0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO7420D

ISO7420D

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    General Purpose Digital Isolator 2500Vrms 2 Channel 1Mbps 25kV/µs CMTI 8-SOIC (0.154", 3.90mm Width)

  • 数据手册
  • 价格&库存
ISO7420D 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 ISO742x Low-Power Dual-Channel Digital Isolators 1 Features 3 Description • • The ISO7420, ISO7420M and ISO7421 provide galvanic isolation up to 2500 VRMS for 1 minute per UL. These digital isolators have two isolated channels. Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO2) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuit from entering the local ground and interfering with or damaging sensitive circuitry. The suffix M indicates wide temperature range (–40°C to 125°C). 1 • • • • • • • • • Highest Signaling Rate: 1 Mbps Low Power Consumption, Typical ICC per Channel (3.3-V operation): – ISO7420: 1.1 mA, ISO7421: 1.5 mA Low Propagation Delay – 9 ns Typical Low Skew – 300 ps Typical Wide TA Range: –40°C to 125°C (M-Grade) 50-kV/μs Transient Immunity, Typical Over 25-Year Isolation Integrity at Rated Voltage Operates From 3.3-V and 5-V Supply and Logic Levels 3.3-V and 5-V Level Translation Narrow Body SOIC-8 Package Safety and Regulatory Approvals: – 4242 VPK Isolation per DIN V VDE V 0884-10 and DIN EN 61010-1 – 2500 VRMS Isolation for 1 minute per UL 1577 – CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 61010-1 Standards – CQC Certification per GB4943.1-2011 These devices have TTL input thresholds and require two supply voltages, 3.3 or 5 V, or any combination. All inputs are 5-V tolerant when supplied from a 3.3-V supply. Note: The ISO7420 and ISO7421 are specified for signaling rates up to 1 Mbps. Due to their fast response time, under most cases, these devices will also transmit data with much shorter pulse widths. Designers should add external filtering to remove spurious signals with input pulse duration 175 To 400 .............................................. 15 • Changed the text of NOTE: ................................................................................................................................................. 16 • Changed the REGULATORY INFORMATION table ............................................................................................................ 17 Changes from Revision D (July 2010) to Revision E Page • Added new fifth bullet to Features and deleted text from 4-kVpeak bullet item ..................................................................... 1 • Changed first paragraph in Description from: ISO7420M, ISO7421, and ISO7421M to: ISO7420M and ISO7421 .............. 1 • Changed ISO742xM in the ELEC CHAR and SWITCHING CHAR table to ISO7420M ........................................................ 8 • Changed ISO742xM in the ELEC CHAR and SWITCHING CHAR table to ISO7420M ........................................................ 9 • Changed ISO742xM in the ELEC CHAR and SWITCHING CHAR table to ISO7420M ........................................................ 9 • Changed ISO742xM in the ELEC CHAR and SWITCHING CHAR table to ISO7420M ...................................................... 10 • Changed the MAX value in the SWITCHING CHAR table 2nd row from 3.5 to 3.7 and 3rd row from 4 to 4.9................... 10 • Changed the MAX value in the 2nd SWITCHING CHAR table 2nd row from 4 to 5.6 and 3rd row from 5 to 6.3............... 10 • Changed the MAX value in the 3rd SWITCHING CHAR table 3rd row from 5 to 8.5 ......................................................... 11 • Changed the MAX value in the 4rd SWITCHING CHAR table 3rd row from 6 to 6.8 ......................................................... 11 • Changed Regulatory Information table last row, last column from: pending (E181974) to: E181974 ................................. 17 • Changed Note 2 in Function Table from: ISO7420M, ISO7421, and ISO7421M to: ISO7420M and ISO7421................... 17 Changes from Revision C (March 2010) to Revision D Page • Updated the Features List ...................................................................................................................................................... 1 • Deleted devices ISO7420F and ISO7420FM from the data sheet......................................................................................... 1 • Updated the device Description. Add paragraph - Note: The ISO7420 and ISO7421........................................................... 1 • Added Tstg to the Absolute Maximum Ratings Table ............................................................................................................ 7 • Updated the Recommended Operating Conditions table....................................................................................................... 7 • Updates throughout the Electrical Characteristics and Switching Characteristics tables ...................................................... 