0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM5155EVM-BST

LM5155EVM-BST

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    LM5155 - DC/DC,步升 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
LM5155EVM-BST 数据手册
User's Guide SNVU608 – December 2018 LM5155EVM-BST User's Guide The LM5155EVM-BST evaluation module showcases the features and performance of the LM5155 device, wide input voltage, non-synchronous boost controller. The standard configuration is designed to provide a regulate output of 24 V at 48 W from an input of 6 V to 18 V, switching at a frequency of 440 kHz. The module is designed for ease of configuration, enabling a user to evaluate different applications on the same module. Functionality includes external clock synchronization, programmable slope compensation, adjustable soft-start, programmable cycle-by-cycle current limit and output over voltage protection. 1 2 3 4 5 6 Contents Features and Electrical Performance ..................................................................................... 3 Application Schematic ....................................................................................................... 5 EVM Photo.................................................................................................................... 6 Test Setup and Procedure .................................................................................................. 7 Test Results .................................................................................................................. 7 Design Files ................................................................................................................. 14 List of Figures 1 Application Circuit............................................................................................................ 5 2 EVM Photo 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ................................................................................................................... 6 Test Setup .................................................................................................................... 7 Efficiency vs Load ........................................................................................................... 8 Load Regulation ............................................................................................................. 8 Thermal Image VIN = 6 V IOUT = 2 A, No forced air cooling ............................................................. 8 Steady State, VIN = 6 V, IOUT = 2 A ....................................................................................... 10 Steady State, VIN = 9 V, IOUT = 2 A ....................................................................................... 10 Steady State, VIN = 12 V, IOUT = 2 A ...................................................................................... 10 Steady State, VIN = 18 V, IOUT = 2 A ...................................................................................... 10 Start-Up, VIN = 6 V, IOUT = 2 A ............................................................................................. 11 Start-Up, VIN = 9 V, IOUT = 2 A ............................................................................................. 11 Start-Up, VIN = 12 V, IOUT = 2 A ........................................................................................... 11 Start-Up, VIN = 18 V, IOUT = 2 A ........................................................................................... 