0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMR36006BEVM

LMR36006BEVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

  • 数据手册
  • 价格&库存
LMR36006BEVM 数据手册
User's Guide SNVU580 – November 2018 LMR360xxxEVM User’s Guide The Texas Instruments LMR36015A and LMR36006B evaluation modules (EVM) help designers evaluate the operation and performance of the LMR36015 and LMR36006 wide-input buck regulators. The LMR36015 is an easy-to-use synchronous step-down DC/DC converter capable of driving up to 1.5 A of load current from an input voltage of up to 60 V. The LMR36006 uses the same EVM PCB and components, but the current limit is modified to 0.6 A. The LMR360xxxEVMs feature a selectable output voltage of 3.3 V or 5 V and a switching frequency of 400 kHz and 1 MHz. See the LMR36006 and LMR36015 data sheets for additional features, detailed descriptions, and available options. The EVM options are found in Table 1. Table 1. Device and Package Configurations 1 2 3 4 5 6 EVM U1 FREQUENCY Output Current LMR36015AEVM LMR36015 400 kHz 1.5 A LMR36006BEVM LMR36006 1 MHz 600 mA Contents Posts, Probes, and Jumpers ............................................................................................... 3 Operation ..................................................................................................................... 5 Schematic ..................................................................................................................... 6 Board Layout ................................................................................................................. 7 Bill of Materials ............................................................................................................. 13 Test Results ................................................................................................................. 14 List of Figures 1 EVM Board Connections.................................................................................................... 3 2 Jumper Locations ............................................................................................................ 4 3 LMR360xxxEVM Schematic ................................................................................................ 6 4 Top View of EVM ............................................................................................................ 7 5 EVM Top Copper Layer ..................................................................................................... 8 6 EVM Mid Layer One ......................................................................................................... 9 7 EVM Mid Layer Two ....................................................................................................... 10 8 EVM Bottom Copper Layer ............................................................................................... 11 9 EVM Bottom View .......................................................................................................... 12 10 LMR36015AEVM 5 VOUT Efficiency 11 LMR36015AEVM 3.3 VOUT Efficiency .................................................................................... 14 12 LMR36015AEVM 5 VOUT Load Regulation .............................................................................. 14 13 LMR36015AEVM 3.3 VOUT Load Regulation ............................................................................ 14 14 LMR36015AEVM 5 VOUT Load Transient, 24 VIN, IOUT = 0 A to 1.5 A, TR = TF = 1 µs .............................. 