0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO35TDWR

ISO35TDWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16

  • 描述:

    DG ISO 2.5KV RS422/RS485 16SOIC

  • 数据手册
  • 价格&库存
ISO35TDWR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents Reference Design ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 ISO35T Isolated 3.3V RS-485 Transceiver With Integrated Transformer Driver 1 Features 3 Description • • • • • The ISO35T is an isolated differential line transceiver with integrated oscillator outputs that provide the primary voltage for an isolation transformer. The device is a full-duplex differential line transceiver for RS-485 and RS-422 applications that can easily be configured for half-duplex operation by connecting pin 11 to pin 14, and pin 12 to pin 13. 1 • • • • • • Designed for RS-485 and RS-422 Applications Signaling Rates up to 1 Mbps 1/8 Unit Load – up to 256 Nodes on a Bus Thermal Shutdown Protection Typical Efficiency > 60% (ILOAD = 100 mA) - See SLUU470 Low-Driver Bus Capacitance 16 pF (Typical) Fail-Safe Receiver for Bus Open, Short, Idle Logic Inputs are 5-V Tolerant 50-kV/µs Typical Transient Immunity Bus-Pin ESD Protection – 16-kV HBM Between Bus-Pins and GND2 – 6-kV HBM Between Bus-Pins and GND1 Safety and Regulatory Approvals – 4242 VPK Basic Insulation per DIN V VDE V 0884-10 and DIN EN 61010-1 – 2500 VRMS Isolation for 1 minute per UL 1577 – CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 61010-1 Standards These devices are ideal for long transmission lines since the ground loop is broken to allow for a much larger common-mode voltage range. The symmetrical isolation barrier of the device is tested to provide 4242VPK of isolation per VDE for 60s between the bus-line transceiver and the logic-level interface. Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or near-by sensitive circuitry if they are of sufficient magnitude and duration. The ISO35T can significantly reduce the risk of data corruption and damage to expensive control circuits. The ISO35T is specified for use from –40°C to 85°C. Device Information(1) PART NUMBER 2 Applications • • • • • ISO35T Isolated RS-485/RS-422 Interfaces Factory Automation Motor/Motion Control HVAC and Building Automation Networks Networked Security Stations PACKAGE SOIC (16) BODY SIZE (NOM) 10.30 mm × 7.50 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. Typical Application Circuit 4 X-FMR 8 7 6 3 2 LDO D1 1 C4 C5 2 C1 5 1 3 IN OUT 5 EN C6 GND NC 1 D2 1 VCC2 D1 16 C3 2 C2 Control Circuitry D2 4 V CC1 3 GND1 5 R 6 RE 7 DE 8 D A B Z Y 14 Isolated Supply to other Components 13 12 RS-485 Bus Interface 11 15 GND2 9, 10 ISO35T 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 6.1 6.2 6.3 6.4 6.5 6.6 Absolute Maximum Ratings ...................................... 3 ESD Ratings.............................................................. 4 Recommended Operating Conditions....................... 4 Thermal Information .................................................. 4 Power Ratings........................................................... 4 Supply Current and Common Mode Transient Immunity..................................................................... 5 6.7 RS-485 Driver Electrical Characteristics................... 5 6.8 RS-485 Receiver Electrical Characteristics .............. 6 6.9 Transformer Driver Characteristics ........................... 6 6.10 RS-485 Driver Switching Characteristics ................ 6 6.11 RS-485 Receiver Switching Characteristics ........... 7 6.12 Typical Characteristics ............................................ 8 7 Parameter Measurement Information ................ 10 8 Detailed Description ............................................ 14 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 14 14 14 16 Application and Implementation ........................ 19 9.1 Application Information............................................ 19 9.2 Typical Application ................................................. 19 10 Power Supply Recommendations ..................... 22 11 Layout................................................................... 22 11.1 Layout Guidelines ................................................. 22 11.2 Layout Example .................................................... 