11 Load Transient, VIN = 6 V, IOUT = 1 A to 2 A ............................................................................. 12 Load Transient, VIN = 9 V, IOUT = 1 A to 2 A ............................................................................. 12 Load Transient, VIN = 12 V, IOUT = 1 A to 2 A ........................................................................... 12 Load Transient, VIN = 18 V, IOUT = 1 A to 2 A ........................................................................... 12 Control Loop Response, VIN = 6 V, IOUT = 2A ........................................................................... 12 Control Loop Response, VIN = 9 V, IOUT = 2 A .......................................................................... 12 Control Loop Response, VIN = 12 V, IOUT = 2 A ......................................................................... 12 Control Loop Response, VIN = 18 V, IOUT = 2 A ......................................................................... 12 Top Silkscreen .............................................................................................................. 14 Top Layer ................................................................................................................... 14 Signal Layer 1 .............................................................................................................. 14 Signal Layer 2 .............................................................................................................. 14 SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 1 www.ti.com 27 Bottom Layer................................................................................................................ 14 28 Bottom Silkscreen .......................................................................................................... 14 29 LM5155EVM-BST Schematic ............................................................................................. 15 List of Tables ......................................................................... 1 Electrical Performance Standard Configuration 2 Jumper Description .......................................................................................................... 4 3 3 Standard Configuration Jumper Connections ............................................................................ 7 4 LM5155EVM-BST Bill of Materials ....................................................................................... 16 Trademarks All trademarks are the property of their respective owners. 2 LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Features and Electrical Performance www.ti.com 1 Features and Electrical Performance The LM5155EVM-BST supports the following features and performance capabilities: • Tightly regulated output voltage of 24 V with 1% accurate reference voltage • High conversion efficiency of > 93% at full load. • Constant cycle-by-cycle peak inductor current limit over input voltage range • User adjustable soft-start time using CSS • Output over-voltage protection • Multiple BIAS pin and VCC pin connections to test multiple configurations – BIAS connect to VCC – BIAS supplied with external power supply – VCC supplied by external power supply – BIAS supplied by output voltage • Power good (PGOOD) indicator with selectable pull-up source • 440kHz Switching frequency • External clock synchronization • Programable slope compensation 1.1 Electrical Parameters Table 1. Electrical Performance Standard Configuration Parameter Test Conditions MIN TYP MAX UNIT 12 