15 15 LMR36015AEVM 3.3 VOUT Load Transient, 24 VIN, IOUT = 0 A to 1.5 A, TR = TF = 1 µs............................ 15 16 LMR36015AEVM 5 VOUT Start-Up Waveform, 24 VIN,1.5 A Load .................................................... 15 17 LMR36015AEVM 3.3 VOUT Start-Up Waveform, 24 VIN,1.5 A Load .................................................. 15 18 LMR36006BEVM 5 VOUT Efficiency 19 LMR36006BEVM 3.3 VOUT Efficiency .................................................................................... 16 ...................................................................................... ...................................................................................... SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 14 16 1 www.ti.com 20 LMR36006BEVM 5 VOUT Load Regulation .............................................................................. 16 21 LMR36006BEVM 3.3 VOUT Load Regulation ............................................................................ 16 22 LMR36006BEVM 5 VOUT Load Transient, 24 VIN, IOUT = 0 A to 0.6 A, TR = TF = 1 µs .............................. 17 23 LMR36006BEVM 3.3 VOUT Load Transient, 24 VIN, IOUT = 0 A to 0.6 A, TR = TF = 1 µs............................ 17 24 LMR36006BEVM 5 VOUT Start-Up Waveform, 24 VIN,1.5 A Load .................................................... 17 25 LMR36006BEVM 3.3 VOUT Start-Up Waveform, 24 VIN,1.5 A Load .................................................. 17 List of Tables 1 Device and Package Configurations ...................................................................................... 1 2 Bill of Materials ............................................................................................................. 13 Trademarks All trademarks are the property of their respective owners. 2 LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Posts, Probes, and Jumpers www.ti.com 1 Posts, Probes, and Jumpers This section describes the test points and connectors on the EVM and how to properly connect, set up, and use the LMR36015AEVM and the LMR36006BEVM. 1.1 Screw Terminal Connectors The screw terminals on the top of the board can be used for connecting to the input and output of the EVM. See Figure 1 for the screw terminal connections. The functions of the screw terminal connections are: • VIN - Input supply to EVM. Connect to a suitable input supply. See LMR36006 data sheet and LMR36015 data sheet for input supply requirements. • GND - System ground. • IN+ - Input supply to EVM including an EMI filter. Connect to a suitable input supply. See LMR36006 data sheet and LMR36015 data sheet for input supply requirements. • IN– - System ground including an EMI filter. • VOUT - Output of EVM — connect to desired load. VOUT Connection: Load VIN Connection with EMI Filter: Input Supply VIN Connection: Input Supply Figure 1. EVM Board Connections SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 3 Posts, Probes, and Jumpers 1.2 www.ti.com Jumpers See Figure 2 for jumper locations. • EN - This jumper allows the ENABLE input to be connected to either GND (OFF) or VIN (ON). The 2to-3 position enables the device; while the 1-to-2 position disables the device. Remove this jumper to allow an external logic signal to control the EN function. • VOUT - Use this jumper to select one of the two pre-defined output voltages. The 2-to-3 position provides a 3.3-V output; while the 1-to-2 position provides a 5-V output. • PGOOD - Use this jumper to select the PGOOD pullup configuration. PGOOD can be connected to either VOUT or VCC. The 2-to-3 position connects PGOOD to VOUT, while the 1-to-2 position connects