23 12 Device and Documentation Support ................. 24 12.1 12.2 12.3 12.4 12.5 Documentation Support ........................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 24 24 24 24 24 13 Mechanical, Packaging, and Orderable Information ........................................................... 24 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (July 2011) to Revision D Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • VDE standard changed to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ...................................................................... 1 Changes from Revision B (June 2011) to Revision C Page • Deleted MIN and MAX values from the tr_D, tf_D, and tBBM specifications in theTransformer Driver Chara table. ................. 6 • Changed conditions statement from 1.9V to 2.4V; and changed TYP value from 230 to 350 for fSt specification in Transformer Driver Characteristics table................................................................................................................................ 6 • Added "D1 and D2 connected to 50-Ω pull-up resistors" to conditions statement for tr_D, tf_D, and tBBM specifications in theTransformer Driver Chara table. ................................................................................................................................... 6 Changes from Revision A (March 2011) to Revision B • Changed pin 16 From: VCC1 To: VCC2 in the DW Package drawing ....................................................................................... 3 Changes from Original (November 2010) to Revision A • 2 Page Page Changed the data sheet From: Product Preview To: Production data................................................................................... 1 Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T ISO35T www.ti.com SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 5 Pin Configuration and Functions DW Package 16-Pin SOIC Top View D1 D2 GND1 VCC1 R RE DE D 1 2 16 15 3 4 5 6 7 8 14 13 12 11 10 9 VCC2 GND2 A B Z Y NC GND2 Pin Functions PIN NAME NO. I/O DESCRIPTION A 14 I Non-inverting Receiver Input B 13 I Inverting Receiver Input D 8 I Driver Input D1 1 O Transformer Driver Terminal 1, Open-Drain Output D2 2 O Transformer Driver Terminal 2, Open-Drain Output DE 7 I Driver Enable Input GND1 3 – Logic-side Ground GND2 9, 15 – Bus-side Ground. Both pins are internally connected. NC 10 – No Connect. This pin is not connected to any internal circuitry. R 5 O Receiver Output RE 6 I Receiver Enable Input. This pin has complementary logic. VCC1 4 – Logic-side Power Supply VCC2 16 – Bus-side Power Supply Y 11 O Non-inverting Driver Output Z 12 O Inverting Driver Output 6 Specifications 6.1 Absolute Maximum Ratings See (1) MIN MAX UNIT –0.3 6 V –9 14 V 14 V 50 V VCC1,VCC2 Input supply voltage (2) VA,VB,VY,VZ Voltage at any bus I/O terminal (A, B, Y, Z) VD1,VD2 Voltage at D1, D2 V(TRANS) Voltage input, transient pulse through 100Ω, see Figure 22 (A,B,Y,Z) –50 VI Voltage input at any D, DE or RE terminal –0.5 7 V IO Receiver output current –10 10 mA ID1,ID2 Transformer Driver Output Current 450 mA TJ Maximum junction temperature 170 °C TSTG Storage temperature 150 °C (1) (2) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values. Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T 3 ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) Electrostatic discharge V(ESD) Bus pins and GND1 ±6000 Bus pins and GND2 ±16000 All pins ±4000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) V ±1500 Machine model (MM), ANSI/ESDS5.2-1996 (1) (2) UNIT ±200 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN NOM 3 UNIT VCC1,VCC2 Supply Voltage VI or VIC Voltage at any bus terminal (separately or common-mode) VIH High-level input voltage VIL Low-level input voltage VID Differential input voltage RL Differential load resistance IO Output Current TA Ambient temperature -40 85 °C TJ Operating junction temperature –40 150 °C 1 / tUI Signaling Rate D, DE, RE A with respect to B 3.3 MAX 3.6 V –7 12 V 2 VCC 0 0.8 –12 54 Driver Receiver V 12 V Ω 60 –60 60 –8 8 1 mA Mbps 6.4 Thermal Information ISO35T THERMAL METRIC (1) DW (SOIC) UNIT 16 PINS RθJA Junction-to-ambient thermal resistance 80.5 °C/W RθJC(top) Junction-to-case (top) thermal resistance 43.8 °C/W RθJB Junction-to-board thermal resistance 