18 V INPUT CHARACTERISTICS Input voltage Range VIN Input voltage turn on VIN(ON) Operation 6 5.8 V 5.5 V 24 V Maximum Output Current IOUT 2 A Output Over-voltage VOUT_OV 26.9 V Input voltage turn off VIN(OFF) Adjusted by the UVLO/SYNC resistors OUTPUT CHARACTERISTICS Output Voltage VOUT SYSTEM CHARACTERISTICS Switching frequency 440 External Clock Synchronization Full load efficiency 375 VIN =6V, IOUT = 2A Junction Temperature, TJ 93.3 -40 SNVU608 – December 2018 Submit Documentation Feedback kHz 505 % 150 LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated kHz C 3 Features and Electrical Performance 1.2 www.ti.com Configuration Points Table 2 indicates the available test points and configuration jumpers. These points offer flexibility in configuring the evaluation module and include but are not limited to; • BIAS pin to be connected to: – External supply (VAUX) – Input voltage (VIN) – Regulated output voltage (VOUT) – VCC pin • PGOOD pin to be supplied by either VCC or VAUX • External clock synchronization • Shut-down signal by pulling the UVLO pin low. Table 2. Jumper Description Jumper Pin TP1 VIN Positive input voltage sense connection TP2 SW Probe point for the switch node of the LM5155 boost circuit TP3 VOUT Positive output voltage sense connection TP4 VIN- Negative input voltage sense connection TP5 GND Negative output voltage sense connection TP6 VCCext Supply VCC from and external supply. Note VCCext must be less than the voltage on the BIAS pin. TP7 VAUX TP8 VOUT+ Loop response positive injection point Supply the BIAS pin from and external supply. R12 also connect to this rail TP9 VOUT- Loop response negative injection point TP10 SYNC Input for external clock synchronization TP11 SD J6 J7 High signal pulls UVLO pin to ground entering shutdown mode Pin 1 to pin 2 Connect VOUT to the BIAS pin of the LM5155 through D3 Pin 2 to pin 3 Directly connect VOUT to BIAS pin of the LM5155 Pin 1 to pin 2 Connect VIN to the BIAS pin of the LM5155 through D4 Pin 2 to pin 3 Directly connect VIN to BIAS pin of the LM5155 J8 Pin 1 to pin 2 Directly Connect VCC to the BIAS pin J9 Pin 1 to pin 2 Directly connect VAUX to the BIAS pin VCC (Pin 1) Monitor the VCC pin BIAS-IC (Pin 2) Monitor the BIAS pin PGOOD (Pin 3) Monitor the PGOOD pin J10 COMP (Pin 4) SS (Pin 5) 4 Description Monitor the COMP pin Monitor the SS pin UVLO (Pin 6) Monitor the UVLO pin AGND (Pin 7) Connection to AGND plan LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application Schematic www.ti.com 2 Application Schematic The LM5155EVM-BST is capable of multiple configurations. Figure 1 shows the standard configuration of the LM5155EVM-BST for which the parameters in Table 1 are valid. Section 4.2 describes the correct jumper settings and measurement locations recreate the data presented in Section 5. LM VIN DSYNC VOUT CIN COUT VCC GATE RFBB COMP SS CSS RFREQ RT FB CHF RPG PGOOD RFBT PGND AGND RCS CFILT LM5155 RCOMP RUVB RFILT CS UVLO/SYNC VCC Q1 VCC BIAS CCOMP RUVT CVCC Figure 1. Application Circuit SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 5 EVM Photo 3 www.ti.com EVM Photo Figure 2. EVM Photo 6 LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Setup and Procedure www.ti.com 4 Test Setup and Procedure 4.1 Test Setup Figure 3 shows the correct jumper positions to configure the evaluation module for the typical application, as shown in Figure 1. The correct equipment connections and measurement points are shown in Table 3 Table 3. Standard Configuration Jumper Connections Jumper Position J6 Jumper from pin 