8 • Updated the Supply Current test conditions........................................................................................................................... 8 • Deleted the SUPPLY CURRENT vs SIGNAL RATE (ALL CHANNELS) graphs and the EYE DIAGRAM plots ................. 12 • Changed Figure 7................................................................................................................................................................. 13 • Changed the VIORM, VPR, and VIOTM unit values From: V To: Vpeak .................................................................................... 15 • Changed Minimum internal gap MIN value From: 0.008 To: 0.014mm ............................................................................... 15 • Changed the Barrier capacitance, input to output test conditions........................................................................................ 15 • Changed the Input capacitance test conditions ................................................................................................................... 15 • Changed VI From: 5.5 V To: 5.25 V ..................................................................................................................................... 16 • Changed From: 107mA To: 112mA...................................................................................................................................... 16 • Changed VI From: 3.6 V To: 3.45 V ..................................................................................................................................... 16 • Changed From: 164mA To: 171mA...................................................................................................................................... 16 • Changed Figure 10............................................................................................................................................................... 16 • Deleted the ICC equations section......................................................................................................................................... 16 • Changed the Function Table Output values for PU (Open) From: H/L To: H ...................................................................... 17 • Changed Figure 11............................................................................................................................................................... 17 Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 3 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com Changes from Revision B (February 2010) to Revision C Page • Added devices ISO7420F and ISO7420FM to the data sheet ............................................................................................... 1 • Added The suffix M indicates wide temperature range (–55°C to 125°C) and the suffix F indicates output-low option in fail-safe condition. All other devices without the F suffix default to output-high in fail-safe state. ..................................... 1 • Added ISO7420F and ISO7420FM to the Available Options Table ....................................................................................... 6 • Changed value from a max of 4 mA to a min of –4 mA ......................................................................................................... 7 • Changed value from a min of –4 mA to a max of 4 mA ........................................................................................................ 7 • Changed Electrical Characteristics Conditions....................................................................................................................... 8 • Deleted Ci from the ELECTRICAL CHARACTERISTICS....................................................................................................... 8 • Added (All inputs switching with square wave clock signal for dynamic ICC measurement)................................................. 8 • Changed ELECTRICAL CHARACTERISTICS conditions...................................................................................................... 9 • Added High-level output voltage ISO7420 / 7421 (3.3-V side) test condition ....................................................................... 9 • Changed High-level output voltage min value........................................................................................................................ 9 • Deleted CI specification .......................................................................................................................................................... 9 • Added (All inputs switching with square wave clock signal for dynamic ICC measurement)................................................. 9 • Changed ELECTRICAL CHARACTERISTICS conditions...................................................................................................... 9 • Added High-level output voltage ISO7420 / 7421 (5-V side) test condition ........................................................................... 