0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LP877451Q1EVM

LP877451Q1EVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    LP87745-Q1 - DC/DC,LDO 步升或步降 5,非隔离 输出评估板

  • 数据手册
  • 价格&库存
LP877451Q1EVM 数据手册
www.ti.com Table of Contents User’s Guide LP877451Q1EVM Evaluation Module ABSTRACT The LP87745-Q1 device is designed to meet the power management requirements of the AWR and IWR MMICs in various automotive and industrial radar applications. The device has three step-down DC/DC converters, a 5 V boost converter and a 1.8 V/3.3 V LDO. The LDO is powered from the boost and intended for xWR and peripheral devices IO supply. The device is controlled by an SPI serial interface and by enable signal. The step-down DC/DC converters support programmable switching frequency of 17.6 MHz, 8.8 MHz or 4.4 MHz and have low noise across wide frequency range which enables LDO-free power solution with minimal or no additional passive filtering. LP87745-Q1 device offers flexible external component selection to optimize the solution in terms of performance or cost. The features of the device target safety-relevant applications with system-safety requirements up to ASIL-C level. This user's guide provides instructions to power up and evaluate LP87745-Q1 device using the LP877451Q1EVM evaluation module (EVM) and software user interface (LP87745-Q1 GUI). By default LP877451Q1EVM has LP877451A1RXVRQ1 device OTP version (17.6 MHz, Low noise use case BOM), but this EVM can also be used to evaluate another OTP device from LP8774x-Q1 product family. CAUTION Hot surface. Contact may cause burns. Do not touch! Table of Contents 1 Top View with Basic External Connections..........................................................................................................................2 2 Input, Output Voltages, and Load Current Requirements...................................................................................................3 3 Jumpers and connectors....................................................................................................................................................... 4 3.1 Test Points..........................................................................................................................................................................6 4 Getting Started........................................................................................................................................................................8 4.1 GUI.....................................................................................................................................................................................8 4.2 GUI Installation and working with GUI............................................................................................................................... 8 5 Watchdog...............................................................................................................................................................................12 6 Schematics, Layout and BOM............................................................................................................................................. 14 6.1 Schematic Diagram..........................................................................................................................................................15 6.2 PCB Layer Diagram......................................................................................................................................................... 18 6.3 Components List.............................................................................................................................................................. 18 7 Revision History................................................................................................................................................................... 22 List of Figures Figure 1-1. EVM Top-View Diagram With Basic Connections and Default Jumpers................................................................... 