0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HD3SS213ZXHR

HD3SS213ZXHR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFBGA50

  • 描述:

    DisplayPort 开关 IC 1 通道 50-NFBGA(5x5)

  • 数据手册
  • 价格&库存
HD3SS213ZXHR 数据手册
HD3SS213 HD3SS213 SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 www.ti.com HD3SS213 5.4-Gbps DisplayPort 1.2a 2:1 and 1:2 Differential Switch 1 Features 3 Description • • The HD3SS213 device is a high-speed passive switch capable of switching two full DisplayPort 4 lane ports from one of two sources to one target location in an application. It also switches one source to one of two sinks. For DisplayPort applications, the HD3SS213 supports switching of the Auxiliary (AUX), Display Data Channel (DDC), and Hot Plug Detect (HPD) signals in the ZEQ package. • • • • • • • • Compatible with DisplayPort 1.2 electrical standard 2:1 and 1:2 switching supporting data rates up to 5.4 Gbps Supports HPD switching Supports AUX and DDC switching Wide –3-dB differential BW of over 5.4 GHz Excellent dynamic characteristics (at 2.7 GHz): – Crosstalk = –50 dB – Isolation = –25 dB – Insertion loss = –1.5 dB – Return loss = –13 dB – Maximum bit-bit skew = 5 ps VDD Operating range: 3.3 V ±10% Package Options: – 5 mm × 5 mm, 50-Pin nFBGA Output enable (OE) pin disables switch to save power HD3SS213 < 10 mW (standby < 30 µW when OE = L) One typical application is a mother board that includes two GPUs that need to drive one DisplayPort sink. The GPU is selected by the Dx_SEL pin. Another application is when one source needs to switch between one of two sinks which the example is a side connector and a docking station connector. The switching is controlled using the Dx_SEL and AUX_SEL pins. The HD3SS213 operates from a single supply voltage of 3.3 V over the full industrial temperature range of –40°C to 105°C. Device Information (1) PART NUMBER 2 Applications HD3SS213 • • • (1) BODY SIZE (NOM) nFBGA (50) 5.00 mm x 5.00 mm For all available packages, see the orderable addendum at the end of the datasheet. DAx(p) 4 PC & notebooks Tablets Connected peripherals & printers PACKAGE DCx(p) 4 4 DAx(n) 4 DCx(n) AUXAx 2 Source A DDCA 2 DDCC DP Sink AUXCx 2 2 HPDA HPDC 2 AUXBx 2 DDCB HPDB OE Source B Dx_SEL Control AUX_SEL 4 DBx(p) 4 DBx(n) HD3SS213 2:1 4 DAx(p) DCx(p) 4 4 DAx(n) 4 DCx(n) AUXAx 2 DP Sink A 2 DDCA DDCC DP Source 2 HPDA 2 AUXCx HPDC 2 2 AUXBx DDCB HPDB OE DP Sink B Control Dx_SEL AUX_SEL 4 DBx(p) 4 DBx(n) HD3SS213 1:2 Copyright © 2016, Texas Instruments Incorporated HD3SS213 Application Block Diagram An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2021 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: HD3SS213 1 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 Recommended Operating Conditions.........................5 6.4 Thermal Information....................................................6 6.5 Electrical Characteristics.............................................6 6.6 Timing Requirements.................................................. 7 6.7 Typical Characteristics................................................ 9 7 Detailed Description......................................................10 7.1 Overview................................................................... 10 7.2 Functional Block Diagram......................................... 10 7.3 Feature Description...................................................11 7.4 Device Functional Modes..........................................11 8 Application and Implementation.................................. 