9 • Changed High-level output voltage min value........................................................................................................................ 9 • Deleted CI specification .......................................................................................................................................................... 9 • Added (All inputs switching with square wave clock signal for dynamic ICC measurement)................................................. 9 • Changed ELECTRICAL CHARACTERISTICS conditions.................................................................................................... 10 • Deleted CI specification ........................................................................................................................................................ 10 • Added (All inputs switching with square wave clock signal for dynamic ICC measurement)............................................... 10 • Changed SWITCHING CHARACTERISTICS conditions ..................................................................................................... 10 • Changed PWD parameter from duration to width ................................................................................................................ 10 • Changed Switching Characteristics conditions..................................................................................................................... 10 • Changed Pulse duration distortion to Pulse width distortion ............................................................................................... 10 • Changed Switching Characteristics conditions..................................................................................................................... 11 • Changed SWITCHING CHARACTERISTICS conditions ..................................................................................................... 11 • Changed Pulse duration distortion to Pulse width distortion ............................................................................................... 11 • Changed SWITCHING CHARACTERISTICS conditions ..................................................................................................... 11 • Changed Pulse duration distortion to Pulse width distortion ................................................................................................ 11 • Changed Figure 7................................................................................................................................................................. 13 • Added input to output and note 1 to Isolation resistance, input to output ............................................................................ 15 • Changed the Isolation resistance test conditions ................................................................................................................. 15 • Changed the Isolation resistance test conditions ................................................................................................................. 15 • Added note 1 to Barrier capacitance, input to output ........................................................................................................... 15 • Added Input capacitance ...................................................................................................................................................... 15 • Changed TJ = 170°C to TJ = 150°C...................................................................................................................................... 16 • Changed From: 124mA To: 107mA...................................................................................................................................... 16 • Changed TJ = 170°C to TJ = 150°C...................................................................................................................................... 16 • Changed From: 190mA To: 164mA...................................................................................................................................... 16 • Changed Figure 10............................................................................................................................................................... 16 • Changed the Function Table Output values for PU (Open) From: H To: H/L ...................................................................... 17 • Changed the Function Table Output values for PU (X) From: H To: H/L............................................................................. 17 • Changed the Function Table Output values for PU (X) From: H/L To: H............................................................................. 17 4 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 • Added Note (2) in the Function Table .................................................................................................................................. 