0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC33078DGKR

MC33078DGKR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8VSSOP

  • 数据手册
  • 价格&库存
MC33078DGKR 数据手册
MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 FEATURES • • • • • • • • • D (SOIC), DGK (MSOP), OR P (PDIP) PACKAGE (TOP VIEW) Dual-Supply Operation . . . ±5 V to ±18 V Low Noise Voltage . . . 4.5 nV/√Hz Low Input Offset Voltage . . . 0.15 mV Low Total Harmonic Distortion . . . 0.002% High Slew Rate . . . 7 V/µs High-Gain Bandwidth Product . . . 16 MHz High Open-Loop AC Gain . . . 800 at 20 kHz Large Output-Voltage Swing . . . 14.1 V to –14.6 V Excellent Gain and Phase Margins OUT1 IN1− IN1+ VCC − 1 8 2 7 3 6 4 5 VCC+ OUT2 IN2− IN2+ DESCRIPTION/ORDERING INFORMATION The MC33078 is a bipolar dual operational amplifier with high-performance specifications for use in quality audio and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion, and symmetrical sink/source performance. ORDERING INFORMATION PACKAGE (1) TA PDIP – P –40°C to 85°C SOIC – D VSSOP/MSOP – DGK (1) (2) ORDERABLE PART NUMBER Tube of 50 MC33078P Tube of 75 MC33078D Reel of 2500 MC33078DR Reel of 2500 MC33078DGKR Reel of 250 MC33078DGKT TOP-SIDE MARKING (2) MC33078P M33078 MY_ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. DGK: The actual top-side marking has one additional character that designates the assembly/test site. SYMBOL (EACH AMPLIFIER) IN+ + IN − − OUT Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2006, Texas Instruments Incorporated MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC+ Supply voltage (2) 18 V VCC– Supply voltage (2) –18 V VCC+ – VCC– Supply voltage 36 V Input voltage, either input (2) (3) VCC+ or VCC– ±10 Input current (4) Duration of output short circuit (5) Unlimited D package θJA Package thermal impedance, junction to free air (6) (7) TJ Operating virtual junction temperature Tstg Storage temperature range 97 DGK package 172 P package (1) (2) (3) (4) (5) (6) (7) V mA °C/W 85 –65 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–. The magnitude of the input voltage must never exceed the magnitude of the supply voltage. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions VCC– VCC+ TA 2 Supply voltage Operating free-air temperature range Submit Documentation Feedback MIN MAX –5 –18 5 18 –40 85 UNIT V °C MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 Electrical Characteristics VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage VO = 0, RS = 10 Ω, VCM = 0 αVIO Input offset voltage temperature coefficient VO = 0, RS = 10 Ω, VCM = 0 IIB Input bias current VO = 0, VCM = 0 IIO Input offset current VO = 0, VCM = 0 VICR Common-mode input voltage range ∆VIO = 5 mV, VO = 0 AVD Large-signal differential voltage amplification RL ≥ 2 kΩ, VO = ±10 V Maximum output voltage swing VID = ±1 V kSVR (1) 2 3 TA = –40°C to 85°C 300 RL = 2k Ω 25 ±14 TA = 25°C 90 110 TA = –40°C to 85°C 85 VOM+ 10.7 VOM– –11.9 VO = 0 nA V dB 13.8 VOM– –13.2 –13.7 VOM+ 13.5 14.1 VOM– –14 –14.6 80 100 dB 80 105 dB 15 29 –20 –37 VCC+ = 5 V to 15 V, VCC– = –5 