12 8.1 Application Information............................................. 12 8.2 Typical Applications.................................................. 13 9 Layout.............................................................................16 9.1 Layout Guidelines..................................................... 16 9.2 Layout Example........................................................ 17 10 Device and Documentation Support..........................18 10.1 Receiving Notification of Documentation Updates..18 10.2 Support Resources................................................. 18 10.3 Trademarks............................................................. 18 10.4 Electrostatic Discharge Caution..............................18 10.5 Glossary..................................................................18 11 Mechanical, Packaging, and Orderable Information.................................................................... 18 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (December 2016) to Revision C (January 2021) Page • NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package. This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be updated throughout the datasheet......................................................................................................................1 • Changed u*jr BGA to nFBGA............................................................................................................................. 1 • Changed ZQE to ZXH.........................................................................................................................................3 • Changed u*jr ZQE to nFBGA ZXH. Updated thermal data.................................................................................6 • Changed u*jr BGA to nFBGA........................................................................................................................... 10 Changes from Revision A (September 2013) to Revision B (December 2016) Page • Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ............................................................................................................................................................................1 • Added A2 to J4 row in Pin Functions table......................................................................................................... 3 Changes from Revision * (September 2013) to Revision A (September 2013) Page • Deleted Ordering Information............................................................................................................................. 3 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 5 Pin Configuration and Functions 1 2 A Dx_SEL VDD B DC0(n) DC0(p) C 3 GND 4 5 6 DA0(n) DA1(n) DA2(n) DA0(p) DA1(p) DA2(p) 7 OE 8 9 DA3(p) DA3(n) DB0(p) DB0(n) AUX_SEL GND D DC1(n) DC1(p) DB1(p) DB1(n) E DC2(n) DC2(p) DB2(p) DB2(n) F DC3(n) DC3(p) DB3(p) DB3(n) GND GND G H AUXC(n) AUXC(p) HPDB GND DDCCLK_B AUXB(p) J HPDC HPDA DDCCLK_C VDD DDCDAT_B AUXB(n) GND DDCCLK_A AUXA(p) DDCDAT_C DDCDAT_A AUXA(n) nFBGA 50-Pin ZXH Package Top View Table 5-1. Pin Functions PIN TYPE(1) DESCRIPTION(2) NO. NAME H9, J9 AUXA(p), AUXA(n) I/O Port A AUX positive signal Port A AUX negative signal H6, J6 AUXB(p), AUXB(n) I/O Port B AUX positive signal Port B AUX negative signal H2, H1 AUXC(p), AUXC(n) I/O Port C AUX positive signal Port C AUX negative signal C2 AUX_SEL I AUX/DDC selection control pin in conjunction with Dx_SEL