1 to pin 2 Power Supply - Ammeter 1 + A COM Voltmeter 1 V COM Voltmeter 2 V COM Ammeter 2 A COM Electronic Load + - Figure 3. Test Setup 4.2 Test Equipment Power Supply: The input voltage source (VIN) should be a variable supply capable of 0V to 20V and source at least 15A. Multi-meters: • Voltmeter 1: Input voltage, connect from VIN to VIN• Voltmeter 2: Output voltage, connect from VOUT to GND • Ammeter 1: Input current, must be able to handle 15A. Shunt resistor can be used as needed. • Ammeter 2: Output current, must be able to handle 2A. Shunt resistor can be used as needed. Electronic Load: The load should be constant resistance (CR) or constant current (CC) capable. It should safely handle 2A at 24V. Oscilloscope: 20-MHz bandwidth and AC coupling. Measure the output voltage ripple directly across an output capacitor with a short ground lead. It is not recommended to use a long-leaded ground connection due to the possibility of noise being coupled into the signal. To measure other waveforms, adjust the oscilloscope as needed. 5 Test Results Figure 4 through Figure 19 present the typical performance of the LM5155EVM-BST according to the BOM and the configuration described in Section 4. Based on measurement techniques and environmental variables measurements might differ slightly than the data presented. SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 7 Test Results 5.1 www.ti.com Efficiency Curves Efficiency vs I OUT 100 95 90 Efficiency (%) 85 80 75 70 65 VIN =18V VIN =12V VIN =9V VIN =6V 60 55 50 0 0.25 0.5 0.75 1 1.25 IOUT(A) 1.5 1.75 2 D001 Figure 4. Efficiency vs Load 5.2 Load Regulation Curves Load Regulation 25 VIN =18V VIN =12V VIIN = 9V VIN = 6V 24.9 24.8 VOUT (V) 24.7 24.6 24.5 24.4 24.3 24.2 24.1 24 0 0.2 0.4 0.6 0.8 1 1.2 IOUT(A) 1.4 1.6 1.8 2 D001 Figure 5. Load Regulation 5.3 Thermal Performance 8 LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Results www.ti.com Figure 6. Thermal Image VIN = 6 V IOUT = 2 A, No forced air cooling SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 9 Test Results 5.4 10 www.ti.com Steady State Waveforms Figure 7. Steady State, VIN = 6 V, IOUT = 2 A Figure 8. Steady State, VIN = 9 V, IOUT = 2 A Figure 9. Steady State, VIN = 12 V, IOUT = 2 A Figure 10. Steady State, VIN = 18 V, IOUT = 2 A LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Results www.ti.com 5.5 Start-Up Waveforms Figure 11. Start-Up, VIN = 6 V, IOUT = 2 A Figure 12. Start-Up, VIN = 9 V, IOUT = 2 A Figure 13. Start-Up, VIN = 12 V, IOUT = 2 A Figure 14. Start-Up, VIN = 18 V, IOUT = 2 A SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 11 Test Results 5.7 Load Transient Waveforms Figure 15. Load Transient, VIN = 6 V, IOUT = 1 A to 2 A Figure 16. Load Transient, VIN = 9 V, IOUT = 1 A to 2 A Figure 17. Load Transient, VIN = 12 V, IOUT = 1 A to 2 A Figure 18. Load Transient, VIN = 18 V, IOUT = 1 A to 2 A AC Loop Response Curves Control Loop Response VIN = 6V, IOUT = 2A Control Loop Response VIN = 9V, IOUT = 2A 60 180 60 180 Gain (dB) Phase (Deg) 120 40 120 20 60 20 60 0 0 0 0 -20 -60 -20 -60 -40 -120 -40 -120 -60 100 200 300 500 700 1000 2000 3000 5000 10000 Frequency (Hz) 2000030000 50000 100000 200000 -180 500000 -60 100 200 300 500 700 1000 D002 Figure 19. Control Loop Response, VIN = 6 V, IOUT = 2A 12 Gain (dB) 40 Phase (deg) Gain (dB) Gain (dB) Phase (Deg) 2000 3000 5000 10000 Frequency (Hz) 2000030000 50000 100000 200000 Phase (deg) 5.6 www.ti.com -180 500000 D002 Figure 20. Control Loop Response, VIN = 9 V, IOUT = 2 A LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Results