PGOOD to VCC. Feedback Jumper Power Good Jumper Enable Jumper Figure 2. Jumper Locations 1.3 Test Points • • • • • • 4 VOUTS - Output voltage sense connection; connect to DMM. Also, use for frequency response analyzer connection. VINS - Input voltage sense connection; connect to DMM. GNDS1 and GNDS2 - Ground sense point for analog measurements; connect to DMM. VCC - Test point to measure internal VCC of device; approximately 5 V. EN - Connection for external EN logic input. Remove EN jumper and connect controlling logic to EN test point for external enable control. PGOOD - Power-good flag output. This test point is connected to VCC or VOUT through a 100-kΩ resistor. The power-good function can be monitored at this test point. LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Operation www.ti.com 2 Operation 2.1 Quick Start 1. Connect the voltage supply between VIN and GND screw terminal connectors using short and thick wires. 2. Connect the load between VOUT and GND screw terminal connectors using short and thick wires. 3. Set the supply voltage at an appropriate level between 4.2 V to 60 V. Set the current limit of the supply to an appropriate level. 4. Turn on the power supply. With the default configuration, the EVM powers up and provides VOUT = 5 V. 5. Monitor the output voltage. The maximum load current must be 1.5 A with the LMR36015 device or 600 mA with the LMR36006 device. 2.2 Efficiency Measurement 1. Connect power supply to VIN and GND screw terminal connectors and make sure the power supply provides sufficient current. NOTE: There is no reverse polarity protection or fuse on the evaluation board. 2. Connect electronic load to VOUT and GND screw terminal connectors. For all power wires it is preferable to use twisted lab wires. If the power supply wires are very long > 50 cm, solder an additional 470-µF, 100-V bulk capacitor to posts VIN and GND. Use sufficient power wires to avoid voltage drops, and use short sense probe connection for the measurement. NOTE: These sense lines are not designed to carry power. 3. To accurately sense input and output voltage use the test points VINS, VOUTS, and GNDS. Alternatively, sense wires can be soldered directly over input capacitors CIN1 or CIN2 and the output capacitors CO1 or CO2. 4. Make sure the IC is enabled by having jumper J5 set to [EN-VIN] and check that test point EN is driven high. While measuring IQ (unloaded input current) remove all the input and output voltage probes that are most likely causing additional current draw. 2.3 Measure Load Transient 1. Connect power supply to VIN and GND screw terminal connectors, and make sure the power supply can provide sufficient peak current. NOTE: There is no reverse polarity protection or fuse on the evaluation board. 2. Connect transient load to VOUT and GND screw terminal connectors. For all power wires use preferable twisted lab wires. If the power supply wires are very long > 50 cm, solder an additional 470µF, 100-V bulk capacitor to posts VIN and GND. Use short sense probe connection for the measurement. 