Pin Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 3 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 Table 5-1. Pin Functions (continued) PIN DESCRIPTION(2) NAME NA CADA/B/C I/O Port A/B/C cable activity detect B4, A4 DA0(p), DA0(n) I/O Port A, Channel 0, High speed positive signal Port A, Channel 0, High speed negative signal B5, A5 DA1(p), DA1(n) I/O Port A, Channel 1, High speed positive signal Port A, Channel 1, High speed negative signal B6, A6 DA2(p), DA2(n) I/O Port A, Channel 2, High speed positive signal Port A, Channel 2, High speed negative signal A8, A9 DA3(p), DA3(n) I/O Port A, Channel 3, High speed positive signal Port A, Channel 3, High speed negative signal B8, B9 DB0(p), DB0(n) I/O Port B, Channel 0, High speed positive signal Port B, Channel 0, High speed negative signal D8, D9 DB1(p), DB1(n) I/O Port B, Channel 1, High speed positive signal Port B, Channel 1, High speed negative signal E8, E9 DB2(p), DB2(n) I/O Port B, Channel 2, High speed positive signal Port B, Channel 2, High speed negative signal F8, F9 DB3(p), DB3(n) I/O Port B, Channel 3, High speed positive signal Port B, Channel 3, High speed negative signal B2, B1 DC0(p), DC0(n) I/O Port C, Channel 0, High speed positive signal Port C, Channel 0, High speed negative signal D2, D1 DC1(p), DC1(n) I/O Port C, Channel 1, High speed positive signal Port C, Channel 1, High speed negative signal E2, E1 DC2(p), DC2(n) I/O Port C, Channel 2, High speed positive signal Port C, Channel 2, High speed negative signal F2, F1 DC3(p), DC3(n) I/O Port C, Channel 3, High speed positive signal Port C, Channel 3, High speed negative signal H8, J8 DDCCLK_A, DDCDAT_A I/O Port A DDC clock signal Port A DDC data signal H5, J5 DDCCLK_B, DDCDAT_B I/O Port B DDC clock signal Port B DDC data signal J3, J7 DDCCLK_C, DDCDAT_C I/O Port C DDC clock signal Port C DDC data signal A1 Dx_SEL I High speed port selection control pins B3, C8, G2, G8, H4, H7 GND S Ground J2 HPDA I/O Port A hot plug detect H3 HPDB I/O Port B hot plug detect J1 HPDC I/O Port C hot plug detect B7 OE I Output enable: OE = VIH: Normal operation OE = VIL: Standby mode A2, J4 VDD S 3.3-V positive power supply voltage (1) (2) 4 TYPE(1) NO. I = Input, O = Output, S = Supply The high speed data ports incorporate 20-kΩ pulldown resistors that are switched in when a port is not selected and switched out when the port is selected. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Supply voltage, VDD (2) Voltage MIN MAX UNIT –0.5 4 V Differential I/O –0.5 4 Control pin –0.5 VDD + 0.5 Continuous power dissipation See Section 6.4 Operating free-air temperature, TA –40 Storage temperature, Tstg (1) (2) V 105 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to network ground terminal. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) UNIT ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) V ±500 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions Typical values for all parameters are at VCC = 3.3 V and TA = 25°C (unless otherwise noted). All temperature limits are specified by design. PARAMETER VDD TEST CONDITIONS Supply voltage MIN NOM MAX UNIT 3 3.3 3.6 V VDD V VDD/2 + 300 mV V –0.1 0.8 V VPP VIH Input high voltage Control pins and signal pins (Dx_SEL, AUX_SEL, OE, HPDx) VIM Input mid level voltage AUX_SEL pin VIL Input low voltage Control pins and signal pins (Dx_SEL, AUX_SEL, OE, HPDx) VI/O_Diff Differential voltage (Dx, AUXx) Switch I/O differential voltage 0 1.8 Dx switching I/O commonmode voltage Switch I/O common-mode voltage 0 