17 • Changed Figure 11............................................................................................................................................................... 17 Changes from Revision A (December 2009) to Revision B • Page Switching Characteristics Table, Added Note (2) - Typical specifications are measured at ideal conditions of 25°C. Max or Min specifications are measured at worst case conditions for VCC and temperature. ............................................... 8 Changes from Original (June 2009) to Revision A Page • Added devices ISO7420 and ISO7420M to the data sheet ................................................................................................... 1 • Added the ICC equations section........................................................................................................................................... 16 Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 5 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 5 Pin Configuration and Functions 1 INA 2 INB 3 GND1 4 ISO7421: D Package 8-Pin SOIC (Top View) 8 VCC2 7 OUTA 6 OUTB 5 GND2 VCC1 1 OUTA 2 INB 3 GND1 4 Isolation VCC1 Isolation ISO7420: D Package 8-Pin SOIC (Top View) 8 VCC2 7 INA 6 OUTB 5 GND2 Pin Functions PIN I/O DESCRIPTION NAME ISO7420 ISO7421 GND1 4 4 — Ground connection for VCC1 GND2 5 5 — Ground connection for VCC2 INA 2 7 I Input, channel A INB 3 3 I Input, channel B OUTA 7 2 O Output, channel A OUTB 6 6 O Output, channel B VCC1 1 1 — Power supply, VCC1 VCC2 8 8 — Power supply, VCC2 6 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 6 Specifications 6.1 Absolute Maximum Ratings (1) See MIN MAX UNIT VCC Supply voltage (2), VCC1, VCC2 –0.5 6 V VI Voltage at IN, OUT –0.5 VCC + 0.5 (3) V IO Output current –15 15 mA TJ(max) Maximum junction temperature 150 °C Tstg Storage temperature 150 °C (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values. Maximum voltage must not exceed 6 V. 6.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 V(ESD) (1) Electrostatic discharge (1) UNIT ±4000 Field-induced charged-device model, JEDEC Standard 22, Test Method C101 ±1500 Machine model, ANSI/ESDS5.2-1996 ±200 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN NOM MAX UNIT VCC1, VCC2 Supply voltage - 3.3-V operation 3.15 3.3 3.45 Supply voltage - 5-V operation 4.75 5 5.25 IOH High-level output current IOL Low-level output current VIH High-level input voltage 2 5.25 V VIL Low-level input voltage 0 0.8 V 1/tui Signaling rate 0 1 tui Input pulse duration 1 TJ (1) Junction temperature TA Ambient temperature (1) –4 V mA 4 mA Mbps us –40 136 ISO7420, ISO7421 -40 25 105 ISO7420M -40 25 125 °C °C To maintain the recommended operating conditions for TJ, see the Thermal Information. Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 7 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 6.4 Thermal Information ISO742x THERMAL METRIC (1) D (SOIC) UNIT 8 PINS Low-K Board 212 High-K Board 116.6 RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 71.6 °C/W RθJB Junction-to-board thermal resistance 57.3 °C/W ψJT Junction-to-top characterization parameter 28.3 °C/W ψJB Junction-to-board characterization parameter 56.8 °C/W (1) °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics: VCC1 and VCC2 at 5 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER VOH High-level output voltage VOL Low-level output voltage MIN TYP IOH = –4 mA; see Figure 6. TEST CONDITIONS VCCO (1) – 0.8 4.6 IOH = –20 μA; see Figure 6. VCCO – 0.1 5 High-level input current IIL Low-level input current 0.2 0.4 IOL = 20 μA; see Figure 6. 0 0.1 CMTI Common-mode transient immunity 400 INx at 0 V or VCCI 25 μA μA –10 VI = VCCI or 0 V; see Figure 8. V mV 10 (1) UNIT V IOL = 4 mA; see Figure 6. VI(HYS) Input threshold voltage hysteresis IIH MAX 50 kV/μs SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT) ISO7420 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 0.4 1 3 6 2 4 2 4 mA ISO7421 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 (1) 8 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load mA VCCI = Input-side power supply, VCCO = Output-side power supply Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 6.6 Electrical Characteristics: VCC1 at 5 V ±5%, VCC2 at 3.3 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS IOH = –4 mA; see Figure 6. VOH High-level output voltage ISO7421 (5-V side) ISO7420 / 7421 (3.3-V side). IOH = –20 μA; see Figure 6, VOL Low-level output voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current IIL Low-level input current CMTI Common-mode transient immunity MIN VCCO (1) TYP – 0.8 4.6 VCCO – 0.4 3 VCCO – 0.1 VCC MAX V IOL = 4 mA; see Figure 6. 0.2 0.4 IOL = 20 μA; see Figure 6. 