0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM57FEPWRQ1

LM57FEPWRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    TEMPSWITCHANDANALOGTEMPSENS

  • 数据手册
  • 价格&库存
LM57FEPWRQ1 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 LM57-Q1 Resistor-Programmable Temperature Switch and Analog Temperature Sensor 1 Features 3 Description • The LM57-Q1 device is a precision, dual-output, temperature switch with analog temperature sensor output for wide temperature applications such as automotive grade. The trip temperature (TTRIP) is selected from 256 possible values in the range of –40°C to 160°C. The VTEMP is a class AB analog voltage output that is proportional to temperature with a programmable negative temperature coefficient (NTC). Two external 1% resistors set the TTRIP and VTEMP slope. The digital and analog outputs enable protection and monitoring of system thermal events. 1 • • • • • • • • • • Qualified for Automotive Applications, for Commercial Device See LM57 Data Sheet AEC-Q100 Qualified with the Following Results: – Temperature Grade 0 Extended: −50°C to +160°C with Excursions up to 170°C Operating Temperature Range – Temperature Grade 0: −50°C to +150°C Operating Temperature Range – Temperature Grade 1: −50°C to +125°C Operating Temperature Range – HBM ESD Component Classification Level 2 – CDM ESD Component Classification Level C5 Trip Temperature Set by External Resistors with Accuracy of ±2.3°C from −40°C to +150°C Resistor Tolerance Contributes Zero Error Push-Pull and Open-Drain Switch Outputs Wide Operating Temperature Range of −50°C to 160°C Very Linear Analog VTEMP Temp Sensor Output with ±1.3°C Accuracy from −50°C to +150°C Short-Circuit Protected Analog and Digital Outputs Latching Function for Digital Outputs TRIP-TEST Pin Allows In-System Testing Low Power Minimizes Self-Heating to Under 0.02°C TOVER is active-high with a push-pull structure. TOVER is active-low with an open-drain structure. Tying TOVER to TRIP-TEST will latch the output after it trips. The output can be cleared by forcing TRIP-TEST low. Driving the TRIP-TEST high will assert the digital outputs. A processor can check the state of TOVER or TOVER , confirming they changed to an active state. This allows for in situ verification that the comparator and output circuitry are functional after system assembly. When TRIP-TEST is high, the trip-level reference voltage appears at the VTEMP pin. The system could then use this voltage to calculate the threshold of the LM57-Q1. Device Information 2 Applications • • Built-in thermal hysteresis (THYST) prevents the digital outputs from oscillating. The TOVER and TOVER digital outputs will assert when the die temperature exceeds TTRIP and will de-assert when the temperature falls below a temperature equal to TTRIP minus THYST. PART NUMBER Automotive Down Hole and Avionics PACKAGE LM57 -Q1 3.00 mm × 6.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. (2) For device comparison see Device Comparison Table . Temperature Transfer Function VDD Supply (+2.4V to +5.5V) 3,500 J2 (-5.166mV/°C) J3 (-7.752mV/°C) J4 (-10.339mV/°C) J5 (-12.924mV/°C) Analog ADC Input LM57 Microcontroller RSENSE1 RSENSE2 SENSE1 TOVER SENSE2 TOVER TRIP TEST Digital In Digital Out VTEMP VOLTAGE (mV) 3,000 VTEMP BODY SIZE (NOM) TSSOP (8) LM57-Q1 Overtemperature Alarm VDD (1) (2) 2,500 2,000 1,500 1,000 GND 500 0 -50 -25 0 25 50 75 100 125 150 175 TEMPERTURE (ƒC) C101 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7 1 1 1 3 4 5 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 6 Electrical Characteristics........................................... 6 Switching Characteristics .......................................... 9 Typical Characteristics ........................................... 10 Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 12 7.3 Feature Description................................................. 13 7.4 Device Functional Modes........................................ 23 8 Application and Implementation ........................ 26 8.1 Application Information............................................ 26 8.2 Typical Application .................................................. 26 9 Power Supply Recommendations...................... 28 10 Layout................................................................... 28 10.1 Layout Guidelines ................................................. 28 10.2 Layout Example .................................................... 29 10.3 Temperature Considerations................................. 29 11 Device and Documentation Support ................. 30 11.1 11.2 11.3 11.4 11.5 2 30 30 30 30 30 12 Mechanical, Packaging, and Orderable Information ........................................................... 30 Changes from Revision Initial Release (July 2015) to Revision A • Documentation Support ....................................... Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ Page Changed feature bullet automotive description and added description of the automotive grades and ESD classifications ......................................................................................................................................................................... 1 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 4 Device Comparison Table ORDER NUMBER LM57BISD-5, LM57BISDX-5 (1) LM57BISD-10, LM57BISDX-10 LM57CISD-5, LM57CISD-5 (1) (1) LM57CISD-10, LM57CISDX-10 (1) PACKAGE GRADE (TEMP RANGE) VTEMP ACCURACY TRIP POINT ACCURACY HYSTERESIS WSON/SD/NGR /DFN (8) Commercial (-50°C to 150°C) ±0.8°C ±1.5°C 5°C WSON/SD/NGR /DFN (8) Commercial (-50°C to 150°C) ±0.8°C ±1.5°C 10°C WSON/SD/NGR /DFN (8) Commercial (-50°C to 150°C) ±1.3°C ±2.3°C 5°C WSON/SD/NGR /DFN (8) Commercial (-50°C to 150°C) ±1.3°C ±2.3°C 10°C LM57FPW, LM57FPWR (1) PW/TSSOP (8) Commercial (-50°C to 150°C) ±1.3°C ±2.3°C 5°C LM57TPW, LM57TPWR (1) PW/TSSOP (8) Commercial (-50°C to 150°C) ±1.3°C ±2.3°C 10°C LM57FSPWQ1, LM57FSPWRQ1 PW/TSSOP (8) Automotive Grade 0 Extended (-50°C to 160°C) ±1.3°C ±2.3°C 5°C LM57TSPWQ1, LM57TSPWRQ1 PW/TSSOP (8) Automotive Grade 0 Extended (-50°C to 160°C) ±1.3°C ±2.3°C 10°C LM57FEPWQ1, LM57FEPWRQ1 PW/TSSOP (8) Automotive Grade 0 ±1.3°C Standard (-50°C to 150°C) ±2.3°C 5°C LM57TEPWQ1, LM57TEPWRQ1 PW/TSSOP (8) Automotive Grade 0 ±1.3°C Standard (-50°C to 150°C) ±2.3°C 10°C LM57FQPWQ1, LM57FQPWRQ1 PW/TSSOP (8) Automotive Grade 1 ±1.3°C Standard (-50°C to 125°C) ±2.3°C 5°C LM57TQPWQ1, LM57TQPWRQ1 PW/TSSOP (8) Automotive Grade 1 ±1.3°C Standard (-50°C to 125°C) ±2.3°C 10°C (1) For Commercial grade device complete datasheet see LM57. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 3 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 5 Pin Configuration and Functions TSSOP/PW Package 8-Pin Top View GND 1 8 VTEMP SENSE1 2 7 TOVER SENSE2 3 6 TOVER VDD 4 5 TRIP TEST LM57 Pin Functions PIN NAME GND NO. 1 TYPE EQUIVALENT CIRCUIT Ground — DESCRIPTION Power supply ground VDD SENSE1 2 Trip-point resistor sense. One of two sense pins which selects the temperature at which TOVER and TOVER will assert. — GND GND VDD SENSE2 3 Trip-point resistor sense. One of two sense pins which selects the temperature at which TOVER and TOVER will assert. — GND GND VDD 4 Power Supply voltage VDD TRIP TEST 5 Digital Input 1 PA TRIP TEST pin. Active High input. If TRIP TEST = 0 (default), then the VTEMP output has the analog temperature sensor output voltage. If TRIP TEST = 1, then TOVER and TOVER outputs are asserted and VTEMP = VTRIP, the temperature trip voltage. Tie this pin to ground if not used. GND TOVER 6 Digital Output GND Overtemperature switch output Active low, open-drain (see LM57-Q1 VTEMP Voltage-to-Temperature Equations regarding required pullup resistor.) Asserted when the measured temperature exceeds the Trip Point Temperature or if TRIP TEST = 1 This pin may be left open if not used. VDD TOVER 7 Overtemperature switch output Active high, push-pull Asserted when the measured temperature exceeds the trip point temperature or if TRIP TEST = 1 This pin may be left open if not used. Digital Output GND 4 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Pin Functions (continued) PIN NAME NO. TYPE EQUIVALENT CIRCUIT DESCRIPTION VDD VSENSE VTEMP 8 VTEMP analog voltage output If TRIP TEST = 0, then VTEMP = VTS, temperature sensor output voltage If TRIP TEST = 1, then VTEMP = VTRIP, temperature trip voltage This pin may be left open if not used. Analog Output GND 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT Supply voltage −0.3 6 V Voltage at TOVER −0.3 6 V Voltage at TOVER , VTEMP, TRIP-TEST, SENSE1, and SENSE2 −0.3 (VDD + 0.3 V) V 5 mA Storage temperature for LM57FSPWQ1 and LM57TSPWQ1 −65 175 °C Storage temperature for all LM57-Q1 except LM57FSPWQ1 and LM57TSPWQ1 −65 150 °C Current at any pin (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 (1) UNIT ±2000 Charged-device model (CDM), per AEC Q100-011 V ±750 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions MIN NOM MAX UNIT 2.4 5.5 V −50 150 °C -50 125 °C 2.4 5.5 V −50 170 °C FOR ALL PARTS GRADE 0 AND GRADE 1 EXCEPT GRADE 0 EXTENDED (LM57FSPWQ1 and LM57TSPWQ1) Supply voltage Free air temperature range (TMIN ≤ TA ≤ TMAX) LM57FEPWQ1, and LM57TEPWQ1 LM57FQPWQ1, LM57TQPWQ1 GRADE 0 EXTENDED (LM57FSPWQ1 AND LM57TSPWQ1) Supply voltage Free air temperature range (TMIN ≤ TA ≤ TMAX) Temperature Profile for LM57-Q1 Automotive Grade 0 Extended High Temperature Operational Life Test (HTOL) - Hours of Operation: (1) 1700 hours at TJ = TC = 160°C 10 hours at TJ = TC = 170°C (1) Except for HTOL testing, which was conducted as described, all other testing was to AEC-Q100 Grade 0 flow. Full details on reliability testing are available upon request. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 5 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 6.4 Thermal Information LM57-Q1 THERMAL METRIC (1) PW (TSSOP) UNIT 8 PINS RθJA Junction-to-ambient thermal resistance RθJC(top) RθJB ψJT Junction-to-top characterization parameter ψJB RθJC(bot) (1) 183 °C/W Junction-to-case (top) thermal resistance 66 °C/W Junction-to-board thermal resistance 111 °C/W 8 °C/W Junction-to-board characterization parameter 110 °C/W Junction-to-case (bottom) thermal resistance — °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TRIP POINT ACCURACY FOR ALL LM57-Q1 EXCEPT LM57FSPWQ1 AND LM57TSPWQ1 Trip Point Accuracy (Includes 1% set-resistor tolerance) J2 TA = −41°C to 52°C VDD = 2.4 V to 5.5 V ±2.3 °C J3 TA = 52°C to 97°C VDD = 2.4 V to 5.5 V ±2.3 °C J4 TA = 97°C to 119°C VDD = 2.4 V to 5.5 V ±2.3 °C J5 TA = 119°C to free air temperature max VDD = 2.4 V to 5.5 V ±2.3 °C TRIP POINT ACCURACY FOR LM57-Q1 AUTOMOTIVE GRADE 0 EXTENDED (LM57FSPWQ1 and LM57TSPWQ1) Trip point accuracy (Includes 1% set-resistor tolerance) 6 J2 TA = −41°C to 52°C J3 TA = 52°C to 97°C J4 TA = 97°C to 119°C J5 TA = 119°C to 160°C J5 TA = 150°C to 160°C VDD = 2.4 V to 5.5 V ±2.3 VDD = 2.4 V to 5.5 V ±2.5 Submit Documentation Feedback °C Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Electrical Characteristics (continued) Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY FOR ALL LM57-Q1 EXCEPT LM57FSPWQ1 and LM57TSPWQ1 VTEMP Accuracy (These stated accuracy limits are with reference to the values in Table 1, LM57-Q1 VTEMP Temperature-to-Voltage.) J2 TA = −50°C to free air temperature max VDD = 2.4 V to 5.5 V ±1.3 °C J3 TA = −50°C to free air temperature max VDD = 2.4 V to 5.5 V ±1.3 °C TA = 20°C to 50°C VDD = 2.4 V to 5.5 V ±1.3 TA = 0°C to free air temperature max VDD = 2.7 V to 5.5 V ±1.3 TA = −50°C to 0°C VDD = 3.1 V to 5.5 V ±1.3 TA = 60°C to free air temperature max VDD = 2.4 V to 5.5 V ±1.3 TA = 20°C to 50°C VDD = 2.9 V to 5.5 V ±1.3 TA = 0°C to free air temperature max VDD = 3.2 V to 5.5 V ±1.3 TA = −50°C to 0°C VDD = 4 V to 5.5 V ±1.3 J4 J5 °C °C VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY FOR LM57-Q1 AUTOMOTIVE GRADE 0 EXTENDED (LM57FSPWQ1 and LM57TSPWQ1) J2 J3 TA = 150°C to 160°C TA = –50°C to 150°C TA = 150°C to 160°C TA = –50°C to 150°C TA = 20°C to 50°C VTEMP accuracy (These stated accuracy limits are with reference to the values in Table 1, LM57-Q1 VTEMP temperature-to-voltage.) J4 TA = 0°C to 150°C TA = 150°C to 160°C TA = –50°C to 0°C TA = 150°C to 160°C TA = 60°C to 150°C J5 VDD = 2.4 V to 5.5 V VDD = 2.4 V to 5.5 V VDD = 2.4 V to 5.5 V ±1.5 °C ±1.3 ±1.5 °C ±1.3 ±1.3 ±1.3 VDD = 2.7 V to 5.5 V VDD = 3.1 V to 5.5 V VDD = 2.4 V to 5.5 V ±1.5 ±1.3 ±1.5 ±1.3 TA = 20°C to 50°C VDD = 2.9 V to 5.5 V ±1.3 TA = 0°C to 150°C VDD = 3.2 V to 5.5 V ±1.3 TA = –50°C to 0°C VDD = 4 V to 5.5 V ±1.3 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 °C °C 7 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Electrical Characteristics (continued) Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT OTHER TEMPERATURE SENSOR SPECIFICATIONS J2: −50°C to 52°C VTEMP sensor gain −5.166 J3: 52°C to 97°C −7.752 J4: 97°C to 119°C −10.339 J5: 119°C to 160°C −12.924 mV/°C 0.18 Line regulation DC: supplyto-VTEMP (1) Temp = 90°C μV/V −84 dB Source ≤ 240 µA, (VDD – VTEMP) ≥ 200 mV; TA = −50°C to 150°C Load regulation: VTEMP output (2) Maximum Load capacitance: VTEMP output IS Supply current: quiescent (3) mV 58 −1 mV Sink ≤ 300 µA, VTEMP ≥ 360 mV; TA = −50°C to 150°C 1 Source or sink = 100 µA; TA = −50°C to 150°C 1 Ω No output series resistor required; (See VTEMP Capacitive Loads ) 1100 pF for all LM57-Q1 for TA ≤ 150°C 24 28 µA TA = 150°C to 160°C for LM57FSPWQ1 and LM57TSPWQ1 24 29 µA TA = 170°C for LM57FSPWQ1 and LM57TSPWQ1 26 µA TRIP-TEST INPUT VIH Logic 1 threshold voltage VIL Logic 0 threshold voltage IIH Logic 1 input current IIL Logic 0 input leakage current (4) VDD – 0.5 TA = −50°C to 150°C V 0.5 V 1.4 3 µA 0.001 1 µA TOVER (PUSH-PULL, ACTIVE-HIGH) OUTPUT VOH Logic 1 push-pull output voltage VOL Logic 0 output voltage Source ≤ 600 µA VDD – 0.2 Source ≤ 1.2 mA VDD – 0.45 V Sink ≤ 600 µA 0.2 Sink ≤ 1.2 mA 0.45 V TOVER (OPEN-DRAIN, ACTIVE-LOW) OUTPUT VOL Logic 0 output voltage IOH Logic 1 output leakage current (4) (1) (2) (3) (4) 8 Sink ≤ 600 µA 0.2 Sink ≤1.2 mA 0.45 Temperature = 30°C; 0.001 1 V µA Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in VTEMP Voltage Shift . Source currents are flowing out of the LM57-Q1. Sink currents are flowing into the LM57-Q1. Load Regulation is calculated by measuring VTEMP at 0 μA and subtracting the value with the conditions specified. Supply current refers to the quiescent current of the LM57-Q1 only and does not include any load current This current is leakage current only and is therefore highest at high temperatures. Prototype test indicate that the leakage is well below 1 μA over the full temperature range. This 1 μA specification reflects the limitations of measuring leakage at room temperature. For this reason only, the leakage current is not specified at a lower value. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Electrical Characteristics (continued) Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 5°C hysteresis option (all LM57F for TA ≤ 150°C) 4.7 5 5.4 °C 10°C hysteresis option (all LM57T for TA ≤ 150°C) 9.6 10 10.6 °C 5°C hysteresis option (LM57FSPWQ1); TA = 150°C to 160°C 4.6 5 5.4 °C 10°C hysteresis option (LM57TSPWQ1); TA = 150°C to 160°C 9.4 10 10.6 °C HYSTERESIS THYST Hysteresis temperature 6.6 Switching Characteristics Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V over the free air temperature range. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tEN Maximum time from power on to digital output enabled 1.5 ms tVTEMP Maximum time from power on to analog temperature (VTEMP) valid 1.5 ms VDD 1.3V tEN TOVER Enabled TOVER Enabled Figure 1. Definition of tEN VDD tVTEMP Valid VTEMP Figure 2. Definition of tVTEMP Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 9 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 30 30 29 29 28 28 27 27 26 IDD (PA) IDD (PA) 6.7 Typical Characteristics T = 150°C T = 30°C 25 24 26 VDD = 5.5V 25 24 23 23 T = -40°C 22 VDD = 2.4V 22 21 21 20 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 20 -50 -30 -10 10 30 50 70 90 110 130 150 5.6 TEMPERATURE (°C) VDD (V) Figure 4. Supply Current vs Temperature Overhead = 400 mV Overhead = 100 mV DELTA_VOUT (mV) DELTA VOUT (mV) Figure 3. Supply Current vs Supply Voltage 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2.2 -2.4 -2.6 -2.8 -3.0 Overhead = 200 mV 0 100 200 300 400 500 600 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 VDD = 2.4V VDD = 2.7V VDD = 3.3V VDD = 5.0V 0 700 200 400 600 800 1000 1200 1400 1600 LOAD (PA) Figure 5. Load Regulation: Change In VTEMP vs Source Current Overhead Is Vdd-Vtemp Figure 6. Load Regulation: Change In VTEMP vs Sink Current VTEMP (mV) 949 948 947 946 945 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 5oC HYSTERESIS (oC) 10oC HYSTERESIS (oC LOAD (PA) 950 10.2 HYST J5 10.1 10.0 HYST J2 HYST J3 HYST J4 9.9 | | 5.2 HYST J3 5.1 5.0 4.9 2.4 HYST J2 2.8 3.2 HYST J5 3.6 4.0 4.4 HYST J4 4.8 5.2 5.6 VDD VDD (V) Figure 7. Line Regulation: VTEMP vs Supply Voltage 10 VDD = 3.5V Figure 8. Line Regulation: Hysteresis vs Supply Voltage 30°C Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 5oC HYSTERESIS (oC) 10oC HYSTERESIS (oC) Typical Characteristics (continued) VDD (V) 3 2 1 Tover VOUTPUT (V) 0 3 | | 2 Vtemp 1 0 -1 0 1 2 3 4 5 6 7 8 9 10.2 HYST J5 10.1 HYST J3 10.0 HYST J4 HYST J2 9.9 | | 5.2 HYST J3 HYST J5 5.1 5.0 HYST J4 HYST J2 4.9 -50 -30 -10 10 30 50 70 90 110 130 150 TEMPERATURE (oC) TIME (ms) Figure 9. Start-Up Response Figure 10. Hysteresis vs Temperature 2.0 MAX LImit 1.5 VTEMP Accuracy (ƒC) 1.0 0.5 0.0 -0.5 -1.0 -1.5 MIN Limit -2.0 ±50 ±25 0 25 50 75 100 125 DUT Temperature (ƒC) 150 175 C102 Conditions: J2, VDD=5V Figure 11. J2 Accuracy Specification Over Temperature Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 11 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 7 Detailed Description 7.1 Overview The LM57-Q1 is a precision, dual-output, temperature switch with analog temperature sensor output. The trip temperature (TTRIP) is selected from 256 possible values by using two external 1% resistors. The VTEMP class AB analog output provides a voltage that is proportional to temperature. The LM57-Q1 includes an internal reference DAC, analog temperature sensor and analog comparator. The reference DAC is connected to one of the