2 V AUXx switching I/O commonmode voltage Switch I/O common-mode voltage 0 3.6 V IIH Input high current (Dx_SEL, AUX_SEL) VDD = 3.6 V, VIN = VDD 1 µA IIM Input mid level current (AUX_SEL) VDD = 3.6V, VIN = VDD/2 1 µA IIL Input low current (Dx_SEL, AUX_SEL) VDD = 3.6 V, VIN = GND 1 µA Leakage current (Dx_SEL, AUX_SEL) VDD = 3.3 V, VI = 2 V, OE = 3.3 V 1 µA VDD = 3.3 V, VI = 2 V, OE = 3.3 V, Dx_SEL = 3.3 V 1 VDD = 3.3 V, VI = 2 V, OE = 3.3 V, Dx_SEL = GND 1 VI/O_CM ILK Leakage current (HPDx) 2 VDD/2 – 300 mV VDD/2 µA Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 5 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 Typical values for all parameters are at VCC = 3.3 V and TA = 25°C (unless otherwise noted). All temperature limits are specified by design. PARAMETER Ioff IDD TEST CONDITIONS MIN NOM Device shut down current VDD = 3.6 V, OE = GND Supply current VDD = 3.6 V, Dx_SEL or AUX_SEL = VDD or GND 0.6 MAX UNIT 2.5 µA 1 mA DA, DB, DC HIGH SPEED SIGNAL PATH CON Outputs ON capacitance VI = 0 V, outputs open, switch ON 1.5 pF COFF Outputs OFF capacitance VI = 0 V, outputs open, switch OFF 1 pF RON ON resistance VDD = 3.3 V, VCM = 0.5 V to 1.5 V, IO = –40 mA 8 ΔRON ON resistance match between pairs of the same channel VDD = 3.3 V, 0.5 V ≤ VI ≤ 1.2V, IO = –40 mA RFLAT_ON ON resistance flatness, RON(max) – RON(min) VDD = 3.3 V, 0.5 V ≤ VI ≤ 1.2 V 12 Ω 1.5 Ω 1.3 Ω AUXx, DDC SIGNAL PATH CON Outputs ON capacitance VI = 0 V, outputs open, switch ON 9 pF COFF Outputs OFF capacitance VI = 0 V, outputs open, switch OFF 3 pF RON(AUX) ON resistance VDD = 3.3 V, VCM = 0 V – VDD, IO = –8 mA RON(DDC) ON resistance on DDC channel VDD = 3.3 V, VCM = 0.4 V, IO = –3 mA 6 10 Ω 20 30 Ω 6.4 Thermal Information HD3SS213 THERMAL METRIC nFBGA (ZXH) UNIT 50 PIN RθJA Junction-to-ambient thermal resistance 72.9 °C/W RθJC(top) Junction-to-case (top) thermal resistance 35.9 °C/W RθJB Junction-to-board thermal resistance 43.1 °C/W ψJT Junction-to-top characterization parameter 1.6 °C/W ψJB Junction-to-board characterization parameter 42.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W 6.5 Electrical Characteristics over recommended operating conditions; RL and RSC = 50 Ω (unless otherwise noted)(1) PARAMETER RL Dx differential return loss XTALK Dx differential crosstalk OIRR Dx differential off-isolation IL Dx differential insertion loss TEST CONDITIONS 6 TYP MAX UNIT –17 2.7 GHz –13 2.7 GHz –50 dB 2.7 GHz –25 dB f = 1.35 GHz f = 2.7 GHz AUX –3-dB bandwidth (1) MIN 1.35 GHz –1 –1.5 360 dB dB MHz For return loss, crosstalk, off-isolation, and insertion loss values, the data was collected on a Rogers material board with minimum length traces on the input and output of the device under test. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 6.6 Timing Requirements over recommended operating conditions; RL and RSC = 50 Ω (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 100 ps tPD Switch propagation delay RSC and RL = 50 Ω, see Figure 6-2 Ton Dx_SEL/AUX_SEL-to-switch Ton (Data, AUX and DDC) RSC and RL = 50 Ω, see Figure 6-1 0.7 1 µs Toff Dx_SEL/AUX_SEL-to-switch Toff (Data, AUX and DDC) RSC and RL = 50 Ω, see Figure 6-1 0.7 1 µs Ton Dx_SEL/AUX_SEL-to-switch Ton (HPD) RL = 50 Ω, see Figure 6-1 0.7 1 µs Toff Dx_SEL/AUX_SEL-to-switch Toff (HPD) RL = 50 Ω, see Figure 6-1 0.7 1 µs TSK(O) Inter-pair output skew (CH-CH) RSC and RL = 1 kΩ, see Figure 6-2 50 ps TSK(b-b) Intra-pair output skew (bit-bit) RSC and RL = 1 kΩ, see Figure 6-2 5 ps 1 50% Dx_SEL 90% VOUT 10% Toff Ton Figure 6-1. Select