2 Figure 4-1. GUI Front Page......................................................................................................................................................... 9 Figure 4-2. GUI Configuration Page.......................................................................................................................................... 10 Figure 4-3. GUI Register Map Page...........................................................................................................................................11 Figure 5-1. Watchdog Sequence in Q&A Mode.........................................................................................................................12 Figure 5-2. GUI Watchdog Validation Configuration ................................................................................................................. 13 Figure 5-3. GUI Watchdog Configuration ..................................................................................................................................13 Figure 6-1. PMIC Schematic......................................................................................................................................................15 Figure 6-2. Preregulator Schematic...........................................................................................................................................16 Figure 6-3. MCU Schematic...................................................................................................................................................... 17 SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 1 Trademarks www.ti.com Figure 6-4. Layout of Top Layer, Layer 1................................................................................................................................... 18 Figure 6-5. Layout of Ground layer 1, Layer 2...........................................................................................................................18 Figure 6-6. Layout of Signal Layer 1, Layer 3............................................................................................................................18 Figure 6-7. Layout of Signal Layer 2, Layer 4............................................................................................................................18 Figure 6-8. Layout of Ground Layer 2, Layer 5..........................................................................................................................18 Figure 6-9. Layout of Bottom Layer, Layer 6............................................................................................................................. 18 List of Tables Table 2-1. Input and Output Voltages, and Load Current Requirements..................................................................................... 3 Table 3-1. Terminal Blocks...........................................................................................................................................................4 Table 3-2. Configuration Jumpers................................................................................................................................................4 Table 3-3. Test Points on the EVM...............................................................................................................................................6 Table 4-1. Jumper Connections for Powering the EVM............................................................................................................... 8 Table 6-1. Components list........................................................................................................................................................ 18 Trademarks All trademarks are the property of their respective owners. 1 Top View with Basic External Connections Figure 1-1 shows the top-view diagram of the EVM along with basic connections. By default, EVM is configured to power up through VBAT supply through onboard 12 V VIN to 3.3 V VOUT pre-regulator. EVM can also be powered through external 3.3 V supply or through USB port. Please refer to Table 3-2 for the right jumper configuration for each power-supply input. VIN 3.3V (3V-4V) BUCK3 VOUT BOOST VOUT VBAT (5V-20V) VIO_LDO OUT LP877451Q1EVM USB Default Jumpers BUCK2 VOUT BUCK1 VOUT Figure 1-1. EVM Top-View Diagram With Basic Connections and Default Jumpers 2 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Input, Output Voltages, and Load Current Requirements 2 Input, Output Voltages, and Load Current Requirements LP87745-Q1 device works with 3.3 V input supply and supply is internally monitored for undervoltage (UV) and overvoltage (OV) conditions and hence keep the input supply