3. To accurately sense the output voltage, place the scope probe directly over the output capacitors CO1 or CO2. Make sure to connect scope probe GND ring directly to the output capacitor GND pad for minimal ground loop. Ground loops can introduce ringing in observed waveforms, which is an artifact and not present on the PCB. Alternatively, use differential probe over output capacitors CO1 or CO2. Do not use wires to differential probe and always probe directly with shortest possible pins. Make sure the IC is enabled by having jumper J5 set to [EN-VIN] and check test point EN is driven high and not drooping during the load transient. SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 5 Schematic 3 www.ti.com Schematic Figure 3. LMR360xxxEVM Schematic 6 LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Board Layout www.ti.com 4 Board Layout Figure 4. Top View of EVM SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 7 Board Layout www.ti.com Figure 5. EVM Top Copper Layer 8 LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Board Layout www.ti.com Figure 6. EVM Mid Layer One SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 9 Board Layout www.ti.com Figure 7. EVM Mid Layer Two 10 LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Board Layout www.ti.com Figure 8. EVM Bottom Copper Layer SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 11 Board Layout www.ti.com Figure 9. EVM Bottom View 12 LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Bill of Materials www.ti.com 5 Bill of Materials Table 2. Bill of Materials Designator Description Manufacturer Part Number Quantity C5 CAP, AL, 68 µF, 63 V, +/- 20%, 0.65 ohm, AEC-Q200 Grade 2, SMD Panasonic EEE-FK1J680UP 0 C9, C10 CAP, CERM, 0.047 µF, 100 V, +/- 10%, X7S, 0603 TDK CGA3E3X7S2A473K080AB 2 C11 CAP, CERM, 4.7 µF, 100 V, +/- 10%, X7S, AEC-Q200 Grade 1, 1210 TDK CGA6M3X7S2A475K200A 1 C16 CAP, CERM, 0.1 uF, 25 V, +/- 10%, X7R, 0402 MuRata GRM155R71E104KE14D 1 C17 CAP, CERM, 1 uF, 25 V, +/- 10%, X7R, 0603 TDK C1608X7R1E105K080AB 1 C18 CAP, CERM, 22 pF, 50 V,+/- 5%, C0G/NP0, AEC-Q200 Grade 1, 0603 TDK CGA3E2C0G1H220J080AA 1 H1, H2, H3, H4 Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead B&F Fastener Supply NY PMS 440 0025 PH 2 H5, H6, H7, H8 Standoff, Hex, 0.5"L #4-40 Nylon Keystone 1902C 4 J1, J2, J3 Terminal Block, 3.5mm Pitch, 2x1, TH On-Shore Technology ED555/2DS 3 J4, J5, J6 Header, 100mil, 3x1, Gold, TH Samtec HTSW-103-07-G-S 3 LBL1 Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll Brady THT-14-423-10 1 R1, R2 RES, 10.0 k, 1%, 0.1 W, 0603 Vishay-Dale CRCW060310K0FKEA 2 R3 RES, 100 k, 1%, 0.1 W, 0603 Vishay-Dale CRCW0603100KFKEA 1 R4 RES, 135 k, 0.1%, 0.1 W, 0603 Yageo America RT0603BRD07135KL 1 R5 RES, 100 k, 1%, 0.1 W, 0603 Yageo America RC0603FR-07100KL 1 R6 RES, 24.9 k, 1%, 0.1 W, 0603 Vishay-Dale CRCW060324K9FKEA 1 SH-J1, SH-J2, SH-J3 Shunt, 100mil, Gold plated, Black 3M 969102-0000-DA 3 TP1, TP4 Test Point, Multipurpose, Red, TH Keystone 5000 2 TP2, TP3 Test Point, Multipurpose, Black, TH Keystone 5001 2 TP5, TP6, TP7 Test Point, Multipurpose, Yellow, TH Keystone 5014 3 U1 4.2V to 60V, 1.5A Synchronous Step-Down Texas Instruments LMR36015 1 L1 Inductor, Shielded, Composite, 10 uH, 3 A, 0.084 ohm, SMD Coilcraft XAL4040-153MEB 1 L2 Inductor, Shielded, Composite, 1 uH, 8.75 A, 0.01 ohm, SMD Coilcraft XAL4040-102MEB 1 L3 Ferrite Bead, 600 ohm @ 100 MHz, 3 A, 1210 Taiyo Yuden FBMH3225HM601NT 1 C1, C2, C3, C4 CAP, CERM, 22 µF, 16 V, +/- 10%, X7R, 1210 MuRata GRM32ER71C226KE18L 4 C6 CAP, AL, 47 uF, 80 V, +/- 20%, 0.7 ohm, SMD Chemi-Con EMZA800ADA470MJA0G 1 C7, C8, C12, C14 CAP, CERM, 2.2 µF, 100 V,+/- 10%, X7R, 1206 MuRata GRM31CR72A225KA73L 4 C13, C15 CAP, CERM, 0.047 µF, 100 V, +/- 10%, X7S, 0603 TDK CGA3E3X7S2A473K080AB 2 U1 4.2V to 60V, 0.6A Synchronous Step-Down Texas Instruments LMR36006 1 L1 Inductor, Shielded, Composite, 15 uH, 2.8 A, 0.109 ohm, SMD Coilcraft XAL4040-153MEB 1 C1, C2, C3 CAP, CERM, 22 µF, 16 V, +/- 10%, X7R, 1210 MuRata GRM32ER71C226KE18L 3 LMR36015AEVM: Adjustable 3.3V/5V Output, 400kHz, 1.5A LMR36006BEVM: Adjustable 3.3V/5V