33 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com 8 Detailed Description 8.1 Overview Each channel of DAC8775 consists of a resistor-string digital-to-analog converter (DAC) followed by buffer amplifiers. The output of the buffer drives the current output stage and the voltage output amplifier. The resistorstring section is simply a string of resistors, each of value R, from REFIN to PBKG, as the Functional Block Diagram illustrates. This type of architecture ensures DAC monotonicity. The 16-bit binary digital code loaded to the DAC register determines at which node on the string the voltage is tapped off before being fed into the output amplifier. The current output stage converts the output from the string to current using a precision current source. The voltage output provides a voltage output to the external load. When the current output stage or the voltage output stage is disabled, the respective output pin is in Hi-Z state. After power-on, both output stages are disabled. Each channel of DAC8775 also contains a Buck-Boost converter which can be used to generate the power supply for the current output stage and voltage output amplifier. 8.2 Functional Block Diagram REFIN Buck-Boost Converters VPOS_IN_x Current Source Current Out Voltage Out IOUT_x VOUT_x VNEG_IN_x AGND1 Copyright © 2016, Texas Instruments Incorporated Figure 100. General Architecture 8.3 Feature Description 8.3.1 Current Output Stage Each channel's current output stage consists of a pre-conditioner and a precision current source as shown in Figure 101. This stage provides a current output according to the DAC code. The output range can be programmed as 0 mA to 20 mA, 0 mA to 24 mA, 4 mA to 20 mA, 3.5 mA to 23.5 mA, or ±24 mA. In the current output mode, the maximum compliance voltage on pin IOUT_x is between (-|VNEG_IN_x| + 3 V) ≤ |IOUT_x| ≤ (VPOS_IN_x – 3 V). This compliance voltage is automatically maintained when the Buck-Boost converter is used to generate these supplies (see Buck-Boost Converter section). However, when using an external supply for VPOS_IN_x pin (Buck-Boost converter disabled), the VPOS_IN_x and VNEG_IN_x supplies should be chosen such that this compliance voltage is maintained. 34 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Feature Description (continued) VPOS_IN_x Rsense Sourcing PMOS IOUT DAC Sinking NMOS Iload Rload Rsense VNEG_IN_x Copyright © 2016, Texas Instruments Incorporated Figure 101. Current Output The 16 bit data can be written to DAC8775 using address 0x05 (DAC data registers, see Table 5 and Table 6). For a 0-mA to 20-mA output range: ª CODE º IOUT_x = 20 mA. « N » ¬ 2 ¼ (1) For a 0-mA to 24-mA output range: ª CODE º IOUT_x = 24 mA. « N » ¬ 2 ¼ (2) For a 3.5-mA to 23.5-mA output range: ª CODE º IOUT_x = 20 mA. « N » + 3.5 mA ¬ 2 ¼ (3) For a 4-mA to 20-mA output range: ª CODE º IOUT_x = 16 mA. « N » + 4 mA ¬ 2 ¼ (4) For a -24-mA to 24-mA output range: ª CODE º IOUT_x = 48 mA. « » - 24 mA ¬ 2N ¼ (5) Where: • CODE is the decimal equivalent of the code loaded to the DAC. • N is the bits of resolution; 16. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 35 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Feature Description (continued) 8.3.2 Voltage Output Stage The voltage output stage as conceptualized in Figure 102 provides the voltage output according to the DAC code and the output range setting. The output range can be programmed as 0 V to +5 V or 0 V to +10 V for unipolar output mode, and ±5 V or ±10 V for bipolar output mode. In addition, an option is available to increase the output voltage range by 20%. The output current drive can be up to 10 mA. The output stage has short-circuit current protection that limits the output current to 16 mA, this limit can be changed to 8 mA, 20 mA or 24mA via writing bits 15 and 14 of address 0x04. This minimum headroom and footroom for the voltage output stage is automatically maintained when the Buck-Boost converter is used to generate these supplies. However, when using an external supply for VPOS_IN_x and VNEG_IN_x pin (Buck-Boost converter disabled) the minimum headroom and footroom as per must be maintained. In this case, the Recommended Operating Conditions shows the maximum allowable difference between VPOS_IN_x and VNEG_IN_x. The voltage output is designed to drive capacitive loads of up to 1 μF. For loads greater than 20 nF, an external compensation capacitor can be connected between CCOMP_x and VOUT_x to keep the output voltage stable at the expense of reduced bandwidth and increased settling time. Note that, a step response (due to input code change) on the voltage output pin loaded with large capacitive load (> 20 nF) will trigger the short circuit limit circuit of the output stage. This will result in setting the short circuit alarm status bits. Therefore, it is recommended to use slew rate control for large step change, when the voltage output pin is loaded with high capacitive loads. R3 120K VSENSEP_X S1 R2 120K VOUT_X DAC R0 120K R2 17K t 24K RFB 60K R1 120K REFIN S3 R1 42K - Open VSENSEN_X S2 Copyright © 2016, Texas Instruments Incorporated Figure 102. Voltage Output The VSENSEP_x pin is provided to enable sensing of the load. Ideally, it is connected to VOUT_x at the terminals. Additionally, it