voltage within 3.3 V +/- 8 % to avoid input supply UV/OV detection. Input power plane to the PMIC has option for additional filtering using L1 and L2 on the bottom side of the PCB. • • • If the VBAT/preregulator path is used (default configuration), input supply to the device is already regulated to 3.3 V. If external 3.3 V supply is used, ensure that input supply voltage is always within the recommended voltage range and drop across supply path must be considered. If EVM is configured to work with USB supply, regulators should not be loaded. Table 2-1 lists the input and output voltage for each regulator and their maximum load-current requirements. Refer LP87745-Q1 device data sheet for more information about device electrical characteristics and its features. Table 2-1. Input and Output Voltages, and Load Current Requirements Regulator Name Input Supply Voltage at PMIC Supply Pin Output Voltage Maximum Load Current BUCK1 3.04 V - 3.56 V 1.8 V 3A BUCK2 3.04 V - 3.56 V 1.0 V 3A BUCK3 3.04 V - 3.56 V 1.2 V 3A BOOST 3.04 V - 3.56 V 5V 0.3 A VIO_LDO 5 V (Generated from BOOST) 3.3 V 0.150 A If all the regulators are loaded with maximum load current simultaneously, PMIC and PCB can become hot. Make sure that PMIC junction temperature does not exceed 150 °C. SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 3 Jumpers and connectors www.ti.com 3 Jumpers and connectors LP877451Q1EVM has many terminal blocks, jumpers and test points to offer certain flexibility to help users to verify the EVM according to their application conditions. However, the EVM is pre-configured with default jumper settings and users can power up the regulators without the need of jumper modifications. Setting these jumpers correctly for the correct function of the EVM is important. Table 3-1 lists all the terminal blocks on the EVM and Table 3-2 lists the jumpers and their functionality. All the terminal blocks are marked with polarity and Pin 1 of test points / jumpers are marked with white dot for identification purpose. To understand more about the jumper functionality, see the schematic diagrams in Section 6.1. Table 3-1. Terminal Blocks Terminal Block Number Terminal Block Name J1 VIN 3.3V 3.3 V External Input Voltage Description J17 VIO_LDO Terminal block for VIO_LDO Output J18 BOOST Terminal block for BOOST Output J24 BUCK1 Terminal block for BUCK1 Output J25 BUCK3 Terminal block for BUCK3 Output J26 BUCK2 Terminal block for BUCK2 Output J30 J30 USB Connector J33 VBAT 5 V - 20 V Input Table 3-2. Configuration Jumpers Jumper/Connector Number Jumper/Connector Name J2 Configuration Description Closed (Default) Pull down resistor in CS_SPI pin enabled which will disable Q&A watchdog during the PMIC power up. For this to be effective, USB cable should not be connected to the EVM when the PMIC is powered up. If USB cable is connected before PMIC is powered up, USB MCU will drive this pin high (through CS_SPI_WD at J15) during the startup WD_DIS Open Closed (Default) J3 J4 4 LP877451Q1EVM Evaluation Module EN_PVIN_3V3 PVIN_3V3 Q&A watchdog not disabled during the PMIC power up Connects PMIC ENABLE pin to PVIN_Bx pins (PVIN_3V3) through a pull up resistor and device gets enabled as soon as 3.3 V is generated/applied Open If PMIC needs to be enabled through USB/GUI or through preregulator PGOOD signal, then this jumper must be kept open Option 1: Pins 1/3 and 2/4 3V3_PREREG (Default) PVIN_3V3 connected to preregulator output. J4-Option-2 must be open and J5 must be open. PVIN_3V3 connected to external 3.3V supply (J1). Option 2: Pins 5/7 and 6/8 3V3_PS J4-Option-1 must be open and J5 must be open. SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Jumpers and connectors Table 3-2. Configuration Jumpers (continued) Jumper/Connector Number Jumper/Connector Name Configuration Open (Default) J5 3V3_USB Closed Option 1: Open (Default) Option 2: Pins 1 and 2 J6 EN_LVPMIC Option 3: Pins 2 and 3 J8 J9 J10 J12 J13 PMIC input supply (PVIN_3V3) is generated from USB supply. J4 jumpers must be open if this jumper is closed. PMIC Enable signal from 3.3 V Input. J3 must be closed PMIC Enable signal path from GUI interface. J3 must be open if this Option is used PMIC Enable signal path from pre-regulator PGOOD signal. J3 must be open if this Option is used 3.3 V supply generated from USB supply Pins 2 and 3 (Default) 3.3 V VIO supply generated from PMIC VIO_LDO Pins 1 and 2 SYNCCLKIN pin