comparator inputs. The reference DAC output voltage (VTRIP) is controlled by the value of resistance applied to the SENSE pins. The resistance value sets one of 16 "logic" levels at the SENSE pins. These "logic" levels are then decoded and applied to the DAC input, thus the actual resistance tolerance does not directly affect the threshold level accuracy. The result of the reference DAC voltage and the temperature sensor output comparison is provided on two output pins TOVER and TOVER. The VTEMP output has a programmable gain. The output gain has 4 possible settings as described in Figure 12. The gain setting is dependent on the trip point selected by resistance applied to the SENSE pins. Built-in temperature hysteresis (THYST) prevents the digital outputs from oscillating. The TOVER and TOVER will activate when the die temperature exceeds TTRIP and will release when the temperature falls below a temperature equal to TTRIP minus THYST. TOVER is active-high with a push-pull structure. TOVER , is active-low with an open-drain structure. There are two different hysteresis options available that are factory preset. The preset hysteresis can be selected by purchasing the proper order number as described in Device Comparison Table . Driving the TRIP-TEST high will activate the digital outputs. A processor can check the logic level of the TOVER or TOVER , confirming that they changed to their active state. This allows for system production testing verification that the comparator and output circuitry are functional after system assembly. When the TRIP-TEST pin is high, the trip-level reference voltage appears at the VTEMP pin. Tying TOVER to TRIP-TEST will latch the output after it trips. It can be cleared by forcing TRIP-TEST low or powering off the LM57-Q1. 7.2 Functional Block Diagram VDD = 2.4V to 5.5V TRIP TEST SENSE1 LM57 SENSE2 VTRIP DAC TOVER GAIN TEMP SENSOR (negative temp coefficient) TRIP TEST = 1 + - TRIP TEST = 0 VDD TOVER VTEMP GND 12 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 7.3 Feature Description 7.3.1 LM57-Q1 VTEMP Temperature-to-Voltage Transfer Function The value of the RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5).The trip point range associated with a given gain is shown in bold green or bold red italics in Table 1. Temperatures above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and are highlighted in red and italics in Table 1. The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature range. The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature range. 3,500 J2 (-5.166mV/°C) J3 (-7.752mV/°C) J4 (-10.339mV/°C) J5 (-12.924mV/°C) VTEMP VOLTAGE (mV) 3,000 2,500 2,000 1,500 1,000 500 0 -50 -25 0 25 50 75 100 125 150 175 TEMPERTURE (ƒC) C101 Figure 12. Temperature Transfer Characteristics Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) (1) (1) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) –50 1352.56 2028.80 2705.20 3381.40 –49 1347.60 2021.35 2695.26 3368.98 –48 1342.64 2013.90 2685.32 3356.55 –47 1337.67 2006.44 2675.38 3344.12 –46 1332.70 1998.98 2665.43 3331.68 –45 1327.73 1991.52 2655.47 3319.23 –44 1322.76 1984.05 2645.51 3306.78 –43 1317.78 1976.58 2635.54 3294.32 –42 1312.81 1969.11 2625.57 3281.85 –41 1307.82 1961.63 2615.60 3269.38 –40 1302.84 1954.15 2605.62 3256.90 –39 1297.86 1946.66 2595.63 3244.41 –38 1292.87 1939.17 2585.64 3231.92 –37 1287.88 1931.68 2575.64 3219.42 –36 1282.88 1924.18 2565.64 3206.92 –35 1277.89 1916.68 2555.63 3194.41 –34 1272.89 1909.17 2545.62 3181.89 The RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5). The trip point range associated with a given gain is shown in bold green or red on this table. Temperatures above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and are italicized and highlighted in red. The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature range. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 13 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Feature Description (continued) Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) 14 (1) (continued) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) –33 1267.88 1901.66 2535.60 3169.37 –32 1262.88 1894.15 2525.58 3156.84 –31 1257.87 1886.63 2515.56 3144.30 –30 1252.86 1879.11 2505.52 3131.76 –29 1247.85 1871.59 2495.49 3119.21 –28 1242.84 1864.06 2485.44 3106.66 –27 1237.82 1856.53 2475.40 3094.10 –26 1232.80 1848.99 2465.34 3081.53 –25 1227.78 1841.45 2455.29 3068.96 –24 1222.75 1833.91 2445.23 3056.38 –23 1217.73 1826.36 2435.16 3043.79 –22 1212.70 1818.81 2425.09 3031.20 –21 1207.67 1811.26 2415.01 3018.60 –20 1202.63 1803.70 2404.93 3006.00 –19 1197.59 1796.13 2394.84 2993.38 –18 1192.55 1788.57 2384.74 2980.77 –17 1187.51 1781.00 2374.65 2968.14 –16 1182.46 1773.42 2364.54 2955.51 –15 1177.42 1765.85 2354.44 2942.87 –14 1172.37 1758.26 2344.32 2930.23 –13 1167.31 1750.68 2334.20 2917.58 –12 1162.26 1743.09 2324.08 2904.93 –11 1157.20 1735.50 2313.95 2892.26 –10 1152.14 1727.90 2303.82 2879.60 –9 1147.07 1720.30 2293.68 2866.92 –8 1142.01 1712.69 2283.54 2854.24 –7 1136.94 1705.09 2273.39 2841.55 –6 1131.87 1697.47 2263.24 2828.86 –5 1126.79 1689.86 2253.08 2816.16 –4 1121.72 1682.24 2242.91 2803.45 –3 1116.64 1674.61 2232.74 2790.74 –2 1111.56 1666.99 2222.57 2778.02 –1 1106.47 1659.35 2212.39 2765.30 0 1101.39 1651.72 2202.21 2752.57 1 1096.30 1644.08 2192.02 2739.83 2 1091.20 1636.44 2181.82 2727.08 3 1086.11 1628.79 2171.62 2714.33 4 1081.01 1621.14 2161.42 2701.58 5 1075.91 1613.48 2151.21 2688.82 6 1070.81 1605.83 2141.00 2676.05 7 1065.71 1598.16 2130.78 2663.27 8 1060.60 1590.50 2120.55 2650.49 9 1055.49 1582.83 2110.32 2637.70 10 1050.38 1575.15 2100.09 2624.91 11 1045.26 1567.48 2089.85 2612.10 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Feature Description (continued) Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) (1) (continued) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) 12 1040.14 1559.80 2079.60 2599.30 13 1035.02 1552.11 2069.35 2586.48 14 1029.90 1544.42 2059.10 2573.66 15 1024.77 1536.73 2048.84 2560.84 16 1019.65 1529.03 2038.57 2548.01 17 1014.51 1521.33 2028.30 