can also be used to connect remotely to points electrically "nearer" to the load. This allows the internal output amplifier to ensure that the correct voltage is applied across the load as long as headroom is available on the power supply. However, if this line is cut, the amplifier loop would be broken. Therefore, an optional resistor can be used between VOUT_x and VSENSEP_x to prevent this. The VSENSEN_x pin can be used to sense the remote ground and offset the VOUT pin accordingly. The VSENSEN_x pin can sense a maximum of ±7 V difference from the PBKG pin of the DAC8775. The 16-bit data can be written to DAC8775 as shown in DAC data registers, see Table 5 and Table 6. For unipolar output mode: ª CODE º VOUT_x = VREFIN.GAIN. « » ¬ 2N ¼ (6) For bipolar output mode: ª CODE º VOUT_x = VREFIN.GAIN. « » ¬ 2N ¼ 36 GAIN.VREFIN 2 Submit Documentation Feedback (7) Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Feature Description (continued) Where: • CODE is the decimal equivalent of the code loaded to the DAC. • N is the bits of resolution; 16. • VREFIN is the reference voltage; for internal reference, VREFIN = +5 V. • GAIN is automatically selected for a desired voltage output range as shown in Table 7. 8.3.3 Buck-Boost Converter The DAC8775 includes a Buck-Boost Converter for each channel to minimize the power dissipation of the chip and provides significant system integration. This Buck-Boost converter is based on a Single Inductor Multiple Output (SIMO) architecture and requires a single inductor (per channel) to simultaneously generate all the analog power supplies required by the chip. The Buck-Boost converters utilize three on-chip switches (shown in Figure 103) which are synchronously controlled via current mode control logic. These converters are designed to work in discontinuous conduction mode (DCM) with an external inductor (per channel) of value 100 µH connected between LN_x and LP_x pins (see Buck-Boost Converter External Component Selection section). The peak inductor current inductor is limited to a value of 0.5 A internally. LP_x LN_x PVDD_x VPOS_IN_x External Inductor PVSS_x PVSS_x External Schottky Diodes VNEG_IN_x x = {A,B,C,D} Copyright © 2016, Texas Instruments Incorporated Figure 103. Buck-Boost Converter These Buck-Boost converters employ a variable switching frequency technique. This technique increases the converter efficiency at all loads by automatically reducing the switching frequency at light loads and increasing it at heavy loads. At no load condition, the converter stops switching completely until the load capacitor discharges by a preset voltage. At this point the converter automatically starts switching and recharges the load capacitor(s). In addition to saving power at all loads, this technique ensures low switching noise on the converter outputs at light loads. The minimum load capacitor for these Buck-Boost converters is 10 µF. This capacitor must be connected between the schottky diode(s) and ground (0 V) for each arm of each Buck-Boost converter (A, B, C, D). The Buck-Boost converter, when enabled, generates ripple on the supply pins (VPOS_IN_x and VNEG_IN_x). This ripples is typically attenuated by the power supply rejection ratio of the output amplifiers (IOUT_x or VOUT_x) and appears as noise on the output pin of the amplifiers (IOUT_x and VOUT_x). A larger load capacitor in combination with additional filter (see Application Information section) reduces the output ripple at the expense of increasing settling time of the converter output. The input voltage to the Buck-Boost converters (pin PVDD_x) can vary from +12 V to +36 V. These outputs can be individually enabled or disabled via the user SPI interface (see Commands in Table 5 and Table 6). 8.3.3.1 Buck-Boost Converters Outputs Each of the four Buck-Boost converters can be used to provide power to the current output stage or the voltage output stage by enabling the respective Buck-Boost converter and connecting the power supplies as shown in Figure 104. Additional passive filters can optionally be added between the schottky diode and input supply pins (VPOS_IN_x and VNEG_IN_x) to attenuate the ripple feeding into the VPOS_IN_x and VNEG_IN_x pin. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 37 DAC8775 SLVSBY7 – FEBRUARY 2017 www.ti.com Feature Description (continued) DAC8775 D1 Rfilt1 LN_x Cfilt1 Cload PVSS_x VPOS_IN_x D2 AGND_x Rfilt2 LP_x Cfilt2 Cload PVSS_x VNEG_IN_x AGND_x Copyright © 2016, Texas Instruments Incorporated Figure 104. Buck-Boost Converter Positive and Negative Outputs 8.3.3.2 Selecting and Enabling Buck-Boost Converters The analog outputs of the Buck-Boost converters can be enabled in two different ways: Current Output Mode or Voltage Output Mode. Any and all combination of the DAC8775 Buck-Boost converters can be selected by writing to address 0x06 (see Table 5). The positive/negative arm of the selected Buck-Boost converter can be enabled via writing to address 0x07 (see Table 6). Note that, VNEG_IN_x is internally shorted to PBKG when the negative arm of Buck-Boost converter is not enabled. When used in voltage output mode, the Buck-Boost converter generates a constant ±15.0 V for the positive and negative power supplies. Alternatively this constant