49.7 °C/W ψJT Junction-to-top characterization parameter 13.8 °C/W ψJB Junction-to-board characterization parameter 41.4 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Power Ratings over operating free-air temperature range (unless otherwise noted) PARAMETER PD 4 Maximum device power dissipation TEST CONDITIONS VALUE UNIT VCC1 = VCC2 = 3.6 V, TJ = 150°C, RL = 54 Ω, CL = 50 pF (Driver), CL = 15 pF (Receiver), Input a 0.5-MHz 50% duty cycle square wave to Driver and Receiver 373 mW Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T ISO35T www.ti.com SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 6.6 Supply Current and Common Mode Transient Immunity over recommended operating conditions (unless otherwise noted) PARAMETER ICC1 (1) ICC2 (1) CMTI (1) TEST CONDITIONS MIN TYP MAX Logic-side quiescent supply current DE & RE = 0V or VCC1 (Driver and Receiver Enabled or Disabled), D = 0 V or VCC1, No load 4.5 8 Bus-side quiescent supply current RE = 0 V or VCC1, DE = 0 V (driver disabled), No load 7.5 13 9 16 Common-mode transient immunity RE = 0 V or VCC1, DE = VCC1 (driver enabled), D = 0 V or VCC1, No Load See Figure 23 25 UNIT mA mA 50 kV/µs ICC1 and ICC2 are measured when device is connected to external power supplies, VCC1 & VCC2. In this case, D1 & D2 are open and disconnected from external transformer. 6.7 RS-485 Driver Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER |VOD| TEST CONDITIONS Differential output voltage magnitude MIN TYP MAX IO = 0 mA (No Load) 2.5 RL = 54 Ω (RS-485), See Figure 11 1.5 2 2 2.3 RL = 100 Ω (RS-422) (1), See Figure 11 Vtest = –7 V to +12 V, See Figure 12 Δ|VOD| Change in magnitude of the differential output voltage See Figure 11 and Figure 12 VOC(SS) Steady-state common-mode output voltage ΔVOC(SS) UNIT VCC2 V 1.5 –0.2 0 0.2 V See Figure 13 1 2.6 3 V Change in steady-state common-mode output voltage See Figure 13 –0.1 0.1 V VOC(pp) Peak-to-peak common-mode output voltage See Figure 13 II Input current, D & DE VI at 0 V or VCC1 10 µA IOZ High-impedance state output current VY or VZ = 12V, VCC = 0 V or 3 V, DE = 0 V VY or VZ = –7 V, VCC = 0 V or 3 V, DE = 0 V IOS(P) (2) Peak short-circuit output current VY or VZ = –7 V to +12 V, See Figure 14 IOS(SS) (2) Steady-state short-circuit output current VY or VZ = –7 V to +12 V, See Figure 14 C(OD) Differential output capacitance VI = 0.4 sin (4E6πt) + 0.5V, DE at 0 V (1) (2) 0.25 –10 V 90 Other input at 0 V µA –10 Other input at 0 V 300 -250 mA 250 16 mA pF VCC2 = 3.3 V ± 5% This device has thermal shutdown and output current-limiting features to protect in short-circuit fault condition. Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T 5 ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.8 RS-485 Receiver Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN VIT(+) Positive-going input threshold voltage IO = -8 mA VIT(–) Negative-going input threshold voltage IO = 8 mA Vhys Hysteresis voltage (VIT+ – VIT–) VOH High-level output voltage See Figure 18; VID = +200 mV, IO = -8 mA VOL Low-level output voltage See Figure 18; VID = –200 mV, IO = 8 mA IO(Z) High-impedance state output current VO = 0 or VCC1, RE = VCC1 MAX –20 –200 50 VA or VB = 12 V, VCC2 = 0 V Bus input current VA or VB = –7 V VA or VB = -7 V, VCC2 = 0 V mV V –1 Other input at 0 V UNIT mV 2.4 VA or VB = 12 V IA, IB TYP 0.4 V 1 µA 50 100 60 100 –100 –40 –100 –30 µA IIH High-level input current, RE VIH = 2. V –10 10 IIL Low-level input current, RE VIL = 0.8 V –10 10 RID Differential input resistance Measured between A & B CID Differential input capacitance VI = 0.4 sin (4E6πt) + 0.5V, DE at 0 V 96 µA kΩ 2 pF 6.9 Transformer Driver Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 300 400 550 kHz 1 2.5 Ω fOSC Oscillator frequency VCC1 = 3.3V ± 10%, D1 and D2 connected to Transformer RON Switch on resistance D1 and D2 connected to 50Ω pull-up resistors tr_D D1, D2 output rise time VCC1 = 3.3V ± 10%, see Figure 24, D1 and D2 connected to 50-Ω pull-up resistors. 70 ns tf_D D1, D2 output fall time VCC1 = 3.3V ± 10%, see Figure 24, D1 and D2 connected to 50-Ω pull-up resistors. 80 ns fSt Startup frequency VCC1 = 2.4 V, D1 and D2 connected to Transformer 350 kHz tBBM Break before make time delay VCC1 = 3.3V ± 10%, see Figure 24, D1 & D2 connected to 50Ω pull-up resistors. 