connected to MCU clock port (used for testing external clock input signal) Pins 1 and 2 (Default: open) VMON1 reference voltage generated from voltage divider on VIO supply Pins 2 and 3 (Default: open) VMON1 voltage taken from BUCK1 (1.8 V) output VMON1_SEL Pins 1 and 2 (Default) Connects PMIC nRSTOUT signal to MCU port directly Pins 2 and 3 Connects PMIC nRSTOUT signal to MCU port through level shifter (series resistors must be mounted if this option is used) Pins 1 and 2 (Default: open) Connects PMIC VMON1 signal to MCU port directly Pins 2 and 3 (Default: open) Connects PMIC VMON1 signal to MCU port through level shifter (series resistors must be mounted if this option is used) nRSTOUT VMON1_GPO1 Pins 1 and 2 (Default) J14 Either option from J4 must be used. Pins 1 and 2 VIO_SEL SYNCCLKIN Description nINT Pins 2 and 3 SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Connects PMIC nINT signal to MCU port directly Connects PMIC nINT signal to MCU port through level shifter (series resistors must be mounted if this option is used) LP877451Q1EVM Evaluation Module 5 Jumpers and connectors www.ti.com Table 3-2. Configuration Jumpers (continued) Jumper/Connector Number Jumper/Connector Name Configuration Description Pins 1 and 2 (Default) Connects PMIC SCLK_SPI signal to MCU SCLK_SPI port directly Pins 2 and 3 Connects PMIC SCLK_SPI signal to MCU SCLK_SPI port through a level shifter (series resistors need to be mounted if this option is used) SCLK_SPI SDO_SPI Pins 1 and 2 (Default) Connects PMIC SDO_SPI signal to MCU SDO_SPI port directly Pins 2 and 3 Connects PMIC SDO_SPI signal to MCU SDO_SPI port through a level shifter (series resistors need to be mounted if this option is used) Pins 1 and 2 (Default) Connects PMIC CS_SPI signal to MCU CS_SPI port directly Pins 2 and 3 Connects PMIC CS_SPI signal to MCU CS_SPI port through a level shifter (series resistors must be mounted if this option is used) J15 CS_SPI_WD SDI_SPI Pins 1 and 2 (Default) Pins 2 and 3 Connects PMIC SDI_SPI signal to MCU SDI_SPI port through a level shifter (series resistors need to be mounted if this option is used) Pins 1 and 2 (Default) J16 nERR_GPO2 Pins 2 and 3 Connects PMIC SDI_SPI signal to MCU SDI_SPI port directly Connects PMIC nERR_GPO signal to MCU port directly Connects PMIC nERR_GPO2 signal to MCU port through level shifter (series resistors must be mounted if this option is used) 3.1 Test Points Table 3-3 lists all the available connectors on the EVM. Table 3-3. Test Points on the EVM 6 Connector Number Connector Name J11 PVIN3V3_S J19 Load Module Connector Connector placeholder for PMICLOADBOARDEVM for doing load transient testing J20 Load Module Connector Connector placeholder for PMICLOADBOARDEVM for doing load transient testing J21 FB_B1 Test point to measure the BUCK1 feedback signal J22 FB_B2 Test point to measure the BUCK2 feedback signal J23 FB_B3 Test point to measure the BUCK3 feedback signal J27 J27 SMA connector for BUCK3 noise measurement J28 J28 SMA connector for BUCK2 noise measurement LP877451Q1EVM Evaluation Module Description Test point to measure the input voltage of the PMIC SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Jumpers and connectors Table 3-3. Test Points on the EVM (continued) Connector Number Connector Name J29 J29 J31 USB_5V_S Description SMA connector for BUCK1 noise measurement Test point to measure 5 V supply from USB cable SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 7 Getting Started www.ti.com 4 Getting Started In its default configuration, connecting +12 V and GND to the VBAT terminal block (J33) will power up the EVM. While loading the regulators, ensure that input power supply has sufficient current source capabilities to avoid supply voltage collapse due to current limiting. EVM can also be powered through external 3.3 V input supply or through USB power by modifying jumper settings on the EVM. Table 4-1 describes the jumper settings for different supply options. Table 4-1. Jumper Connections for Powering the EVM Power Source Input Voltage Range Jumpers VBAT 5 V - 20 V Both 3V3_PREREG jumpers in J4 (Default option). Leave J5 open. Vin 3.3V 3.1 V - 3.5 V Remove 3V3_PREREG jumpers on J4 and place them on 3V3_PS position on J4. With this configuration, do not apply power to VBAT terminal. Leave J5 open. USB 5 V USB cable J5, 3V3_USB. With this option, jumpers on J4 must be removed. The LP877451Q1EVM does not