to Switch Ton and Toff Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 7 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 Vcc Rsc = 50 DAx/DBx(p) HD3SS213 DCx(p) RLoad = 50 Rsc = 50 DCx(n) DAx/DBx(n) RLoad = 50 SEL DAx/DBx(p) 50% 50% DAx/DBx(n) DCx(p) 50% 50% DCx(n) tP1 t1 tP2 t4 t3 t2 DCx(p) 50% DCx(n) tSK(O) DCy(p) DCy(n) tPD = Max(tp1, tp2) tSK(O) = Difference between tPD for any two pairs of outputs tSK(b-b) = 0.5 X |(t4 ± t3) + (t1 ± t2)| Copyright © 2016, Texas Instruments Incorporated Figure 6-2. Propagation Delay and Skew 8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 6.7 Typical Characteristics 0.0145 7.8 # 10 -3 0.014 7.6 0.0135 7.4 Time (µS) Time (µS) 0.013 0.0125 0.012 0.0115 0.0105 –40 –20 0 20 40 60 80 100 7 6.8 V = 3.6 V; AUXc to AUXa V = 3.0 V; AUXc to AUXa V = 3.6 V; AUXc to AUXb V = 3.0 V; AUXc to AUXb 0.011 7.2 V = 3.6 V; AUXc to AUXa V = 3.0 V; AUXc to AUXa V = 3.6 V; AUXc to AUXb V = 3.0 V; AUXc to AUXb 6.6 6.4 –40 120 Temperature (ºC) –20 0 20 40 60 80 100 120 Temperature (ºC) Figure 6-3. DxSEL to Switch Toff Figure 6-4. DxSEL to Switch Ton 0.3 0.0135 V = 3.6 V; AUXc to AUXa V = 3.0 V; AUXc to AUXa V = 3.6 V; AUXc to AUXb V = 3.0 V; AUXc to AUXb 0.013 V = 3.6 V; AUXc to AUXa V = 3.0 V; AUXc to AUXa V = 3.6 V; AUXc to AUXb V = 3.0 V; AUXc to AUXb 0.28 0.0125 0.26 Time (µS) Time (µS) 0.012 0.0115 0.24 0.011 0.22 0.0105 0.2 0.01 0.0095 –40 –20 0 20 40 60 80 100 120 0.18 –40 –20 0 20 40 60 80 100 120 Temperature (ºC) Temperature (ºC) Figure 6-5. OUTEN to Switch Toff Figure 6-6. OUTEN to Switch Ton Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 9 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 7 Detailed Description 7.1 Overview The HD3SS213 device is a high-speed passive switch offered in an industry standard 50-pin nFBGA package. The device is specified to operate from a single supply voltage of 3.3 V over the industrial temperature range of –40°C to 105°C. The HD3SS213 is a generic 4-CH high-speed mux/demux type of switch that can be used for routing high-speed signals between two different locations on a circuit board. The HD3SS213 also supports several other high speed data protocols with a differential amplitude of < 1800 mVPP and a common-mode voltage of < 2 V, as with USB 3.0 and DisplayPort 1.2. For display port applications, the HD3SS213 also supports switching of both the auxiliary and hot plug detect signals. The high speed port selection control inputs of the device, Dx_SEL and AUX_SEL pins can easily be controlled by available GPIO pins within a system. 7.2 Functional Block Diagram VDD DAz(p) 4 DAz(n) 4 SEL=0 4 (z = 0, 1, 2 or 3) DBz(p) DBz(n) 4 DCz(p) DCz(n) 4 4 SEL=1 SEL Dx_SEL SEL HPDA SEL=0 HPDB SEL=1 HPDC AUX_SEL AUXA(p) AUXA(n) AUXB(p) AUXB(n) SEL2 SEL AUXx(P) or DDCCLK_x AUXx(n) or DDCDAT_x AUXC(p) AUXC(n) DDCCLK_A DDCCLK_C DDCDAT_A DDCDAT_C DDCCLK_B DDCDAT_B OE HD3SS213 GND Copyright © 2016, Texas Instruments Incorporated 10 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 7.3 Feature Description The HD3SS213 behaves as a two to one or one to two using high bandwidth pass gates (see Section 7.2). The input ports are selected using the AUX_SEL and Dx_SEL pins which are shown in Table 7-1. Table 7-1. AUX/DDC Switch Control Logic CONTROL LINES AUX_SEL SWITCHED I/O PINS Dx_SEL AUXA AUXB AUXC DDCA DDCB DDCC L L To/From AUXC Z To/From AUXA Z Z Z L H Z To/From AUXC To/From AUXB Z Z Z H L Z Z To/From DDCA To/From AUXC Z Z H H Z Z To/From DDCB Z To/From AUXC Z M L To/From AUXC Z To/From AUXA To/From DDCC Z To/From DDCA M H Z To/From AUXC To/From AUXB Z To/From DDCC To/From DDCB 7.4 Device Functional Modes The HD3SS213 can be operated in normal operation mode or in shut down mode. In normal operation, the inputs ports of the HD3SS213 are routed to the output ports according to Table 7-1. In standby mode, the HD3SS213 is disabled to enable power savings with a typical current consumption of 2.5 µA. The functional mode is selected through the OE input pin with HIGH for normal operation and LOW for standby. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 11 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 8 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information Many interfaces require AC coupling between the source and sink. The 0402 capacitors are the preferred option to provide AC coupling, and the 0603 size capacitors also work. The 0805 size capacitors and C-packs must be avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor value of 0.1 µF is best and the value must be match for the ± signal pair. There are several placement options for the AC coupling capacitors. Because the switch requires a bias voltage, the capacitors must only be placed on one side of the switch. If they are placed on both sides of the switch, a biasing voltage must be provided. A few placement options are shown below. In Figure 8-1, the coupling capacitors are placed on the source pair. In this situation, the switch is biased by the sink. DAx(p) GPU/ Source A DCx(p) DAx(n) DCx(n) Sink Control DBx(p) GPU/ Source B Dx_SEL AUX_SEL DBx(n) HD3SS213 Copyright © 2016, Texas Instruments Incorporated Figure 8-1. Source Biased by the Sink In Figure 8-2, the coupling capacitors are placed between the switch and Sink. In this situation, the switch is biased by the Source 12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 DAx(p) DCx(p) DAx(n) DCx(n) Sink Source Control Dx_SEL AUX_SEL DBx(n) Sink HD3SS213 Copyright © 2016, Texas Instruments Incorporated Figure 8-2. Switch Biased by the Source 8.2 Typical Applications 8.2.1 HD3SS213 AUX Channel in 2:1 Application Vdd Vbias 50 Ÿ AUXa(n) 100 K AUXc(n) AUXa(p) Source A AUXc(p) 50 Ÿ Vbias 100 K Sink connector Vbias 50 Ÿ AUXb(n) AUXb(p) Source B OE 50 Ÿ Dx_SEL Vbias Control AUX_SEL HD3SS213 2:1 Copyright © 2016, Texas Instruments Incorporated Figure 8-3. HD3SS213 AUX Channel in 2:1 Application Schematic 8.2.1.1 Design Requirements Table 8-1 lists the design parameters. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: HD3SS213 13 HD3SS213 www.ti.com SLAS901C – DECEMBER 2016 – REVISED JANUARY 2021 Table 8-1. Design Parameters (1) PARAMETERS VALUE Input voltage 3.3 V Decoupling capacitors 0.1 µF AC capacitors(1) 75 nF to 200 nF AC capacitors DAx, AUXAx, AUXBx and DBx require AC capacitors. N lines require AC capacitors. Alternate mode signals may or may not require AC capacitors. 8.2.1.2 Detailed Design Procedure • • • • • • Connect VDD and GND pins to the power and ground planes of the printed-circuit board with 0.1-µF bypass capacitor Use VDD/2 logic level at AUX_SEL pin Use 3.3-V TTL/CMOS logic level at Dx_SEL to connect DAx to DCx Use GND logic level at Dx_SEL to connect DBx to DCx Use controlled-impedance transmission media for all the differential signals Ensure the received complimentary signals are with a differential amplitude of
HD3SS213ZXHR 价格&库存

很抱歉,暂时无法提供与“HD3SS213ZXHR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
HD3SS213ZXHR
  •  国内价格
  • 1+23.70060
  • 10+21.11670
  • 30+19.46430
  • 100+17.86050

库存:0