140 ns 6.10 RS-485 Driver Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay tsk(p) Pulse skew (|tPHL – tPLH|) tr Differential output signal rise time tf Differential output signal fall time tPHZ Propagation delay, high-level-to-high-impedance output tPZH Propagation delay, high-impedance-to-high-level output tPLZ Propagation delay, low-level to high-impedance output tPZL Propagation delay, high-impedance-to-low-level output 6 See Figure 15 See Figure 16 See Figure 17 Submit Documentation Feedback MIN TYP MAX 205 340 1.5 120 185 300 120 180 300 UNIT ns 205 530 330 ns 530 Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T ISO35T www.ti.com SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 6.11 RS-485 Receiver Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay tsk(p) Pulse skew (|tPHL – tPLH|) tr Output signal rise time tf Output signal fall time tPHZ, tPZH Propagation delay, high-level to high-impedance output Propagation delay, high-impedance to high-level output See Figure 20, DE at 0 V tPLZ tPZL Propagation delay, low-level to high-impedance output Propagation delay, high-impedance to low-level output See Figure 21, DE at 0 V MIN TYP MAX 85 115 13 See Figure 19 1 4 1 4 13 25 13 25 Product Folder Links: ISO35T ns ns Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated UNIT 7 ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.12 Typical Characteristics 60 25 VCC1 = VCC2 = 3.3 V, No Load TA = 25°C ICC2 50 ICC - Supply Current - mA ICC - Supply Current - mA 20 PRBS Data 216 - 1 ICC2 15 10 ICC1 5 0 0 200 400 600 Data Rate - Kbps 800 30 16 PRBS Data 2 - 1 20 ICC1 0 0 1000 200 400 600 Data Rate - Kbps 800 1000 Figure 2. Supply Current vs Data Rate With Load 230 100 VCC1 = VCC2 = 3.3 V, VCC1 = VCC2 = 3.3 V, CL = 15 pF Receiver Propagation Delay - ns RL = 54 W, CL = 50 pF, 225 Driver Propagation Delay - ns Driver: RL = 54 W, CL = 50 pF, Receiver: CL = 15 pF TA = 25°C 10 Figure 1. Supply Current vs Data Rate With No Load 220 215 VCC1 = VCC2 = 3.3 V, 40 tPHL 210 tPLH 205 90 tPHL 80 tPLH 200 195 -40 -15 10 35 60 TA - Free-Air Temperature - °C 70 -40 85 Figure 3. Driver Propagation Delay vs Free-Air Temperature 1200 VCC1 = VCC2 = 3.3 V, CL = 15 pF VCC1 = VCC2 = 3.3 V, RL = 54 W, CL = 50 pF 1100 Receiver Rise, Fall Time - ps Driver Rise, Fall Time - ns 215 210 205 200 tr tf 1000 -15 10 35 60 TA - Free-Air Temperature - °C tf 800 tr 600 -40 85 Figure 5. Driver Rise, Fall Time vs Free-Air Temperature 8 900 700 190 185 -40 85 Figure 4. Receiver Propagation Delay vs Free-Air Temperature 220 195 -15 10 35 60 TA - Free-Air Temperature - °C -15 10 35 60 TA - Free-Air Temperature - °C 85 Figure 6. Receiver Rise, Fall Time vs Free-Air Temperature Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T ISO35T www.ti.com SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 Typical Characteristics (continued) 3.5 140 o TA = 25 C 120 3 VCC2 = 3.3 V 100 2.5 IO - Output Current - mA VOD - Differential Output Voltage - V VCC2 = 3.6 V 2 VCC2 = 3 V 1.5 100 W 1 50 W TA = 25°C 0 10 60 40 20 0.5 0 80 20 30 40 50 IL - Load Current - mA 60 0 0 70 1 2 3 4 5 VO - Output Voltage - V Figure 7. Differential Output Voltage vs Load Current Figure 8. Receiver Low-Level Output Current vs Low-Level Output Voltage -120 60 o TA = 25 C TA = 25°C 40 II - Bus Input Current - mA IO - Output Current - mA -100 -80 -60 -40 20 0 VCC = 3.3 V -20 -40 -20 0 0 1 2 3 4 -60 -7 -4 -1 2 5 8 11 14 VI - Bus Input Voltage - V VO - Output Voltage - V Figure 9. Receiver High-Level Output Current vs High-Level Output Voltage Figure 10. Bus Input Current vs Input Voltage Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO35T 9 ISO35T SLLSE26D – NOVEMBER 2010 – REVISED OCTOBER 2015 www.ti.com 7 Parameter Measurement Information VCC1 VCC2 IY DE Y VOD D RL D 0 or 3 V Z GND1 375 W DE Y II 0 or VCC1 . + VOD - Z 60 W IZ GND2 VI 375 W GND2 VY VZ GND1 VTEST = -7 V to 12 V GND2 Figure 11. Driver VOD Test and Current Definitions VCC1 IY DE 27 W ±1% Y II Input D VOD Z GND2 GND1 VI 27 W ±1% IZ VZ GND1 Figure 12. Driver VOD With Common-Mode Loading Test Circuit VY Y VY Z VZ VOC VOC(SS) VOC(p-p) VOC Input Generator: PRR= 100 kHz, 50 % duty cycle, t r < 6ns , t f
ISO35TDWR 价格&库存

很抱歉,暂时无法提供与“ISO35TDWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO35TDWR
  •  国内价格
  • 1+41.56920
  • 10+36.67680
  • 30+33.69600
  • 100+31.19040

库存:207