require any specific power-down sequence. The EVM can be powered down by turning off the power supply or by toggling the EN Pin off in the GUI, if the GUI control signal is used to enable/disable the device. Refer to Table 3-2 and GUI section for more information about configuring jumpers and using GUI. 4.1 GUI Texas Instruments provides a simple to use LP87745-Q1 GUI tool to enable, configure, and evaluate the various features of the LP87745-Q1 device on the EVM. Please refer to the GUI README.md file in the GUI tool's Help->View README.md tab for a more detailed description of this tool. The GUI will run on most PC platforms and requires a USB port for connecting the EVM to the host computer. The EVM USB connector is type-C and a type-A to type-C cable is provided along with the EVM to connect to the host computer. EVM will get automatically connected to the GUI after the USB cable is connected and manual assignment of COM port is not necessary. If Hardware not Connected displays on the bottom left of the GUI, clicking Click to connect to hardware icon next to it will re-establish the connection. The GUI uses the ACCtrl COM port which can be found from the device manager of the operating system. 4.2 GUI Installation and working with GUI The GUI can be found here and it can be run in browser or it can be installed to the computer. Figure 4-1 shows the default interface of GUI. Please refer to the README.md file in the GUI tool for a complete guide on how to use the tool. 8 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Getting Started Figure 4-1. GUI Front Page The EVM can be configured in the configuration page shown in Figure 4-2. By default, all the configuration registers are locked and CRC protected. Clicking the Unlock registers check box on the Configuration Page will automatically write REGISTER_LOCK_STATUS =0x9B to unlock the configuration registers for write operation. CRC can be disabled by writing CONFIG_CRC_EN = 0h through Console window (Options → Show Console) or GUI Register Map Page. For example, output voltages, startup and shutdown delays and peak current limits can be changed for each buck converter. SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 9 Getting Started www.ti.com Figure 4-2. GUI Configuration Page In the register map page shown in Figure 4-3, registers can be read or written to. 10 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Getting Started Figure 4-3. GUI Register Map Page SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 11 Watchdog www.ti.com 5 Watchdog This section provides the basic overview of the SPI based Q&A watchdog algorithm implemented on the EVM. Please refer LP87745-Q1 device data sheet for more detailed information about device watchdog functionality. This watchdog requires specific SPI messages from the host MCU in specific time intervals to detect correct operation of the MCU. On the EVM, MSP432 MCU is used as a host MCU. During operation, the device provides a 4-bit question for the MCU and the MCU calculates the required 32-bit answer. This answer is split into four answer bytes: Answer-3, Answer-2, Answer-1 and Answer-0. The MCU writes these answer bytes one byte at a time into WD_ANSWER[7:0] from the SPI interface. A good event occurs when the MCU sends the correct answer-bytes calculated for the current question in the correct watchdog window and in the correct sequence. This sequence is visualized in Figure 5-1 A bad event occurs when one of the events that follows occur: • The MCU sends the correct answer-bytes, but not in the correct watchdog window. • The MCU sends incorrect answer-bytes. • The MCU returns correct answer-bytes, but in the incorrect sequence. Window-1 t = tWINDOW-1 Window-2 t = tWINDOW-2 Three correct answer-bytes must be provided in Window-1 and in the correct order: x Answer-3 x Answer-2 x Answer-1 The fourth answer-byte, Answer-0, must be provided in Window-2. After the Window-1 time elapses, Window 2 begins. The MCU needs to write the answer-bytes to the WD_ANSWER[7:0] bits. Answer Question MCU reads question Read bits WD_ QUESTION[3:0] I2C2 / SPI Commands After the MCU writes the fourth Answer-0 to WD_ANSWER[7:0], the Watchdog generates the next question within 1 Internal System Clock Cycle, after which the next Watchdog Sequence (Q&A [n + 1]) begins (1) MCU provides answer Write to WD_ANSWER[7:0] -> Answer-3 (2) Write to WD_ANSWER[7:0] -> Answer-2 