www.ti.com Control Loop Response VIN = 12V, IOUT = 2A Control Loop Response VIN = 18V, IOUT = 2A 180 60 180 Gain (dB) Phase (Deg) 120 40 120 20 60 20 60 0 0 0 0 Gain (dB) 40 Phase (deg) Gain (dB) Gain (dB) Phase (Deg) -20 -60 -20 -60 -40 -120 -40 -120 -60 100 200 300 500 700 1000 2000 3000 5000 10000 Frequency (Hz) 2000030000 50000 100000 200000 -180 500000 -60 100 200 300 500 700 1000 D002 Figure 21. Control Loop Response, VIN = 12 V, IOUT = 2 A 2000 3000 5000 10000 Frequency (Hz) 2000030000 50000 100000 200000 Phase (deg) 60 -180 500000 D002 Figure 22. Control Loop Response, VIN = 18 V, IOUT = 2 A SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 13 Design Files 6 14 www.ti.com Design Files Figure 23. Top Silkscreen Figure 24. Top Layer Figure 25. Signal Layer 1 Figure 26. Signal Layer 2 Figure 27. Bottom Layer Figure 28. Bottom Silkscreen LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Design Files www.ti.com C1 R1 DNP 2.00 VIN+ R20 TP1 VOUT J2 1 DNP 3 1uH 575-8 VIN = 6.0- 18VDC C3 C4 C5 C6 C7 C8 1000pF 0.1uF 0.01uF 10uF 10uF 10uF TP3 VOUT+ D1 L2 L1 J1 2200pF TP2 SW VIN 0 DNP 2 6.8uH C2 100uF C9 C10 C11 10uF 10uF 10uF 575-8 PMEG060V100EPDZ J3 R2 0 C12 C15 C16 C17 4.7uF 4.7uF 4.7uF C13 DNP 100uF 100uF C14 Fsw = 440KHz C18 100uF 0.1uF VOUT = 24VDC @ 2A J4 J5 R3 PGND TP4 0 VCCext VCCExt VCC R4 TP6 0 D2 VIN VAUX VCC 575-8 Q1 IPC50N04S5L5R5ATMA1 4 GND TP5 PGND 1,2,3 VIN- 5,6, 7,8 575-8 R5 100 BIAS C19 R6 0.008 100pF 60V INPUT VOLTAGE SELECTION R7 0 VOUT C21 PGND BIAS VCC UVLO 12 1 2 3 4 5 6 7 PGOOD COMP SS UVLO R10 24.9k DNP R12 24.9k TP7 VAUX GATE 2 PGND D3 60V 3 UVLO/SYNC TP8 0 BIAS-IC VAUX PGND 1 0.01uF R21 VCC 1uF U1 VCC VIN C20 BIAS-IC R8 21.0k VOUT VOUT+ PGOOD 11 PGOOD CS 5 R9 10.0 TP9 VOUT- 10 RT PGND SS FB D4 60V J6 J7 1 2 3 J8 J9 1 2 3 Default: OPEN BIAS Default: Pins 2-3 R13 47.0k 4 SS J10 9 COMP AGND 6 DNPC22 R11 7.32k R14 49.9k COMP EP AGND 8 13 7 C23 External SYNC NT1 Net-Tie LM5155DSSR 0.22uF 100pF C24 DNP AGND 0.022uF C25 20V 220pF PGND R15 2.0k D5 R16 UVLO 0 3V D6 DNP R17 11.3k 20V Diode clamp FB TP10 Q2 BSS123 SYNC PGND AGND R18 10.0k PGND TP11 Q3 BSS123 SD R19 10.0k AGND PGND Figure 29. LM5155EVM-BST Schematic SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 15 Design Files www.ti.com Table 4. LM5155EVM-BST Bill of Materials 16 Designator Qty Value Description !PCB1 1 Printed Circuit Board C2 1 100uF CAP, Polymer Hybrid, 100 uF, 50 V, +/- 20%, 28 ohm, 10x10 SMD C3 1 1000pF CAP, CERM, 1000 pF, 50 V, +/- 10%, X7R, 0603 C4, C18 2 C5, C21 PackageRefere nce PartNumber Manufacturer BMC028 Any 10x10 EEHZC1H101P Panasonic 0603 C0603X102K5R ACTU Kemet 0.1uF CAP, CERM, 0.1 0603 uF, 50 V, +/10%, X7R, 0603 C1608X7R1H10 4K080AA TDK 2 0.01uF CAP, CERM, 0.01 uF, 50 V, +/- 10%, X7R, 0603 0603 CL10B103KB8N CNC Samsung ElectroMechanics C6, C7, C8, C9, C10, C11 6 10uF CAP, CERM, 10 uF, 50 V, +/10%, X7R, 1210 1210 GRM32ER71H1 06KA12L MuRata C12, C14 2 100uF CAP, Aluminum D10xL10mm Polymer, 100 uF, 50 V, +/- 20%, 0.025 ohm, AECQ200 Grade 2, D10xL10mm SMD HHXB500ARA10 Chemi-Con 1MJA0G C15, C16, C17 3 4.7uF CAP, CERM, 4.7 1210 uF, 50 V, +/10%, X7R, 1210 C3225X7R1H47 5K250AB TDK C19 1 100pF CAP, CERM, 100 pF, 50 V,+/1%, C0G/NP0, 0603 C0603C101F5G ACTU Kemet C20 1 1uF CAP, CERM, 1 0603 uF, 16 V, +/20%, X7R, AECQ200 Grade 1, 0603 GCM188R71C10 MuRata 5MA64D C23 1 0.22uF CAP, CERM, 0.22 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0603 0603 CGA3E3X7R1H 224K080AB TDK C24 1 0.022uF 'CAP, CERM, 0.022 uF, 100 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0603 