voltage may be modified by the clamp register setting for each channel. When used in current output mode the Buck-Boost converter generates the positive and negative power supply based on the RANGE setting, for example the negative power supply is only generated for ±24 mA range. The minimum voltage that the Buck-Boost converter can generate on the VPOS_IN_x pin in 4.96 V with a typical efficiency of 75% at PVDD_x = 12 V and a load current of 24 mA, thus significantly minimizing power dissipation on chip. The maximum voltage that the Buck-Boost converter can generate on the VPOS_IN_x pin is 32 V. Similarly, the minimum voltage that the Buck-Boost converter can generate on the VNEG_IN_x pin in –18.0 V. The maximum voltage that the Buck-Boost converter can generate on the VNEG_IN_x pin in –5.0 V. 8.3.3.3 Configurable Clamp Feature and Current Output Settling Time A large signal step on the output pin IOUT_x (for example 0 mA to 24 mA) with a load of 1 KΩ would require that the respective Buck-Boost converter change the output voltage on the VPOS_IN_x pin from 4 V to 27 V. Thus, the current output settling time will be dominated by the settling time of the VPOS_IN_x voltage. A trade off can be made to reduce the settling time at the expense of power saving by increasing the minimum voltage that the respective Buck-Boost converter generates on the positive output. The DAC8775 implements a configurable clamp feature. This feature allows multiple modes of operation based on CCLP[1:0] and HSCLMP bits (see Table 6). 8.3.3.3.1 Default Mode - CCLP[1:0] = "00" - Current Output Only This is the default mode of operation, CCLP[1:0] = "00" for Buck-Boost converter is to be in full tracking mode. The minimum voltage generated on VPOS_IN_x in this case is 4 V. The Buck-Boost converter varies the positive and negative outputs adaptively such that the voltage across these outputs and IOUT_x pins is ≤ 3 V. This is accomplished by internally feeding back the voltage across the current output PMOS and NMOS to the respective Buck-Boost converter control circuit. For example, for a load current of 24 mA flowing through a load resistance of 1 KΩ, the generated voltage at the VPOS_IN_x pin will be around 27 V. 38 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: DAC8775 DAC8775 www.ti.com SLVSBY7 – FEBRUARY 2017 Feature Description (continued) 8.3.3.3.2 Fixed Clamp Mode - CCLP[1:0] = "01" - Current and Voltage Output In this mode of operation, the user can over-ride the default operation by writing "01" to CCLP[1:0]. The minimum voltage generated on VPOS_IN_x and VNEG_IN_x can be adjusted by writing to PCLMP[3:0] / NCLMP[3:0] (address 0x07). The voltage setting for current output and voltage output are specified in Table 6. 8.3.3.3.3 Auto Learn Mode - CCLP[1:0] = "10" - Current Output Only In this mode ,the device automatically senses the load on the current output terminal and sets the minimum voltage generated on VPOS_IN_x terminals to a fixed value. The value is calculated such that for any code change, the settling time is dependent only on the DAC settling time. For example, with a load of 250 Ω and a maximum current of 24 mA, the Buck-Boost output voltage is set as 9 - 12 V. This achieves the maximum power saving without sacrificing settling time because the Buck-Boost output is fixed. In order to ensure the correct operation of auto-learn mode, following steps below must be followed. 1. The device must be enabled in full tracking mode, CCLP[1:0] = "00". 2. Current output is enabled and a code greater then 4000h should be written to the DAC. 3. Write CCLP[1:0] = "10" to enable auto learn mode. At this point, the clamp register (PCLMP - address 0x07) is populated with the appropriate settings. The clamp status bit CLST (address 0x0B) is set once the clamp register is populated indicating the completion of this process. In this mode the PCLMP bits are read only. Typically, this process of sensing the load is done only once after power up. In order to re initiate this process, the CCLP bits must be rewritten with "10". 8.3.3.3.4 High Side Clamp (HSCLMP) The default maximum positive voltage that the Buck-Boost converter can generate is 32 V. However, this voltage can be reduced to 26 V by writing '1' to HSCLMP bit (address 0x0E, Table 6). Note that this feature can be enabled or disabled per channel by selecting the corresponding channel (address 0x03, Table 6). 8.3.3.4 Buck-Boost Converters and Open Circuit Current Output In normal operating condition when current output is loaded with a resistive load, the Buck-Boost converter varies the positive and negative outputs adaptively such that the voltage across these outputs and IOUT_x pins is ≤ 3 V. However, if the current output is in open circuit condition, the Buck-Boost converter output would rail to fixed voltages as described in Table 1. Table 1. Open Circuit IOUT with Buck-Boost Converter BUCK-BOOST POSITIVE ARM BUCK-BOOST NEGATIVE ARM Enabled Enabled Enabled Enabled Enabled Disabled All ranges except ±24 mA IOUT RANGE IOUT PIN VOLTAGE VPOS_IN_x VNEG_IN_x All Ranges ≥0V 20 V –5 V ±24 mA only
DAC8775IRWFR 价格&库存

很抱歉,暂时无法提供与“DAC8775IRWFR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DAC8775IRWFR
    •  国内价格
    • 1000+159.17000

    库存:3806