Write to WD_ANSWER[7:0] -> Answer-1 Write to WD_ANSWER[7:0] -> Answer-0 NCS Pin (for SPI only) 1 Internal System Clock Cycle to Generate a new question for the next watchdog sequence Q&A [n + 1] Q&A [n] Q&A [n + 1] Watchdog Sequence Figure 5-1. Watchdog Sequence in Q&A Mode In GUI, there are two sections in configuration tab for watchdog configurability. Figure 5-2 illustrates the watchdog validation section in GUI, where the delays between the WD Answers can be configured and watchdog status for different interrupts and errors can be observed. And if required status can be cleared through clear buttons available next to the each status. In the other watchdog configuration section, watchdog can be enabled or disabled along with other watchdog configurable parameters as shown in Figure 5-3. For further information on watchdog configuration, refer to the data sheet of LP8774x-Q1 SNVSBE7 for watchdog section. 12 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Watchdog Figure 5-2. GUI Watchdog Validation Configuration Figure 5-3. GUI Watchdog Configuration SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 13 Schematics, Layout and BOM www.ti.com 6 Schematics, Layout and BOM This section contains the schematics, layout and the bill of materials for the LP87745Q1EVM. 14 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematics, Layout and BOM 6.1 Schematic Diagram This section includes images of the EVM schematics and different layers of the layout. Figure 6-1. PMIC Schematic SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback LP877451Q1EVM Evaluation Module Copyright © 2022 Texas Instruments Incorporated 15 Schematics, Layout and BOM www.ti.com Figure 6-2. Preregulator Schematic 16 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematics, Layout and BOM Figure 6-3. MCU Schematic SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback LP877451Q1EVM Evaluation Module Copyright © 2022 Texas Instruments Incorporated 17 Schematics, Layout and BOM www.ti.com 6.2 PCB Layer Diagram Figure 6-4. Layout of Top Layer, Layer 1 Figure 6-5. Layout of Ground layer 1, Layer 2 Figure 6-6. Layout of Signal Layer 1, Layer 3 Figure 6-7. Layout of Signal Layer 2, Layer 4 Figure 6-8. Layout of Ground Layer 2, Layer 5 Figure 6-9. Layout of Bottom Layer, Layer 6 6.3 Components List Table 6-1 lists all the components on the EVM. Table 6-1. Components list Designator Quantity Description PartNumber Manufacturer !PCB1 1 Printed Circuit Board BMC083 Any C1, C17, C56, C57, C58, C76, C81, C83, C84, C86, C93, C94 12 CAP, CERM, 0.1 uF, 16 V, +/- 10%, X7R, 0402 GCM155R71C104KA55D MuRata 18 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematics, Layout and BOM Table 6-1. Components list (continued) Designator Quantity Description PartNumber Manufacturer C2 1 CAP, Polymer Hybrid, 100 uF, 25 V, +/- 20%, 30 ohm, 6.3x7.7 SMD EEHZC1E101XP Panasonic C3, C4 2 CAP, CERM, 22 uF, 10 V, +/- 10%, X7R, AEC-Q200 Grade 1, 1206 GCM31CR71A226KE02L MuRata C5, C14, C22, C23, C24 5 CAP, CERM, 0.22 µF, 16 V,+/- 10%, X7R, AEC-Q200 Grade 1, 0402 GCM155R71C224KE02D MuRata C6, C8, C9, C25, C37, C68, C87, C89, C91 9 CAP, CERM, 10 uF, 10 V, +/- 10%, X7R, 0805 GCM21BR71A106KE22L MuRata C7, C11, C12, C16, C21, C26, C27, C28, C29 9 Cap Ceramic Multilayer 4.7uF 6.3V DC 10% SMD Paper T/R GCJ188C70J475KE02J Murata C10, C13, C34, C35, C36, C38, C39, C40, C41, C42, C43, C117 12 CAP, CERM, 22 µF, 6.3 V,+/- 20%, X7T, AEC-Q200 Grade 1, 0805 CGA4J1X7T0J226M TDK C15, C18 2 CAP, CERM, 2.2 µF, 6.3 V,+/- 10%, X7R, 0603 GCM188R70J225KE22J MuRata C19, C20, C59, C60, C61 5 3 Terminals Low ESL Chip Multilayer Ceramic Capacitors for Automotive NFM18HC105C1C3D Murata C30, C31, C32, C44, C45, C46, C47, C48, C49, C65, C66, C67 12 Chip Multilayer Ceramic Capacitors for Automotive GCM188D70J106ME36D Murata C33, C88, C90, C92 4 CAP, CERM, 10 uF, 16 V, +/- 10%, X7S, AEC-Q200 Grade 1, 0805 CGA4J1X7S1C106K125AC TDK C50, C51, C52, C107, C112 5 CAP CER 0603 1UF 10V X7R 10% C0603C105K8RACAUTO KEMET C53, C54, C55 3 CAP, CERM, 0.22 uF, 16 V, +/- 10%, X7R, 0402 GRM155R71C224KA12D MuRata C69, C70, C72, C75, C77, C78, C79, C80, C82, C85 10 CAP, CERM, 2.2 uF, 6.3 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0603 GCM188R70J225KE22D MuRata C71 1 CAP, CERM, 3300 pF, 50 V, +/- 10%, C0603C332K5RACTU X7R, 0603 Kemet C73, C74 2 CAP, CERM, 12 pF, 50 V,+/- 5%, C0G/NP0, AEC-Q200 Grade 1, 0402 CGA2B2C0G1H120J050BA