Output, 1MHz, 0.6A SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 13 Test Results 6 www.ti.com Test Results Section 6.1 details the test results from the LMR36015AEVM variant. Section 6.2 details the test results from the LMR36006BEVM. 6.1 LMR36015AEVMTest Results The LMR36015AEVM variant is used for all figures from Figure 10 to Figure 17 variant. Efficiency and Load Regulation 100% 100% 90% 90% 80% 80% 70% 70% 60% 60% Efficiency Efficiency 6.1.1 50% 40% 30% 10% 0 0.001 0.005 0.02 0.05 0.1 0.20.3 0.5 Output Current (A) 1 40% 30% 8 VIN 12 VIN 24 VIN 48 VIN 60 VIN 20% 50% 6 VIN 12 VIN 24 VIN 48 VIN 60 VIN 20% 10% 0 0.001 2 Figure 10. LMR36015AEVM 5 VOUT Efficiency 1 2 LMR3 3.34 5.04 5.02 5 4.98 6 VIN 12 VIN 24 VIN 48 VIN 60 VIN 3.33 Output Voltage (V) 8 VIN 12 VIN 24 VIN 48 VIN 60 VIN 5.06 Output Voltage (V) 0.02 0.05 0.1 0.20.3 0.5 Output Current (A) Figure 11. LMR36015AEVM 3.3 VOUT Efficiency 5.08 3.32 3.31 3.3 3.29 4.96 3.28 0 0.25 0.5 0.75 1 Output Current (A) 1.25 1.5 0 0.25 LMR3 Figure 12. LMR36015AEVM 5 VOUT Load Regulation 14 0.005 LMR3 0.5 0.75 1 Output Current (A) 1.25 1.5 LMR3 Figure 13. LMR36015AEVM 3.3 VOUT Load Regulation LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Results www.ti.com 6.1.2 Load Transients PG 5V/div PG 5V/div VOUT 100mV/div VOUT 100mV/div ILOAD 370mA/div ILOAD 370mA/div 100µs/div 100µs/div Figure 14. LMR36015AEVM 5 VOUT Load Transient, 24 VIN, IOUT = 0 A to 1.5 A, TR = TF = 1 µs 6.1.3 Figure 15. LMR36015AEVM 3.3 VOUT Load Transient, 24 VIN, IOUT = 0 A to 1.5 A, TR = TF = 1 µs Start Up Waveforms Figure 16. LMR36015AEVM 5 VOUT Start-Up Waveform, 24 VIN,1.5 A Load Figure 17. LMR36015AEVM 3.3 VOUT Start-Up Waveform, 24 VIN,1.5 A Load SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 15 Test Results 6.2 www.ti.com LMR36006BEVM Test Results The LMR36006BEVM variant is used for all figures from Figure 18 to Figure 25. Efficiency and Load Regulation 100% 100% 90% 90% 80% 80% 70% 70% 60% 60% Efficiency Efficiency 6.2.1 50% 40% 30% 10% 0 0.001 0.002 0.005 0.01 0.02 0.05 0.1 Output Current (A) 0.2 0.3 0.5 40% 30% 8 VIN 12 VIN 24 VIN 48 VIN 60 VIN 20% 50% 6 VIN 12 VIN 24 VIN 48 VIN 60 VIN 20% 10% 0 0.001 0.002 1 LMR3 Figure 18. LMR36006BEVM 5 VOUT Efficiency 1 LMR3 3.34 5.04 5.02 5 4.98 6 VIN 12 VIN 24 VIN 48 VIN 60 VIN 3.33 Output Voltage (V) 8 VIN 12 VIN 24 VIN 48 VIN 60 VIN 5.06 Output Voltage (V) 0.2 0.3 0.5 Figure 19. LMR36006BEVM 3.3 VOUT Efficiency 5.08 3.32 3.31 3.3 3.29 4.96 3.28 0 0.1 0.2 0.3 0.4 Output Current (A) 0.5 0.6 0 0.1 LMR3 Figure 20. LMR36006BEVM 5 VOUT Load Regulation 16 0.005 0.01 0.02 0.05 0.1 Output Current (A) 0.2 0.3 0.4 Output Current (A) 0.5 0.6 LMR3 Figure 21. LMR36006BEVM 3.3 VOUT Load Regulation LMR360xxxEVM User’s Guide SNVU580 – November 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Test Results www.ti.com 6.2.2 Load Transients PG 5V/div PG 5V/div VOUT 100mV/div 100µs/div ILOAD 150mA/div Figure 22. LMR36006BEVM 5 VOUT Load Transient, 24 VIN, IOUT = 0 A to 0.6 A, TR = TF = 1 µs 6.2.3 VOUT 100mV/div 100µs/div ILOAD 150mA/div Figure 23. LMR36006BEVM 3.3 VOUT Load Transient, 24 VIN, IOUT = 0 A to 0.6 A, TR = TF = 1 µs Start Up Waveforms Figure 24. LMR36006BEVM 5 VOUT Start-Up Waveform, 24 VIN,1.5 A Load Figure 25. LMR36006BEVM 3.3 VOUT Start-Up Waveform, 24 VIN,1.5 A Load SNVU580 – November 2018 Submit Documentation Feedback LMR360xxxEVM User’s Guide Copyright © 2018, Texas Instruments Incorporated 17 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated
LMR36006BEVM 价格&库存

很抱歉,暂时无法提供与“LMR36006BEVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货