V to –15 V Supply current (per channel) nA 13.2 Supply-voltage rejection ratio ICC mV VOM+ VIN = ±13 V |VID| = 1 V, Output to GND 150 175 ±13 Common-mode rejection ratio Output short-circuit current 750 800 TA = –40°C to 85°C UNIT µV/°C 2 TA = 25°C IOS (1) MAX 0.15 TA = –40°C to 85°C RL = 10k Ω CMMR TYP TA = –40°C to 85°C TA = 25°C RL = 600 Ω VOM MIN TA = 25°C Source current Sink current TA = 25°C 2.05 TA = –40°C to 85°C V mA 2.5 2.75 mA Measured with VCC± differentially varied at the same time Operating Characteristics VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS SR Slew rate at unity gain AVD = 1, VIN = –10 V to 10 V, RL = 2 kΩ, CL = 100 pF GBW Gain bandwidth product f = 100 kHz B1 Unity gain frequency Open loop Gm Gain margin RL = 2 kΩ Φm Phase margin RL = 2 kΩ Amp-to-amp isolation f = 20 Hz to 20 kHz CL = 0 pF MIN TYP 5 7 V/µs 10 16 MHz 9 MHz –11 CL = 100 pF –6 CL = 0 pF 55 CL = 100 pF 40 Power bandwidth VO = 27 V(PP), RL = 2 kΩ, THD ≤ 1% THD Total harmonic distortion VO = 3 Vrms, AVD = 1, RL = 2 kΩ, f = 20 Hz to 20 kHz zo Open-loop output impedance VO = 0, f = 9 MHz rid Differential input resistance Cid Differential input capacitance Vn In MAX UNIT dB deg –120 dB 120 kHz 0.002 % 37 Ω VCM = 0 175 kΩ VCM = 0 12 pF Equivalent input noise voltage f = 1 kHz, RS = 100 Ω 4.5 nV/√Hz Equivalent input noise current f = 1 kHz 0.5 pA/√Hz Submit Documentation Feedback 3 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 0.1 µF 10 Ω 100 kΩ 2.0 kΩ 4.3 kΩ + D.U.T. 1/2 MC33078 Scope x1 RIN = 1.0 MΩ − 4.7 µF 100 kΩ Voltage Gain = 50,000 2.2 µF 24.3 kΩ 110 kΩ 0.1 µF NOTE: All capacitors are non-polarized. Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz) 4 22 µF Submit Documentation Feedback MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE INPUT BIAS CURRENT vs SUPPLY VOLTAGE 600 600 VCM = 0 V VCC+ = 15 V VCC– = –15 V TA = 25°C 400 300 200 100 0 -15 TA = 25°C 500 IIB – Input Bias Current – nA IIB – Input Bias Current – nA 500 400 300 200 100 0 -10 -5 0 5 10 5 15 7 8 9 10 11 12 13 14 15 16 17 18 VCC+/–VCC– – Supply Voltage – V VCM – Common Mode Voltage – V INPUT BIAS CURRENT vs TEMPERATURE INPUT OFFSET VOLTAGE vs TEMPERATURE 1000 2 VCC+ = 15 V 900 VCC– = –15 V 800 VCM = 0 V VCC+ = 15 V 1.5 VIO – Input Offset Voltage – mV IIB – Input Bias Current – nA 6 700 600 500 400 300 200 VCM = 0 V 1 0.5 0 -0.5 -1 -1.5 100 0 -55 -35 -15 VCC– = –15 V 5 25 45 65 85 105 125 -2 -55 -35 -15 TA – Temperature – °C 5 25 45 65 85 105 125 TA – Temperature – °C Submit Documentation Feedback 5 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) INPUT COMMON-MODE VOLTAGE LOW PROXIMITY TO VCC– vs TEMPERATURE INPUT COMMON-MODE VOLTAGE HIGH PROXIMITY TO VCC+ vs TEMPERATURE 1.4 0 Input Common-Mode Voltage High Proximity to V CC+ – V Input Common-Mode Voltage Low Proximity to V CC– – V VCC+ = 3 V to 15 V 1.2 1 0.8 0.6 VCC+ = 3 V to 15 V 0.4 VCC– = -3 V to -15 V D è VIO = 5 mV 0.2 VO = 0 V 0 -55 -25 5 35 65 95 -0.2 VCC– = -3 V to -15 V D VIO = 5 mV -0.4 VO = 0 V -0.6 -0.8 -1 -1.2 -1.4 -55 125 -25 TA – Temperature – °C 65 95 125 OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC– vs LOAD RESISTANCE 10 0 9 -1 TA = 125°C -2 8 TA = 25°C -3 Output Saturation Voltage Proximity to V CC– – V Output Saturation Voltage Proximity to V CC+ – V 35 TA – Temperature – °C OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC+ vs LOAD RESISTANCE TA = –55°C -4 -5 -6 -7 -8 -9 7 6 5 TA = 125°C 4 TA = 25°C 3 TA = –55°C 2 1 -10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 kW RL – Load Resistance – kh 6 5 Submit Documentation Feedback 0.5 1 1.5 2 2.5 3 3.5 kW RL – Load Resistance – k@ 4 4.5 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) OUTPUT SHORT-CIRCUIT CURRENT vs TEMPERATURE SUPPLY CURRENT vs TEMPERATURE 70 10 60 VCC– = –15 V 9 VID = 1 V 8 50 40 Source Sink 30 20 ICC – Supply Current – mA IOS – Output Short-Circuit Current – mA VCC+ = 15 V VCM = 0 V RL = High Impedance VO = 0 V 7 6 VCC± = ±15 V 5 4 3 VCC± = ±10 V VCC± = ±5 V 2 1 10 -55 -35 -15 5 25 45 65 85 0 -55 105 125 TA – Temperature – °C 90 80 5 25 45 65 85 105 125 PSSR vs FREQUENCY 120 VCC+ = 15 V VCC– = –15 V VCM = 0 V DVCM = ±1.5 V TA = 25°C VCC+ = 15 V VCC– = –15 V TA = 25°C 110 100 90 80 60 PSRR – dB CMMR – dB 70 -15 TA – Temperature – °C CMRR vs FREQUENCY 100 -35 50 40 70 T3P 60 50 T3N 40 30 30 20 20 10 10 0 100 10k 100k 1.0E+06 10M 1k 1M 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+07 0 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+07 100 10k 100k 1.0E+06 10M 1k 1M f – Frequency – Hz f – Frequency – Hz Submit Documentation Feedback 7 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE GAIN BANDWIDTH PRODUCT vs TEMPERATURE 30 GBW – Gain Bandwidth Product – MHz GBW – Gaind Bandwidth Product – MHz 30 25 20 15 10 5 6 7 8 20 15 10 5 0 -55 0 5 25 9 10 11 12 13 14 15 16 17 18 -35 -15 5 25 45 65 OUTPUT VOLTAGE vs SUPPLY VOLTAGE 30 VCC+ = 15 V VCC– = –15 V RL = 2 k W AV = 1 THD < 1% TA = 25°C 15 25 VO – Output Voltage – V VO – Output Voltage – V RL = 10 kW 10 RL = 2 k W 5 0 -5 RL = 10 kW -10 RL = 2 kW -20 8 20 15 10 5 -15 7 9 10 11 12 13 14 15 16 17 18 0 100 10 10k 100k 1.E+06 10M 1k 1M 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+07 VCC+/–VCC– – Supply Voltage – V 8 125 OUTPUT VOLTAGE vs FREQUENCY 20 6 105 TA – Temperature – °C VCC+/–VCC– – Supply Voltage – V 5 85 Submit Documentation Feedback f – Frequency – Hz MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) OPEN-LOOP GAIN vs SUPPLY VOLTAGE OPEN-LOOP GAIN vs TEMPERATURE 120 110 115 AV – Open-Loop Gain – dB AV – Open-Loop Gain – dB 105 100 95 90 RL = 2 kW f < 10 Hz DVO = 2/3(VCC+ – VCC–) TA = 25°C 85 6 7 8 105 100 95 90 85 80 5 110 RL = 2 k W f < 10 Hz DVO = 2/3(VCC+ – VCC–) TA = 25°C 80 -55 9 10 11 12 13 14 15 16 17 18 VCC+/–VCC– – Supply Voltage – V 200 VO = 1 Vrms 35 190 180 Crosstalk Rejection – dB ZO – Output Impedance – W VCC+ = 15 V VCC– = –15 V TA = 25°C 30 25 20 15 AV = 1000 10 45 65 85 105 125 170 Drive Channel VCC+ = 15 V VCC– = –15 V RL = 2 kW VO = 20 VPP TA = 25°C 160 150 140 130 120 AV = 100 AV = 10 AV = 1 110 5 0 1.0E+03 1k 25 CROSSTALK REJECTION vs FREQUENCY 50 40 5 TA – Temperature – °C OUTPUT