TDK C95, C101, C102 3 CAP, CERM, 0.47 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0603 CGA3E3X7R1H474K080AE TDK C96, C97, C99, C100 4 CAP, CERM, 2.2 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0805 CGA4J3X7R1H225K125AB TDK C98 1 CAP, Polymer Hybrid, 68 uF, 50 V, +/- EEHZA1H680P 20%, 30 ohm, 8x10 SMD Panasonic C103 1 CAP, CERM, 1 uF, 50 V, +/- 10%, X7R, 0603 UMK107AB7105KA-T Taiyo Yuden C105, C111 2 CAP, CERM, 4.7 µF, 50 V,+/- 20%, X7R, AEC-Q200 Grade 1, 1210 UMK325B7475MMHT Taiyo Yuden C106, C108 2 CAP, CERM, 0.022 uF, 50 V, +/- 10%, GRM155R71H223KA12D X7R, 0402 MuRata C109 1 CAP, CERM, 0.1 uF, 10 V, +/- 10%, X7R, 0603 Kemet C110 1 C0603 22 pF X7R 30ppm/°C 10.00% C0603C220K5RACAUTO 50 V KEMET C113 1 CAP, CERM, 1 uF, 25 V, +/- 10%, X7R, 0805 Kemet C0603X104K8RACTU C0805C105K3RACTU SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 19 Schematics, Layout and BOM www.ti.com Table 6-1. Components list (continued) Designator Quantity Description PartNumber Manufacturer C114, C115, C116 3 CAP, CERM, 22 uF, 16 V, +/- 20%, X7R, AEC-Q200 Grade 1, 1210 CGA6P1X7R1C226M250AC TDK D1, D2, D3, D4, D5 5 LED, Blue, SMD LB Q39G-L2N2-35-1 OSRAM D6 1 Diode, Schottky, 40 V, 3 A, AECQ101, SOD-123W PMEG4030ER,115 Nexperia H1, H4, H5, H7 4 FC2058-440-A Fascomp H2, H3, H6, H8 4 MACHINE SCREW PAN PHILLIPS 4-40 9900 Keystone J1, J17, J18, J24, J25, J26, J33 7 Terminal Block, 5mm, 2x1, R/A, TH 1792863 Phoenix Contact J2, J3, J5, J7, J9, J11, J31 7 Header, 100mil, 2x1, Gold, TH HTSW-102-07-G-S Samtec J4 1 Header, 2.54mm, 4x2, Gold, TH TSW-104-08-L-D Samtec J6, J8, J10, J12, J13, J14, J16, J21, J22, J23 10 Header, 100mil, 3x1, Gold, TH HTSW-103-07-G-S Samtec J15 1 Header, 2.54mm, 4x3, Gold, TH 5-103817-2 TE Connectivity J27, J28, J29 3 SMA Jack, Straight, 50 Ohm, Gold, TH SMA-J-P-H-ST-TH1 Samtec J30 1 Receptacle, 0.5mm, USB TYPE C, R/A, SMT 12401610E4#2A Amphenol Canada J32 1 Header (Shrouded), 1.27mm, 5x2, Gold, SMT FTSH-105-01-F-DV-K Samtec L1 1 100 Ohms @ 100MHz 1 Power Line Ferrite Bead 0805 (2012 Metric) 4A 20mOhm MPZ2012S101ATD25 TDK L2, L17 2 Inductor, Shielded, Composite, 4.7 uH, 4.5 A, 0.0401 ohm, SMD XAL4030-472MEB Coilcraft L3 1 Inductor, Shielded, Metal Composite, 1.5 µH, 2.3 A, 0.11 ohm, AEC-Q200 Grade 0, SMD TFM201610ALMA1R5MTAA TDK L4, L5, L6 3 240nH Shielded Thin Film Inductor TFM201610ALMAR24MTAA 5A 23mOhm Max 0806 (2016 Metric) TDK L7, L8, L9, L13 4 30 Ohms @ 100MHz 1 Power Line Ferrite Bead 0805 (2012 Metric) 6A 10mOhm TDK L10, L11, L12 3 Inductor, Shielded, Metal Composite, TFM201610ALMAR47MTAA 470 nH, 3.9 A, 0.039 ohm, AEC-Q200 Grade 0, SMD TDK L14, L15, L16 3 Fixed Inductor 0.033uH 30% 4.7A 9mOhm 0603 TFM160810ALTA33NNTAA TDK L18 1 Inductor, Shielded, Metal Composite, 1.5 µH, 5.8 A, 0.019 ohm, SMD 74438356015 Wurth Elektronik LBL1 1 THT-14-423-10 Brady R1, R18, R22 3 RES, 20.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603 CRCW060320K0FKEA Vishay-Dale R3, R35, R42, R49, R50, R51, R52 7 RES, 1.2 k, 5%, 0.063 W, AEC-Q200 CRCW04021K20JNED Grade 0, 0402 Vishay-Dale R4, R5, R77, R81, 5 R86 RES, 100 k, 1%, 0.1 W, 0603 RC0603FR-07100KL Yageo R7, R27, R28, R29 4 RES 0 OHM JUMPER 1/4W 0603 HCJ0603ZT0R00 Stackpole Electronics R8 1 RES, 8.25 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603 CRCW06038K25FKEA Vishay-Dale 20 LP877451Q1EVM Evaluation Module MPZ2012S300ATD25 SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematics, Layout and BOM Table 6-1. Components list (continued) Designator Quantity Description PartNumber Manufacturer R9 1 RES, 0.47, 1%, 0.1 W, AEC-Q200 Grade 0, 0603 ERJ-3RQFR47V Panasonic R11 1 RES, 0, 0%, 0.2 W, AEC-Q200 Grade CRCW04020000Z0EDHP 0, 0402 Vishay-Dale R13, R14, R15, R16, R17, R47, R70, R71, R73, R76 10 RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 Vishay-Dale R24, R25, R26, R39 4 RES, 0, 5%, 0.1 W, AEC-Q200 Grade ERJ-2GE0R00X 0, 0402 Panasonic R30, R31, R32 3 RES, 49.9, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 RMCF0402FT49R9 Stackpole Electronics Inc R33, R36, R43 3 RES, 4.87 k, 1%, 0.063 W, AECQ200 Grade 0, 0402 CRCW04024K87FKED Vishay-Dale R34, R44, R61, R62, R63, R64, R66, R67, R68, R69, R72, R74, R75 13 RES, 10 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 CRCW040210K0JNED Vishay-Dale R37 1 RES, 100, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 CRCW0402100RJNED Vishay-Dale R38, R40, R46 3 RES, 1.0 M, 5%, 0.063 W, AEC-Q200 CRCW04021M00JNED Grade 0, 0402 