2535.17 18 1009.38 1513.63 2018.03 2522.32 19 1004.25 1505.92 2007.75 2509.47 20 999.11 1498.21 1997.46 2496.61 21 993.97 1490.49 1987.17 2483.75 22 988.82 1482.77 1976.88 2470.88 23 983.68 1475.05 1966.58 2458.00 24 978.53 1467.32 1956.27 2445.12 25 973.38 1459.59 1945.96 2432.23 26 968.22 1451.86 1935.64 2419.34 27 963.07 1444.12 1925.32 2406.43 28 957.91 1436.38 1915.00 2393.53 29 952.74 1428.63 1904.67 2380.61 30 947.58 1420.88 1894.33 2367.69 31 942.41 1413.13 1883.99 2354.76 32 937.24 1405.37 1873.64 2341.83 33 932.07 1397.61 1863.29 2328.89 34 926.90 1389.84 1852.94 2315.94 35 921.72 1382.07 1842.57 2302.99 36 916.54 1374.30 1832.21 2290.03 37 911.36 1366.52 1821.84 2277.07 38 906.17 1358.74 1811.46 2264.10 39 900.98 1350.96 1801.08 2251.12 40 895.79 1343.17 1790.69 2238.14 41 890.60 1335.38 1780.30 2225.15 42 885.41 1327.58 1769.90 2212.15 43 880.21 1319.78 1759.50 2199.15 44 875.01 1311.98 1749.09 2186.14 45 869.81 1304.17 1738.68 2173.12 46 864.60 1296.36 1728.26 2160.10 47 859.39 1288.54 1717.84 2147.07 48 854.18 1280.72 1707.41 2134.04 49 848.97 1272.90 1696.98 2121.00 50 843.75 1265.07 1686.54 2107.95 51 838.53 1257.24 1676.10 2094.90 52 833.31 1249.41 1665.65 2081.84 53 828.09 1241.57 1655.20 2068.77 54 822.86 1233.73 1644.74 2055.70 55 817.63 1225.88 1634.28 2042.62 56 812.40 1218.03 1623.81 2029.54 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 15 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Feature Description (continued) Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) 16 (1) (continued) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) 57 807.17 1210.18 1613.34 2016.44 58 801.93 1202.32 1602.86 2003.35 59 796.69 1194.46 1592.38 1990.24 60 791.45 1186.60 1581.89 1977.13 61 786.20 1178.73 1571.40 1964.02 62 780.96 1170.86 1560.90 1950.89 63 775.71 1162.98 1550.40 1937.76 64 770.46 1155.10 1539.89 1924.63 65 765.20 1147.22 1529.37 1911.49 66 759.94 1139.33 1518.86 1898.34 67 754.68 1131.44 1508.33 1885.19 68 749.42 1123.54 1497.80 1872.02 69 744.16 1115.64 1487.27 1858.86 70 738.89 1107.74 1476.73 1845.68 71 733.62 1099.83 1466.19 1832.50 72 728.35 1091.92 1455.64 1819.32 73 723.07 1084.01 1445.08 1806.13 74 717.79 1076.09 1434.53 1792.93 75 712.51 1068.17 1423.96 1779.72 76 707.23 1060.24 1413.39 1766.51 77 701.94 1052.31 1402.82 1753.30 78 696.65 1044.38 1392.24 1740.07 79 691.36 1036.44 1381.65 1726.84 80 686.07 1028.50 1371.07 1713.61 81 680.77 1020.55 1360.47 1700.36 82 675.48 1012.60 1349.87 1687.11 83 670.17 1004.65 1339.27 1673.86 84 664.87 996.69 1328.66 1660.60 85 659.56 988.73 1318.04 1647.33 86 654.25 980.77 1307.42 1634.05 87 648.94 972.80 1296.80 1620.77 88 643.63 964.83 1286.17 1607.49 89 638.31 956.85 1275.53 1594.19 90 632.99 948.87 1264.89 1580.89 91 627.67 940.89 1254.25 1567.59 92 622.35 932.90 1243.60 1554.28 93 617.02 924.91 1232.94 1540.96 94 611.69 916.92 1222.28 1527.63 95 606.36 908.92 1211.61 1514.30 96 601.02 900.91 1200.94 1500.97 97 595.69 892.91 1190.27 1487.62 98 590.34 884.90 1179.59 1474.27 99 585.00 876.88 1168.90 1460.92 100 579.66 868.87 1158.21 1447.55 101 574.31 860.84 1147.52 1434.18 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Feature Description (continued) Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) (1) (continued) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) 102 568.96 852.82 1136.81 1420.81 103 563.61 844.79 1126.11 1407.43 104 558.25 836.76 1115.40 1394.04 105 552.89 828.72 1104.68 1380.65 106 547.53 820.68 1093.96 1367.24 107 542.17 812.63 1083.23 1353.84 108 536.80 804.59 1072.50 1340.42 109 531.43 796.53 1061.77 1327.01 110 526.06 788.48 1051.02 1313.58 111 520.69 780.42 1040.28 1300.15 112 515.31 772.35 1029.53 1286.71 113 509.93 764.29 1018.77 1273.26 114 504.55 756.21 1008.01 1259.81 115 499.17 748.14 997.24 1246.36 116 493.78 740.06 986.47 1232.89 117 488.39 731.98 975.69 1219.42 118 483.00 723.89 964.91 1205.95 119 477.61 715.80 954.12 1192.46 120 472.21 707.70 943.33 1178.98 121 466.81 699.61 932.53 1165.48 122 461.41 691.50 921.73 1151.98 123 456.00 683.40 910.92 1138.47 124 450.60 675.29 900.11 1124.96 125 445.19 667.18 889.29 1111.44 126 439.78 659.06 878.47 1097.91 127 434.36 650.94 867.64 1084.38 128 428.94 642.81 856.81 1070.84 129 423.52 634.68 845.97 1057.29 130 418.10 626.55 835.13 1043.74 131 412.67 618.41 824.28 1030.18 132 407.25 610.27 813.43 1016.62 133 401.82 602.13 802.57 1003.05 134 396.38 593.98 791.71 989.47 135 390.95 585.83 780.84 975.89 136 385.51 577.67 769.97 962.30 137 380.07 569.51 759.09 948.70 138 374.63 561.35 748.20 935.10 139 369.18 553.18 737.32 921.49 140 363.73 545.01 726.42 907.87 141 358.28 536.84 715.52 894.25 142 352.83 528.66 704.62 880.62 143 347.37 520.48 693.71 866.99 144 341.91 512.29 682.80 853.35 145 336.45 504.10 671.88 839.70 146 330.99 495.91 660.95 826.05 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 17 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Feature Description (continued) Table 1. LM57-Q1 VTEMP Temperature to Voltage Temperature (°C) 18 (1) (continued) VTEMP VOLTAGE (mV) J2 (-5.166 mV/°C) J3 (–7.752 mV/°C) J4 (–10.339 mV/°C) J5 (–12.924 mV/°C) 147 325.52 487.71 650.03 812.39 148 320.05 479.51 639.09 798.73 149 314.58 471.30 628.15 785.05 150 309.10 463.09 617.21 771.38 151 303.63 454.88 606.26 757.69 152 298.15 446.66 595.30 744.00 153 292.66 438.44 584.35 730.30 154 287.18 430.22 573.38 716.60 155 281.69 421.99 562.41 702.89 156 276.20 413.76 551.44 689.17 157 270.71 405.52 540.46 675.45 158 265.22 397.28 529.47 661.72 159 259.72 389.04 518.48 647.99 160 254.22 380.79 507.49 634.25 161 248.71 372.54 496.49 620.50 162 243.21 364.28 485.48 606.75 163 237.70 356.02 474.47 592.98 164 232.19 347.76 463.46 579.22 165 226.68 339.50 452.44 565.45 166 221.16 331.23 441.41 551.67 167 215.64 322.95 430.38 537.88 168 210.12 314.67 419.35 524.09 169 204.60 306.39 408.31 510.29 170 199.07 298.11 397.26 494.59 171 193.54 289.82 386.21 480.52 172 188.01 281.52 375.15 466.44 173 182.48 273.23 364.09 452.36 174 176.94 264.92 353.03 438.27 175 171.40 256.62 341.96 424.17 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com 7.3.1.1 