0 0.1 400 INx at 0 V or VCCI VI = VCCI or 0 V; seeFigure 8 . μA μA –10 25 V mV 10 (1) UNIT 40 kV/μs SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT) ISO7420 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 0.4 1 mA 2 4.5 mA ISO7421 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 (1) DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 2 4 mA 1.5 3.5 mA MAX VCCI = Input-side power supply, VCCO = Output-side power supply 6.7 Electrical Characteristics: VCC1 at 3.3 V ±5%, VCC2 at 5 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS IOH = –4 mA; see Figure 6. VOH High-level output voltage ISO7420 / 7421 (5-V side). ISO7421 (3.3-V side) IOH = –20 μA; see Figure 6 VOL Low-level output voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current IIL Low-level input current CMTI Common-mode transient immunity MIN TYP VCCO (1) – 0.8 4.6 VCCO – 0.4 3 VCCO – 0.1 VCC V IOL = 4 mA; see Figure 6. 0.2 0.4 IOL = 20 μA; see Figure 6. 0 0.1 400 INx at 0 V or VCCI (1) VI = VCCI or 0 V; see Figure 8. V mV 10 μA μA –10 25 UNIT 40 kV/μs SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT) ISO7420 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 0.2 0.7 3 6 1.5 3.5 2 4 mA ISO7421 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 (1) mA VCCI = Input-side power supply, VCCO = Output-side power supply Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 9 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 6.8 Electrical Characteristics: VCC1 and VCC2 at 3.3 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS VOH High-level output voltage VOL Low-level output voltage MIN IOH = –4 mA; see Figure 6. VCCO IOH = –20 μA; see Figure 6. (1) – 0.4 3 VCCO – 0.1 3.3 High-level input current IIL Low-level input current CMTI Common-mode transient immunity MAX 0.2 0.4 IOL = 20 μA; see Figure 6. 0 0.1 400 μA μA –10 VI = VCCI or 0 V; seeFigure 8 . V mV 10 INx at 0 V or VCCI (1) UNIT V IOL = 4 mA; see Figure 6. VI(HYS) Input threshold voltage hysteresis IIH TYP 25 40 kV/μs SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT) ISO7420 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 0.2 0.7 2 4.5 1.5 3.5 1.5 3.5 mA ISO7421 ICC1 Supply current for VCC1 ICC2 Supply current for VCC2 (1) mA VCCI = Input-side power supply, VCCO = Output-side power supply 6.9 Power Dissipation Characteristics ISO742x THERMAL METRIC D (SOIC) UNIT 8 PINS PD VCC1 = VCC2 = 5.25 V, TJ = 150°C, CL = 15 pF Input a 1-Mbps 50% duty-cycle square wave Device power dissipation 55 mW 6.10 Switching Characteristics: VCC1 and VCC2 at 5 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER tPLH, tPHL PWD (1) TEST CONDITIONS Propagation delay time MIN See Figure 6. MAX 9 14 UNIT ns 0.3 3.7 ns tsk(pp) Part-to-part skew time 4.9 ns tsk(o) Channel-to-channel output skew time 3.6 ns tr Output signal rise time tf Output signal fall time tfs Fail-safe output delay time from input power loss (1) Pulse width distortion |tPHL – tPLH| TYP See Figure 6. 1 See Figure 7. ns 1 ns 6 μs Also known as pulse skew. 6.11 Switching Characteristics: VCC1 at 5 V ±5%, VCC2 at 3.3 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay time PWD (1) Pulse width distortion |tPHL – tPLH| tsk(pp) Part-to-part skew time tsk(o) Channel-to-channel output skew time tr Output signal rise time (1) 10 See Figure 6. See Figure 6. MIN TYP MAX 10 17 ns 0.5 5.6 ns 6.3 ns 4 ns 2 UNIT ns Also known as pulse skew. Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 Switching Characteristics: VCC1 at 5 V ±5%, VCC2 at 3.3 V ±5% (continued) TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS tf Output signal fall time tfs Fail-safe output delay time from input power loss MIN See Figure 7. TYP MAX UNIT 2 ns 6 μs 6.12 Switching Characteristics: VCC1 at 3.3 V ±5%, VCC2 at 5 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER tPLH, tPHL PWD (1) TEST CONDITIONS Propagation delay time Pulse width distortion |tPHL – tPLH| tsk(pp) Part-to-part skew time tsk(o) Channel-to-channel output skew time tr Output signal rise time tf Output signal fall time tfs Fail-safe output delay time from input power loss (1) MIN See Figure 6. TYP MAX 10 17 ns 0.5 See Figure 6. UNIT 4 ns 8.5 ns 4 ns 2 See Figure 7. ns 2 ns 6 μs Also known as pulse skew. 6.13 Switching Characteristics: VCC1 and VCC2 at 3.3 V ±5% TA = –40°C to 125°C for ISO7420M, TA = –40°C to 105°C for ISO742x PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay time PWD (1) Pulse width distortion |tPHL – tPLH| tsk(pp) Part-to-part skew time tsk(o) Channel-to-channel output skew time tr Output signal rise time tf Output signal fall time tfs Fail-safe output delay time from input power loss (1) See Figure 6. See Figure 6. See Figure 7. MIN TYP MAX UNIT 12 20 ns 1 5 ns 6.8 ns 5.5 ns 2 ns 2 ns 6 μs Also known as pulse skew. Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 11 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 6.14 Typical Characteristics 1.6 12 Input Voltage Switching Threshold − V tpd − Propagation Delay Time − ns 14 VCC1, VCC2 at 3.3 V 10 8 VCC1, VCC2 at 5 V 6 4 2 0 −55 −35 −15 5 25 45 65 85 105 TA − Free-Air Temperature − °C 1.1 VIT−, 5 V 1.0 VIT−, 3.3 V 0.9 −35 −15 5 25 45 65 85 105 TA − Free-Air Temperature − °C IOH − High-Level Output Current − mA Fail-Safe Voltage Threshold − V 1.2 125 G005 Figure 2. Input Voltage Switching Threshold vs Free-Air Temperature 2.61 FS+ 2.59 2.58 2.57 2.56 FS− 2.54 2.53 2.52 −55 VIT+, 3.3 V 1.3 G004 2.62 2.55 1.4 0.8 −55 125 Figure 1. Propagation Delay Time vs Free-Air Temperature 2.60 VIT+, 5 V 1.5 0 TA = 25°C −10 −20 −30 −40 VCC1, VCC2 at 3.3 V −50 −60 −70 VCC1, VCC2 at 5 V −80 −90 −35 −15 5 25 45 65 85 105 TA − Free-Air Temperature − °C 0 125 1 2 3 4 VOH − High-Level Output Voltage − V G006 Figure 3. Fail-Safe Voltage Threshold vs Free-Air Temperature 5 6 G007 Figure 4. High-Level Output Current vs High-Level Output Voltage IOL − Low-Level Output Current − mA 80 TA = 25°C 70 60 VCC1, VCC2 at 5 V 50 40 VCC1, VCC2 at 3.3 V 30 20 10 0 0 1 2 3 4 5 6 VOL − Low-Level Output Voltage − V G008 Figure 5. Low-Level Output Current vs Low-Level Output Voltage 12 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 Isolation Barrier 7 Parameter Measurement Information IN Input Generator 50 W VI (1) VCCI VI OUT 1.4 V 1.4 V 0V VO CL tPLH (2) tPHL 90% 10% 50% VO 50% VOH VOL tr tf (1) The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. At the input, a 50-Ω resistor is required to terminate the Input Generator signal. It is not needed in actual application. (2) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 6. Switching Characteristic Test Circuit and Voltage Waveforms VI VCCI VCCI (1) Isolation Barrier IN = 0 V VI 2.7 V 0V OUT tfs VO VOH CL 50% VO (1) Fail-Safe HIGH VOL CL = 15 pF ± 20% includes instrumentation and fixture capacitance. Figure 7. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms S1 IN C = 0.1 μ F ±1% Isolation Barrier VCCI VCCO C = 0.1 μ F ±1% Pass-fail criteria – output must remain stable. OUT + CL (1) GNDI VOH or VOL GNDO – + VCM – (1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8. Common-Mode Transient Immunity Test Circuit Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 13 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 8 Detailed Description 8.1 Overview The isolator in Figure 9 is based on a capacitive isolation barrier technique. The I/O channel of the device consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to 1 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a single- ended input signal entering the HF-channel is split into a differential signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to switch from the high- to the low-frequency channel. Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer. 8.2 Functional Block Diagram Figure 9. Conceptual Block Diagram of a Digital Capacitive Isolator 14 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 8.3 Feature Description 8.3.1 Insulation Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER (1) TEST CONDITIONS SPECIFICATION UNIT DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM Maximum working insulation voltage VPR Input-to-output test voltage VIOTM Transient overvoltage RS Insulation resistance t = 1 s (100% production), partial discharge 5 pC t = 60 s (qualification) t = 1 s (100% production) VIO = 500 V at TS 566 VPK 1062 VPK 4242 VPK >109 Ω Pollution degree 2 UL 1577 VISO (1) VTEST = VISO = 2500 VRMS, t = 60 s (qualification) VTEST = 1.2 x VISO = 3000 VRMS, t = 1 s (100% production) Isolation voltage per UL 2500 VRMS Climatic Classification 40/125/21 Table 1. IEC 60664-1 Ratings Table PARAMETER TEST CONDITIONS SPECIFICATION Material group II Installation classification Rated mains voltage ≤ 150 VRMS I–IV Rated mains voltage ≤ 300 VRMS I–III 8.3.2 Package Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT L(I01) Minimum air gap (clearance) Shortest terminal-to-terminal distance through air 4 mm L(I02) Minimum external tracking (creepage) Shortest terminal-to-terminal distance across the package surface 4 mm CTI Tracking resistance (comparative tracking index) DIN EN 60112 (VDE 0303-11); IEC 60112 >400 DTI Distance through the insulation Minimum internal gap (internal clearance) 0.014 V mm VIO = 500 V, TA = 25°C 12 >10 Ω VIO = 500 V, 100°C ≤ TA ≤ max >1011 Ω RIO Isolation resistance, input to output (1) CIO Barrier capacitance, input to output (1) VIO = 0.4 sin (2πft), f = 1 MHz 1 pF CI Input capacitance (2) VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V 1 pF (1) (2) All pins on each side of the barrier tied together creating a two-terminal device. Measured from input pin to ground. Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 15 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com SPACER NOTE Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. 