IMPEDANCE vs FREQUENCY 45 -35 -15 100 1.E+01 10 1.0E+04 10k 1.0E+05 100k 1.0E+06 1M 1.0E+07 10M 1.E+02 100 1.E+03 1k 1.E+04 10k 1.E+05 100k f – Frequency – Hz f – Frequency – Hz Submit Documentation Feedback 9 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) TOTAL HARMONIC DISTORTION vs FREQUENCY TOTAL HARMONIC DISTORTION vs OUTPUT VOLTAGE 0.1 1 VCC+ = 15 V VCC– = –15 V VO = 1 Vrms AV = 1 RL = 2 kW TA = 25°C THD – Total Harmonic Distortion – % THD – Total Harmonic Distortion – % 1 0.01 0.001 0.0001 10 1.E+01 AV = 1000 0.1 AV = 100 0.01 AV = 10 0.001 VCC+ = 15 V VCC– = –15 V f = 2 kHz RL = 2 kW TA = 25°C AV = 1 0.0001 100 1.E+02 1k 1.E+03 10k 1.E+04 0 100k 1.E+05 1 2 f – Frequency – Hz 10 10 9 9 Falling Edge 8 7 Rising Edge 6 5 4 DV = 2/3(V – V ) IN CC+ CC– AV = 1 3 RL = 2 kW TA = 25°C 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SR – Slew Rate – V/µs SR – Slew Rate – V/µs 5 6 7 8 9 105 125 SLEW RATE vs TEMPERATURE Falling Edge 7 Rising Edge 6 5 4 3 VCC+ = 15 V VCC– = –15 V DVIN = 20 V AV = 1 RL = 2 kW 2 -55 VCC+/–VCC– – Supply Voltage – V 10 4 VO – Output Voltage – Vrms SLEW RATE vs SUPPLY VOLTAGE 8 3 Submit Documentation Feedback -35 -15 5 25 45 65 TA – Temperature – °C 85 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) GAIN AND PHASE vs FREQUENCY 12 70 Gain, TA = 25°C -90 40 30 20 10 1.E+04 10k 20 Gain, TA = –55°C 40 Phase, TA = 125°C 50 70 Phase, TA = –55°C 1.E+05 100k 1.E+06 1M 0 -180 1.E+07 10M 1 10 80 1000 100 Cout – Output Load Capacitance – pF OVERSHOOT vs OUTPUT LOAD CAPACITANCE INPUT VOLTAGE AND CURRENT NOISE vs FREQUENCY 100 100 80 10 VCC+ = 15 V VCC+ = 15 V VCC– = –15 V VCC– = –15 V VIN = 100 mVPP TA = 25°C nV/ÖHz Input Voltage Noise – nV/rtHz 90 70 Overshoot – % 60 Phase, TA = 25°C f – Frequency – Hz 60 50 40 TA = 125°C 30 20 30 6 3 -135 VCC+ = 15 V VCC– = –15 V RL = 2 k W TA = 25°C 0 1.E+03 1k Gain Margin – dB Gain – dB Phase Shift – deg Gain 50 10 9 -45 60 0 VCC+ = 15 V VCC– = –15 V VO = 0 V Gain, TA = 125°C Phase Margin – deg 0 Phase TA = 25°C 10 1 Input Voltage Noise Input Current Noise pA/ÖHz Input Current Noise – pA/rtHz 80 GAIN AND PHASE MARGIN vs OUTPUT LOAD CAPACITANCE 10 TA = –55°C 0 1 10 100 1000 10 Cout – Output Load Capacitance – pF Submit Documentation Feedback 100 1k 1000 10k 10000 0.1 100k 100000 f – Frequency – Hz 11 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) INPUT REFERRED NOISE VOLTAGE vs SOURCE RESISTANCE GAIN AND PHASE MARGIN vs DIFFERENTIAL SOURCE RESISTANCE 1000 16 64 60 VCC– = –15 V f = 1 Hz TA = 25°C 14 56 52 12 100 10 44 10 40 Gain Margin 36 8 32 28 6 4 2 VCC+ = 15 V 24 VCC– = –15 V 20 AV = 100 16 VO = 0 V 12 TA = 25°C 8 Phase Margin – deg 48 Phase Margin Gain Margin – dB nV/ÖHz Input Referred Noise Voltage – nV/rtHz VCC+ = 15 V 4 0 1.E+02 100 1.E+03 1k 1.E+04 10k 1.E+05 100k 1.E+06 1M 1 00 è RS – Source Resistance – W 55 45 0 45 -10 35 VCC+ = 15 V VCC– = –15 V AV = 1 RL = 2 k W CL = 100 pF TA = 25°C -20 -30 5 -40 -5 -15 -2 2 6 10 14 18 22 VO – Output Voltage – V 10 VI – Input Voltage – V VO – Output Voltage – V Input Output 0 1010k 0 0 0 10100k 0000 