Vishay-Dale R45 1 RES, 383 k, 1%, 0.063 W, AEC-Q200 CRCW0402383KFKED Grade 0, 0402 Vishay-Dale R48 1 RES, 200 k, 5%, 0.063 W, AEC-Q200 CRCW0402200KJNED Grade 0, 0402 Vishay-Dale R65 1 RES, 1.00, 1%, 0.1 W, 0603 RC0603FR-071RL Yageo R78 1 RES, 255 k, 1%, 0.1 W, 0603 RC0603FR-07255KL Yageo R79 1 RES, 0.51, 1%, 0.25 W, 0805 CRM0805-FX-R510ELF Bourns R83 1 RES, 1.00 k, 1%, 0.1 W, 0603 RC0603FR-071KL Yageo R84 1 RES, 43.2 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603 CRCW060343K2FKEA Vishay-Dale R85 1 RES, 100, 5%, 0.1 W, AEC-Q200 Grade 0, 0603 CRCW0603100RJNEA Vishay-Dale R87 1 RES, 1.00 k, 1%, 0.1 W, 0603 ERJ-3EKF1001V Panasonic R88 1 RES, 100, 1%, 0.1 W, 0603 RC0603FR-07100RL Yageo SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6, SH-J7, SH-J8, SH-J9, SH-J10, SH-J11, SH-J12, SH-J13, SH-J14 14 Shunt, 100mil, Gold plated, Black 881545-2 TE Connectivity TP1, TP2, TP3, 14 TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14 Test Point, Compact, SMT 5016 Keystone U1 1 Three Buck Converters and 5-V Boost for AWR and IWR Radar Sensors LP877451A1RXVRQ1 Texas Instruments U2 1 Automotive Catalog, Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices, DSE0006A (WSON-6) TLV7103318QDSERQ1 Texas Instruments CRCW04020000Z0ED SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated LP877451Q1EVM Evaluation Module 21 Revision History www.ti.com Table 6-1. Components list (continued) Designator Quantity Description PartNumber Manufacturer U3 1 MSP432E401YTPDT, PDT0128A (TQFP-128) MSP432E401YTPDTR Texas Instruments U4 1 4-Channel USB ESD Solution with Power Clamp, DRY0006A (USON-6) TPD4S012DRYR Texas Instruments U5 1 Linear Voltage Regulator IC 1 Output TPS74533PQWDRVRQ1 500mA 6-WSON (2x2) Texas Instruments U6 1 Low-Capacitance 6-Channel +/-15 kV ESD Protection Array for HighSpeed Data Interfaces, RSE0008A (UQFN-8) Texas Instruments U7 1 8-BIT BIDIRECTIONAL LOWSN74GTL2003PWR VOLTAGE TRANSLATOR, PW0020A (TSSOP-20) Texas Instruments U8 1 Automotive 5.5-V low-voltage LM339LVQPWRQ1 standard quad-channel comparator with 1-microsecond delay 14-TSSOP -40 to 125 Texas Instruments U9 1 Automotive 4 A Low Noise Synchronous Buck Regulators, RJR0014A (VQFN-HR-14) Texas Instruments Y1 1 Crystal, 25 MHz, 20 ppm, AEC-Q200 ECS-250-12-33Q-JES-TR Grade 1, SMD ECS Inc. C62, C63, C64 0 Chip Multilayer Ceramic Capacitors for Automotive Murata C104 0 CAP, CERM, 1000 pF, 50 V, +/- 10%, C0603C102K5RACTU X7R, 0603 Kemet J19, J20 0 Receptacle, 2.5mm, 3x2, Gold, SMT 6651712-1 TE Connectivity R2, R10 0 RES, 20.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603 CRCW060320K0FKEA Vishay-Dale R6, R12, R20, R53, R54, R55, R56, R57, R58, R59, R60 0 RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 CRCW04020000Z0ED Vishay-Dale R19, R21, R23 0 RES, 100 k, 1%, 0.1 W, 0603 RC0603FR-07100KL Yageo R41 0 RES, 0, 5%, 0.1 W, AEC-Q200 Grade ERJ-2GE0R00X 0, 0402 Panasonic R80, R82 0 RES, 1.00 k, 1%, 0.1 W, 0603 Yageo TPD6E004RSER LM62440APPQRJRRQ1 GCM188D70J106ME36D RC0603FR-071KL 7 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (September 2021) to Revision A (October 2022) Page • Updated Figure 1-1 ............................................................................................................................................2 • Updated VCCA monitoring voltage threshold levels...........................................................................................3 • Designators updated to the latest revision..........................................................................................................4 • Updated the Figure 4-1 ......................................................................................................................................8 • Updated the watchdog section......................................................................................................................... 12 • Updated the schematic diagrams..................................................................................................................... 15 • Updated the bill of materials............................................................................................................................. 18 22 LP877451Q1EVM Evaluation Module SNVU769A – SEPTEMBER 2021 – REVISED OCTOBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
LP877451Q1EVM 价格&库存

很抱歉,暂时无法提供与“LP877451Q1EVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货