0603 CGA3E2C0G1H 221J080AA TDK C25 1 220pF 'CAP, CERM, 0603 220 pF, 20 V, +/5%, C0G/NP0, AEC-Q200 Grade 1, 0603 CGA3E2C0G1H 221J080AA TDK D1 1 60V 'Diode, Schottky, CFP15 60 V, 10 A, AECQ101, CFP15 PMEG060V100E Nexperia PDZ D2, D3, D4 3 60V Diode, Schottky, 60 V, 1 A, SOD123F PMEG6010CEH, Nexperia 115 0603 SOD-123F LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Design Files www.ti.com Table 4. LM5155EVM-BST Bill of Materials (continued) H1, H2, H3, H4 4 Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead Screw NY PMS 440 0025 PH B&F Fastener Supply H5, H6, H7, H8 4 Standoff, Hex, 0.5-inch L #4-40 Nylon Standoff 1902C Keystone J1, J2, J4, J5 4 Standard Banana Jack, Uninsulated, 8.9mm Keystone575-8 575-8 Keystone J3 1 TEST POINT SLOTTED .118 inch, TH Test point, TH Slot Test point 1040 Keystone J6, J7 2 Header, 2.54 mm, 3x1, Gold, TH Header, 2.54 mm, 3x1, TH GBC03SAAN Sullins Connector Solutions J8, J9 2 Header, 2.54 mm, 2x1, Gold, TH Header, 2.54 mm, 2x1, TH GBC02SAAN Sullins Connector Solutions J10 1 Header, 100mil, 7x1, Gold, TH 7x1 Header TSW-107-07-GS Samtec L2 1 6.8uH Inductor, Shielded, Composite, 6.8 uH, 18.5 A, 0.01 ohm, SMD Inductor, 11.3x10x10mm XAL1010682MEB Coilcraft Q1 1 40V MOSFET, N-CH, SON-8 40 V, 50 A, AECQ101, SON-8 IPC50N04S5L5R Infineon 5ATMA1 Technologies Q2, Q3 2 100V MOSFET, N-CH, SOT-23 100 V, 0.17 A, SOT-23 BSS123 Fairchild Semiconductor R2, R7, R21 3 0 RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603 0603 ERJ3GEY0R00V Panasonic R3, R4, R16 3 0 RES, 0, 5%, 0.1 W, 0603 0603 RC0603JR070RL Yageo R5 1 100 RES, 100, 1%, 0.1 W, 0603 0603 RC0603FR07100RL Yageo R6 1 0.008 RES, 0.008, 1%, 3 W, AEC-Q200 Grade 0, 2512 WIDE 2512 WIDE KRL6432E-MR008-F-T1 Susumu Co Ltd R8 1 21.0k RES, 21.0 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW060321K0 Vishay-Dale FKEA R9 1 10.0 RES, 10.0, 1%, 0.1 W, 0603 0603 RC0603FR0710RL Yageo R10 1 24.9k RES, 24.9 k, 1%, 0603 0.1 W, 0603 RC0603FR0724K9L Yageo R11 1 7.32k RES, 7.32 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW06037K32 Vishay-Dale FKEA R13 1 47.0k RES, 47.0 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW060347K0 Vishay-Dale FKEA SNVU608 – December 2018 Submit Documentation Feedback LM5155EVM-BST User's Guide Copyright © 2018, Texas Instruments Incorporated 17 Design Files www.ti.com Table 4. LM5155EVM-BST Bill of Materials (continued) 18 R14 1 49.9k RES, 49.9 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW060349K9 Vishay-Dale FKEA R15 1 2.0k RES, 2.0 k, 5%, 0.1 W, AECQ200 Grade 0, 0603 0603 CRCW06032K00 Vishay-Dale JNEA R17 1 11.3k RES, 11.3 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW060311K3 Vishay-Dale FKEA R18, R19 2 10.0k RES, 10.0 k, 1%, 0603 0.1 W, AECQ200 Grade 0, 0603 CRCW060310K0 Vishay-Dale FKEA R20 1 0 RES, 0, 5%, 2 W, 2512 WIDE 2512 WIDE RCL12250000Z0 Vishay Draloric EG SH-J1 1 Single Operation 2.54mm Pitch Open Top Jumper Socket Single Operation M7582-05 2.54mm Pitch Open Top Jumper Socket Harwin TP1, TP3, TP6, TP7 4 Test Point, Miniature, Red, TH Red Miniature Testpoint 5000 Keystone TP4, TP5 2 Test Point, Miniature, Black, TH Black Miniature Testpoint 5001 Keystone TP10, TP11 2 Test Point, White Miniature Miniature, White, Testpoint TH 5002 Keystone U1 1 2.2-MHz Wide DSS0012B Input Nonsynchronous Boost, Sepic, Flyback Controller, DSS0012B (WSON-12) LM5155DSSR Texas Instruments LM5155EVM-BST User's Guide SNVU608 – December 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated
LM5155EVM-BST 价格&库存

很抱歉,暂时无法提供与“LM5155EVM-BST”相匹配的价格&库存,您可以联系我们找货

免费人工找货