SNIS191A – JULY 2015 – REVISED JULY 2015 LM57-Q1 VTEMP Voltage-to-Temperature Equations VTEMP= a (T-30)2+ b (T-30) + c where • VTEMP is in mV and T is in °C (1) 2 T  b  b  4 a( c  VTEMP ) 2a  30 qC where • T is in °C and VTEMP is in mV (2) Table 2. LM57-Q1 VTEMP Voltage-to-Temperature Equations Coefficients Trip-Point Region LM57-Q1 Trip Point Range a b J2 −41°C to 52°C – 0.00129 − 5.166 947.6 J3 52°C to 97°C – 0.00191 − 7.752 1420.9 J4 97°C to 119°C – 0.00253 − 10.339 1894.3 J5 119°C to 160°C – 0.00316 − 12.924 2367.7 c 7.3.2 RSENSE The LM57-Q1 uses the voltage at the two SENSE pins to set the trip point for the temperature switch. It is possible to drive the two SENSE pins with a voltage equal to the value generated by the resistor and the internal current-source and have the same switch point. Thus one can use an external DAC to drive each SENSE pin, allowing for the temperature trip point to be set dynamically by the system processor. Table 3 shows the RSENSE value and its corresponding generated SENSE pin voltage (the center value). Table 3. RSENSE Values (kΩ) vs SENSE Pin Voltage (mV) RSENSE (kΩ) SENSE Pin Voltage (mV) Center Value 976 1875 825 1585 698 1341 590 1134 499 959 412 792 340 653 280 538 226 434 178 342 140 269 105 202 75 146 46.4 87 22.6 43 0.01 0 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 19 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 7.3.3 Resistor Selection Table 4. Trip Point (°C) vs Sense Resistor (RSENSE) Values (Ω) (1) RSENSE2 J2 RSENSE1 (1) (2) 20 (2) J3 (2) J4 (2) J5 976 kΩ 825 kΩ 698 kΩ 590 kΩ 499 kΩ 412 kΩ 340 kΩ 280 kΩ 226 kΩ 178 kΩ 140 kΩ 105 kΩ 75 kΩ 46.4 kΩ 976 kΩ –40.68 –16.26 7.33 30.38 52.73 67.77 82.74 97.47 108.61 119.62 128.46 137.28 146.08 154.77 825 kΩ –39.13 –14.76 8.79 31.81 53.68 68.71 83.67 98.17 109.30 120.18 129.01 137.83 146.62 155.31 698 kΩ –37.57 –13.27 10.24 33.24 54.62 69.65 84.60 98.86 110.00 120.73 129.56 138.38 147.16 155.85 590 kΩ –36.03 –11.78 11.70 34.67 55.56 70.59 85.53 99.56 110.70 121.28 130.12 138.93 147.71 156.39 499 kΩ –34.49 –10.29 13.15 36.10 56.50 71.52 86.46 100.25 111.39 121.84 130.67 139.49 148.25 156.93 412 kΩ –32.95 –8.81 14.60 37.53 57.44 72.46 87.40 100.95 112.09 122.39 131.22 140.04 148.80 157.46 340 kΩ –31.41 –7.32 16.05 38.95 58.39 73.40 88.33 101.64 112.79 122.94 131.77 140.59 149.34 158.00 280 kΩ –29.88 –5.83 17.49 40.38 59.33 74.33 89.26 102.34 113.48 123.50 132.32 141.14 149.88 158.54 226 kΩ –28.34 –4.35 18.93 41.81 60.27 75.27 90.19 103.03 114.18 124.05 132.87 141.69 150.43 159.08 178 kΩ –26.83 –2.88 20.36 43.23 61.21 76.20 91.12 103.73 114.87 124.60 133.43 142.24 150.97 159.62 140 kΩ –25.32 –1.42 21.79 44.65 62.15 77.14 92.05 104.42 115.57 125.15 133.98 142.79 151.51 160.16 105 kΩ –23.80 0.04 23.22 46.07 63.08 78.07 92.99 105.11 116.26 125.71 134.53 143.34 152.06 75 kΩ –22.29 1.50 24.65 47.50 64.02 79.01 93.92 105.81 116.95 126.26 135.08 143.89 152.60 46.4 kΩ –20.77 2.96 26.08 48.92 64.96 79.94 94.84 106.50 117.65 126.81 135.63 144.44 153.14 22.6 kΩ –19.26 4.42 27.51 50.33 65.90 80.87 95.77 107.19 118.34 127.36 136.18 144.99 153.68 0.01 kΩ –17.75 5.88 28.94 51.75 66.84 81.81 96.70 107.89 119.04 127.91 136.73 145.54 154.23 Temperatures above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and are italicized. There are four gains corresponding to each of the four Temperature Trip Point Ranges: J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points −40.68°C to 51.8°C. J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C. J4 (-10.339 mV/°C) for 97°C to 119°C. J5 (-12.924 mV/°C) for 119°C to 160°C. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Table 5. VTEMP (mV) at the Trip Point vs Sense Resistor (RSENSE) Value (Ω) (1) RSENSE2 J2 RSENSE1 (1) (2) (2) J3 (2) J4 (2) J5 (2) 976 kΩ 825 kΩ 698 kΩ 590 kΩ 499 kΩ 412 kΩ 340 kΩ 280 kΩ 226 kΩ 178 kΩ 140 kΩ 105 kΩ 75 kΩ 46.4 kΩ 976 kΩ 1306.23 1183.77 1064.00 945.63 1243.67 1125.34 1006.75 1185.27 1066.00 1184.05 1064.59 944.83 824.96 705.99 825 kΩ 1298.50 1176.23 1056.56 938.23 1236.27 1117.93 999.34 1177.83 1058.52 1176.57 1057.10 937.33 817.53 698.60 698 kΩ 1290.72 1168.70 1049.13 930.83 1228.88 1110.52 991.92 1170.40 1051.03 1169.10 1049.62 929.83 810.09 691.20 590 kΩ 1283.03 1161.16 1041.69 923.43 1221.48 1103.10 984.51 1162.96 1043.55 1161.63 1042.13 922.33 802.66 683.81 499 kΩ 1275.33 1153.62 1034.26 916.02 1214.09 1095.69 977.09 1155.52 1036.07 1154.16 1034.65 914.83 795.22 676.41 412 kΩ 1267.64 1146.09 1026.82 908.62 1206.69 1088.28 969.66 1148.09 1028.59 1146.68 1027.16 907.33 787.78 669.02 340 kΩ 1259.94 1138.55 1019.38 901.22 1199.30 1080.87 962.22 1140.65 1021.10 1139.21 1019.67 899.83 780.35 661.62 280 kΩ 1252.25 1131.02 1011.99 893.82 1191.90 1073.45 954.78 1133.22 1013.62 1131.74 1012.19 892.33 772.91 654.22 226 kΩ 1244.55 1123.48 1004.62 886.42 1184.50 1066.04 947.35 1125.78 1006.14 1124.27 1004.70 884.83 765.48 646.83 178 kΩ 1236.99 1116.05 997.26 879.02 1177.11 1058.63 939.91 1118.35 998.66 1116.79 997.22 877.33 758.04 639.43 140 kΩ 1229.38 1108.61 989.89 871.61 1169.71 1051.22 932.48 1110.91 991.17 1109.32 989.73 869.82 750.61 632.04 105 kΩ 1221.76 1101.18 982.53 864.21 1162.32 1043.80 925.04 1103.48 983.69 1101.85 982.25 862.32 743.17 75 kΩ 1214.15 1093.74 975.16 856.81 1154.92 1036.39 917.61 1096.04 976.21 1094.38 974.76 854.82 735.74 46.4 kΩ 1206.53 1086.30 967.80 849.41 1147.53 1028.98 910.17 1088.60 968.73 1086.90 967.28 847.32 728.30 22.6 kΩ 1198.92 1078.87 960.43 842.01 1140.13 1021.57 902.74 1081.17 961.24 1079.43 959.79 839.82 720.86 0.01 kΩ 1191.30 1071.43 953.07 834.62 1132.74 1014.15 895.30 1073.73 953.76 1072.04 952.31 832.32 713.43 Items italicized and highlighted in red apply to the LM57FSPWQ1 and LM57TSPWQ1 only. There are four gains corresponding to each of the four Temperature Trip Point Ranges: J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points −40.68°C to 51.8°C. J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C. J4 (-10.339 mV/°C) for 97°C to 119°C. J5 (-12.924 mV/°C) for 119°C to 160°C. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 21 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 7.3.4 TOVER and TOVER Digital Outputs The TOVER active high, push-pull output and the TOVER Active Low, Open-Drain Output both assert at the same time whenever the Die Temperature reaches the Trip Point. They also assert simultaneously whenever the TRIP TEST pin is set high. Both outputs de-assert when the die temperature goes below the (Temperature Trip Point) - (Hysteresis). These two types of digital outputs enable the user the flexibility to choose the type of output that is most suitable for his design. Either the TOVER or the TOVER Digital Output pins can be left open if not used. The TOVER Active Low, Open-Drain Digital Output, if used, requires a pullup resistor between this pin and VDD. 7.3.4.1 TOVER and TOVER Noise Immunity The LM57-Q1 has some noise immunity to a premature trigger due to noise on the power supply. With the die temperature at 1°C below the trip point, there are no premature triggers for a square wave injected into the power supply with a magnitude of 100 mVPP over a frequency range of 100 Hz to 2 MHz. Above the frequency a premature trigger may occur. With the die temperature at 2°C below the trip point, and a magnitude of 200 mVPP, there are no premature triggers from 100 Hz to 300 kHz. Above that frequency a premature trigger may occur. Therefore if the supply line is noisy, it is recommended that a local supply decoupling capacitor be used to reduce that noise. 7.3.5 Trip Test Digital Input The TRIP TEST pin provides a means to test the digital outputs by causing them to assert, regardless of temperature. In addition, when the TRIP TEST pin is pulled high the VTEMP pin will be at the VTRIP voltage. 7.3.6 VTEMP Analog Temperature Sensor Output The VTEMP push-pull output provides the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Typical Application section for more discussion of this topic. The LM57-Q1 is ideal for this and other applications which require strong source or sink current. 7.3.6.1 VTEMP Noise Considerations A load capacitor on VTEMP can help to filter noise. For noisy environments, TI recommends a 100 nF supply decoupling capacitor placed closed across VDD and GND pins of LM57-Q1. 22 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 7.3.6.2 VTEMP Capacitive Loads The VTEMP Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the VTEMP can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 14, to maintain stable conditions. VDD VDD VTEMP VTEMP LM57 RS LM57 GND GND CLOAD d 1100 pF Figure 13. LM57-Q1 With No Isolation Resistor Required CLOAD > 1100 pF Figure 14. LM57-Q1 With Series Resistor for Capacitive Loading Greater than 1100 pF Table 6. CLOAD and RS Values of Figure 14 CLOAD Minimum RS 1.1 to 99 nF 3 kΩ 100 to 999 nF 1.5 kΩ 1 μF 750 Ω 7.3.6.3 VTEMP Voltage Shift The LM57-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of VDD and VTEMP. The shift typically occurs when VDD − VTEMP = 1 V. This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VTEMP. Since the shift takes place over a wide temperature change of 5°C to 20°C, VTEMP is always monotonic. The accuracy specifications in the Electrical Characteristics table already includes this possible shift. 7.4 Device Functional Modes The LM57-Q1 has several modes of operation as detailed in the following drawings. VDD RSENSE2 RSENSE1 SENSE1 TOVER SENSE2 Asserts when TDIE > TTRIP LM57 See text TRIP TEST GND Figure 15. Temperature Switch Using Push-Pull Output Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 23 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Device Functional Modes (continued) VDD 100k SENSE1 RSENSE2 RSENSE1 TOVER SENSE2 Asserts when TDIE > TTRIP LM57 See text TRIP TEST GND Figure 16. Temperature Switch Using Open-Drain Output As shown in Figure 17 the LM57-Q1 has a TRIP Test input simplifying in situ board conductivity testing. Forcing TRIP TEST pin "HIGH" will drive the TOVER pin "LOW" and the TOVER pin "HIGH". VDD 100k TOVER TRIP TEST LM57 TOVER GND Figure 17. Trip Test Digital Output Test Circuit In the circuit shown in Figure 18 when TOVER goes active high, it drives trip test high. Trip test high causes TOVER to stay high. It is therefore latched. To release the latch, power down, then power up. The LM57-Q1 always comes up in a released condition. VDD TOVER TRIP TEST LM57 TOVER GND Figure 18. Simple Latch Circuit 24 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Device Functional Modes (continued) The TRIP TEST pin, normally used to check the operation of the TOVER and TOVER pins, may be used to latch the outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As shown in Figure 19, when TOVER goes high, the TRIP TEST input is also pulled high and causes TOVER output to latch high and the TOVER output to latch low. Momentarily switching the TRIP TEST input low will reset the LM57Q1 to normal operation. The resistor limits the current out of the TOVER output pin. VDD 100k TOVER TRIP TEST RESET Momentary LM57 TOVER GND Figure 19. Latch Circuit Using TOVER Output Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 25 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The LM57-Q1 has several outputs allowing for varying system implementations. 8.1.1 ADC Input Considerations The LM57-Q1 has an analog temperature sensor output (VTEMP) that can be directly connected to an ADC (Analog to Digital Converter) input. Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM57-Q1 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (CFILTER). The size of CFILTER depends on the size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge requirements will vary. The general ADC application shown in Figure 20 is an example only. SAR Analog-to-Digital Converter Reset +2.4V to +5.5V Input Pin LM57 VDD RIN Sample VTEMP CBP CPIN CFILTER CSAMPLE GND Figure 20. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage 8.2 Typical Application VDD Supply (+2.4V to +5.5V) VDD VTEMP Analog ADC Input LM57 Microcontroller RSENSE2 RSENSE1 SENSE1 TOVER SENSE2 TOVER TRIP TEST Digital In Digital Out GND Figure 21. Typical Application Schematic with Microcontroller TRIP TEST Control 26 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 Typical Application (continued) 8.2.1 Design Requirements By simply selecting the value of two resistors the trip point of the LM57-Q1 can easily be programmed as described in the following section. If standard 1% values are used the actual trip point threshold is not degraded and stands as described in the Electrical Characteristics section ( ). 8.2.2 Detailed Design Procedure 8.2.2.1 Selection of RSENSE Resistors To set the trip point: 1. 2. 3. 4. 5. Locate the desired trip temperature in . Identify the corresponding RSENSE2 value by following the column up to the resistor value. Identify the corresponding RSENSE1 value by following the row leftwards to the resistor value. Use only the EIA E96 standard resistor values from the list. Use only a resistor with 1% tolerance and a temperature coefficient of 100 ppm (or better). These restrictions are necessary to stay at the selected setting, and not to slip into an adjacent setting. 6. This is consistent with using resistors from the thick film chip resistors CRCW0402 family. These are available with very small dimensions of L = 1 mm, W = 0.5 mm, H = 0.35 mm. 7. Note that the resistor tolerance does not diminish the accuracy of the trip point. As can be seen in the block diagram these inputs drive the logic inputs of a DAC thus their tolerance does affect the trip point accuracy unless the DAC setting slips into an adjacent level. See patent number 6924758. 8.2.3 Application Curves The typical performance of the LM57TSPWQ1 temperature sensor output can be seen in Figure 22. Figure 23 shows the output behavior of the LM57-Q1 TOVER output. 2.0 MAX LImit VTEMP Accuracy (ƒC) 1.5 Trip Point 1.0 Trip Point - Hysteresis 0.5 VTEMP Output (Temp. of Leads) 0.0 -0.5 TOVER -1.0 -1.5 MIN Limit -2.0 ±50 ±25 0 25 50 75 100 125 150 DUT Temperature (ƒC) 175 C102 Figure 22. J2 VTEMP Accuracy Characteristics Figure 23. Output Transfer Characteristic Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 27 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com Typical Application (continued) 8.2.4 Grounding of the TRIP TEST Pin The circuit in Figure 24 shows the TRIP TEST pin grounded. This allows the LM57-Q1 to function autonomously without microcontroller intervention. In all other respects this circuit functions similarly to the circuit shown in Figure 21. VDD Supply (+2.4V to +5.5V) VDD VTEMP LM57 RSENSE2 RSENSE1 Microcontroller SENSE1 TOVER SENSE2 TOVER Digital In TRIP TEST GND Figure 24. Typical Application Schematic without Microcontroller TRIP TEST Control 9 Power Supply Recommendations Power supply bypass capacitors are optional and may be required if the supply line is noisy. TI recommends that a local supply decoupling capacitor be used to reduce noise. For noisy environments, TI recommends a 100-nF supply decoupling capacitor placed closed across VDD and GND pins of LM57-Q1. 10 Layout 10.1 Layout Guidelines The LM57-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperatures of the lands and traces to the other leads of the LM57-Q1 will also affect the temperature reading. Alternatively, the LM57-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM57-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the VTEMP output to ground or VDD, the VTEMP output from the LM57-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces. 28 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 LM57-Q1 www.ti.com SNIS191A – JULY 2015 – REVISED JULY 2015 10.2 Layout Example VIA to ground plane VIA to power plane GND VTEMP SENSE1 TOVER SENSE2 TOVER VDD TRIP TEST RSENSE1 RSENSE2 0.1 µ F Figure 25. PW (TSSOP) Package Layout Example 10.3 Temperature Considerations The junction temperature of the LM57-Q1 is the actual temperature being measured. The thermal resistance junction-to-ambient (RθJA) is the parameter (from ) used to calculate the rise of a device junction temperature due to its power dissipation. Equation 3 is used to calculate the rise in the die temperature of the LM57-Q1. 7J  7A 5TJA  ª¬ 9DD,Q  9DD ±9TEMP ,L º¼ where • • • • TA is the ambient temperature. IQ is the quiescent current. IL is the load current on VTEMP. RθJA can be found in (3) For example using an LM57-Q1 in the PW (TSSOP) package, in an application where TA = 30°C, VDD = 5.5 V, IDD = 28 μA, J5 gain, VTEMP = 2368 mV, and IL = 0 μA, the total temperature rise would be [183°C/W × 5.5 V × 28 μA] = 0.028°C. To minimize self-heating, the load current on VTEMP should be minimized. Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 29 LM57-Q1 SNIS191A – JULY 2015 – REVISED JULY 2015 www.ti.com 11 Device and Documentation Support 11.1 Documentation Support 11.1.1 Related Documentation For related documentation, see the following: • LM57 Commercial Data Sheet. • Reflow Temperature Profile specifications, www.ti.com/packaging. • IC Package Thermal Metrics application report, SPRA953 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 30 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated Product Folder Links: LM57-Q1 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM57FEPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 150 LM57FE LM57FEPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 150 LM57FE LM57FQPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 125 LM57FQ LM57FQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 125 LM57FQ LM57FSPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 160 LM57FS LM57FSPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 160 LM57FS LM57TEPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 150 LM57TE LM57TEPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 150 LM57TE LM57TQPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 125 LM57TQ LM57TQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 125 LM57TQ LM57TSPWQ1 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 160 LM57TS LM57TSPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -50 to 160 LM57TS (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM57FEPWRQ1 价格&库存

很抱歉,暂时无法提供与“LM57FEPWRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货