Input 10 0 35 15 -10 VCC+ = 15 V VCC– = –15 V AV = –1 RL = 2 k W CL = 100 pF TA = 25°C 25 Output -20 -30 5 -40 -50 -5 -50 -60 -15 -60 -2 Time – µs 12 101k 00 LARGE SIGNAL TRANSIENT RESPONSE (AV = –1) 55 15 100 10 0 RSD – Differential Source Resistance – W è LARGE SIGNAL TRANSIENT RESPONSE (AV = 1) 25 10 10 2 6 10 Time – µs Submit Documentation Feedback 14 18 22 VI – Input Voltage – V 1 1.E+01 10 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 TYPICAL CHARACTERISTICS (continued) LOW_FREQUENCY NOISE 0.6 0.2 400 0.5 0.1 300 0.4 0.0 -0.1 VCC+ = 15 V VCC– = –15 V AV = 1 RL = 2 k W CL = 100 pF TA = 25°C 0.2 0.1 -0.2 -0.3 -0.4 0 Input Voltage Noise – nV Input 0.3 200 VI – Input Voltage – V VO – Output Voltage – V SMALL SIGNAL TRANSIENT RESPONSE 100 0 -100 -200 T3 VCC+ = 15 V -300 VCC– = –15 V BW = 0.1 Hz to 10 Hz TA = 25°C Output -0.1 -0.2 -0.5 0.0 0.5 1.0 1.5 -0.5 -400 -0.6 -500 -5 Time – µs -4 -3 -2 -1 0 1 2 3 4 5 Time – s Submit Documentation Feedback 13 MC33078 DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER www.ti.com SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006 APPLICATION INFORMATION Output Characteristics All operating characteristics are specified with 100-pF load capacitance. The MC33078 can drive higher capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 2). PULSE RESPONSE (RL = 600 Ω, CL = 380 pF) PULSE RESPONSE (RL = 2 kΩ, CL = 560 pF) Maximum capacitance before oscillation = 380 pF PULSE RESPONSE (RL = 10 kΩ, CL = 590 pF) Maximum capacitance before oscillation = 590 pF 0.25 V per Division 0.25 V per Division 0.25 V per Division Maximum capacitance before oscillation = 560 pF 250 ns per Division 250 ns per Division 250 ns per Division 0.25 V per Division PULSE RESPONSE (RO = 35 Ω, CO = 1000 pF, RL = 2 kΩ) 0.25 V per Division PULSE RESPONSE (RO = 4 Ω, CO = 1000 pF, RL = 2 kΩ) 0.25 V per Division PULSE RESPONSE (RO = 0 Ω, CO = 1000 pF, RL = 2 kΩ) 250 ns per Division 250 ns per Division 250 ns per Division 15 V RO VO 5V –5 V –15 V CL Figure 2. Output Characteristics 14 Submit Documentation Feedback RL = 2 k Ω PACKAGE OPTION ADDENDUM www.ti.com 18-Aug-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MC33078D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M33078 Samples MC33078DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 MYU Samples MC33078DGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 MYU Samples MC33078DGKT ACTIVE VSSOP DGK 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 MYU Samples MC33078DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M33078 Samples MC33078DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M33078 Samples MC33078P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 MC33078P Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MC33078DGKR 价格&库存

很抱歉,暂时无法提供与“MC33078DGKR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MC33078DGKR
  •  国内价格 香港价格
  • 1+7.163181+0.86892
  • 10+6.3752310+0.77334
  • 25+6.0511225+0.73402
  • 100+4.96948100+0.60282
  • 250+4.64511250+0.56347
  • 500+4.10494500+0.49795
  • 1000+3.240761000+0.39312

库存:0