8.3.3 Safety Limiting Values Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. PARAMETER TEST CONDITIONS IS Safety input, output, or supply current TS Maximum safety temperature MIN TYP MAX θJA = 212°C/W, VI = 5.25 V, TJ = 150°C, TA = 25°C 112 θJA = 212°C/W, VI = 3.45 V, TJ = 150°C, TA = 25°C 171 150 UNIT mA °C The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed in the JESD51-3, Low-Effective-Thermal-Conductivity Test Board for Leaded Surface-Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. Safety Limiting Current − mA 180 VCC1, VCC2 at 3.45 V 160 140 120 100 VCC1, VCC2 at 5.25 V 80 60 40 20 0 0 50 100 150 200 Case Temperature − °C G002 Figure 10. θJC Thermal Derating Curve per VDE 16 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 8.3.4 Regulatory Information VDE CSA UL Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1): 2011-07 Approved under CSA Component Acceptance Notice #5A Basic Insulation Maximum Transient Overvoltage, 4242 VPK Maximum Working Voltage, 566 VPK Certificate number: 40016131 (1) CQC Recognized under UL1577 Component Recognition Program (1) Certified according to GB4943.1-2011 Basic insulation per CSA 60950-107 and IEC 60950-1 (2nd Ed), 390 VRMS maximum working voltage Single Protection, 2500 VRMS Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage Master contract number: 220991 File number: E181974 Certificate number: CQC14001109540 Production tested ≥ 3000 VRMS for 1 second in accordance with UL 1577. 8.4 Device Functional Modes Table 2. Function Table (1) (1) (2) VCCI VCCO PU PU INPUT INA, INB OUTPUT OUTA, OUTB H H L L Open H (2) PD PU X H (2) X PD X Undetermined VCCI = Input-side power supply; VCCO = Output-side power supply; PU = Powered up (VCC ≥ 3.15 V); PD = Powered down (VCC ≤ 2.1 V); X = Irrelevant; H = High level; L = Low level In fail-safe condition, output defaults to high level. 8.4.1 Device I/O Schematics Input VCCI VCCI VCCI Output VCCO 1 MW 8W 500 W IN OUT 13 W Figure 11. Device I/O Schematics Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 17 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information ISO742x utilize single-ended TTL-logic switching technology. Its supply voltage range is from 3.15 V to 5.25 V for both supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (i.e. μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 9.2 Typical Application ISO7421 can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter, transformer driver, and voltage regulator to create an isolated 4-20 mA current loop. VCC1 VCC2 ISO7421 Figure 12. Isolated 4-20 mA Current Loop 9.2.1 Design Requirements Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO742x only require two external bypass capacitors to operate. 18 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 Typical Application (continued) 9.2.2 Detailed Design Procedure ISO7420 VCC1 8 1 VCC2 0.1 µF 0.1 µF INA 2 7 OUTA INB 3 6 OUTB GND1 4 5 GND2 ISO7421 VCC1 1 8 VCC2 0.1 µF 0.1 µF OUTA 2 7 INA INB 3 6 OUTB GND1 4 5 GND2 Figure 13. Typical ISO7420 and ISO7421 Circuit Hookup 9.2.3 Application Curve Life Expectancy – Years 100 VIORM at 566 V 28 Years 10 0 120 250 500 750 880 1000 VIORM – Working Voltage – V G001 Figure 14. Life Expectancy vs Working Voltage Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 19 ISO7420, ISO7420M, ISO7421 SLLS984I – JUNE 2009 – REVISED JULY 2015 www.ti.com 10 Power Supply Recommendations To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 datasheet (SLLSEA0). 11 Layout 11.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 15). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100pF/in2. • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, see Application Note Digital Isolator Design Guide, SLLA284. 11.1.1 PCB Material For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its selfextinguishing flammability-characteristics. 11.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces , pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 15. Recommended Layer Stack 20 Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 ISO7420, ISO7420M, ISO7421 www.ti.com SLLS984I – JUNE 2009 – REVISED JULY 2015 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • SN6501 Transformer Driver for Isolated Power Supplies, SLLSEA0 • Isolation Glossary, SLLA353 • Digital Isolator Design Guide, SLLA284 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ISO7420 Click here Click here Click here Click here Click here ISO7420M Click here Click here Click here Click here Click here ISO7421 Click here Click here Click here Click here Click here ISO7421M Click here Click here Click here Click here Click here 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks DeviceNet, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2009–2015, Texas Instruments Incorporated Product Folder Links: ISO7420 ISO7420M ISO7421 Submit Documentation Feedback 21 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO7420D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 IS7420 ISO7420DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 IS7420 ISO7420MD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7420M ISO7420MDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7420M ISO7421D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 IS7421 ISO7421DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 IS7421 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO7420D 价格&库存

很抱歉,暂时无法提供与“ISO7420D”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO7420D
    •  国内价格
    • 1000+17.71000

    库存:0