0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F47173IPZR

MSP430F47173IPZR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 16BIT 92KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
MSP430F47173IPZR 数据手册
MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 D Low Supply-Voltage Range: 1.8 V to 3.6 V D Ultralow Power Consumption D D D D D D D D D D D D D D D -- Active Mode: 350 A at 1 MHz, 2.2 V -- Standby Mode: 1.1 A -- Off Mode (RAM Retention): 0.2 A Five Power-Saving Modes Wake-Up From Standby Mode in Less Than 6 s 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Three-Channel Internal DMA Three, Six or Seven 16-Bit Sigma-Delta Analog-to-Digital (A/D) Converters With Differential PGA Inputs 16-Bit Timer_B With Three Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers On-Chip Comparator Four Universal Serial Communication Interface (USCI) Modules -- USCI_A0 and USCI_A1 -- Enhanced UART Supporting Auto-Baudrate Detection -- IrDA Encoder and Decoder -- Synchronous SPI -- USCI_B0 and USCI_B1 -- I2C -- Synchronous SPI Integrated LCD Driver With Contrast Control for Up to 160 Segments Basic Timer With Real-Time Clock Feature 32-Bit Hardware Multiplier Brownout Detector Supply Voltage Supervisor/Monitor With Programmable Level Detection Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse D Bootstrap Loader D On-Chip Emulation Module D Family Members Include D D D MSP430F47163: 92KB Flash, 4KB RAM 3 Sigma-Delta ADCs MSP430F47173: 92KB Flash, 8KB RAM 3 Sigma-Delta ADCs MSP430F47183: 116KB Flash, 8KB RAM 3 Sigma-Delta ADCs MSP430F47193: 120KB Flash, 4KB RAM 3 Sigma-Delta ADCs MSP430F47126: 56KB Flash, 4KB RAM 6 Sigma-Delta ADCs MSP430F47166: 92KB Flash, 4KB RAM 6 Sigma-Delta ADCs MSP430F47176: 92KB Flash, 8KB RAM 6 Sigma-Delta ADCs MSP430F47186: 116KB Flash, 8KB RAM 6 Sigma-Delta ADCs MSP430F47196: 120KB Flash, 4KB RAM 6 Sigma-Delta ADCs MSP430F47127: 56KB Flash, 4KB RAM 7 Sigma-Delta ADCs MSP430F47167: 92KB Flash, 4KB RAM 7 Sigma-Delta ADCs MSP430F47177: 92KB Flash, 8KB RAM 7 Sigma-Delta ADCs MSP430F47187: 116KB Flash, 8KB RAM 7 Sigma-Delta ADCs MSP430F47197: 120KB Flash, 4KB RAM 7 Sigma-Delta ADCs Available in a 100-Pin Plastic Quad Flatpack (QFP) Package For Complete Module Descriptions, See the MSP430x4xx Family User’s Guide, Literature Number SLAU056 For E-Meter Reference Design and Software, See Implementation of a Three-Phase Electronic Watt-Hour Meter using the MSP430F471xx, Literature Number SLAA409 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2011, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 1 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6s. The MSP430F471xx series are microcontroller configurations targeted to single-phase and poly-phase electricity meters with three, six, or seven 16-bit sigma-delta A/D converters. Each channel has a differential input pair and programmable input gain. Also integrated are two 16-bit timers, four universal serial communication interfaces (USCI), DMA, 68 I/O pins, and a liquid crystal driver (LCD) with integrated contrast control. AVAILABLE OPTIONS{ TA PACKAGED DEVICES} PLASTIC 100-PIN QFP (PZ) MSP430F47127IPZ MSP430F47167IPZ MSP430F47177IPZ MSP430F47187IPZ MSP430F47197IPZ --40C to 85C MSP430F47126IPZ MSP430F47166IPZ MSP430F47176IPZ MSP430F47186IPZ MSP430F47196IPZ MSP430F47163IPZ MSP430F47173IPZ MSP430F47183IPZ MSP430F47193IPZ † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following: D Debugging and Programming Interface -- MSP-FET430UIF (USB) -- MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board -- MSP-FET430U100 D Stand-Alone Target Board -- MSP-TS430PZ100 D Production Programmer -- 2 MSP-GANG430 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 functional block diagram, MSP430F471x7 XIN XOUT XT2IN XT2OUT 2 2 Oscillators FLL+ DVCC1/2 DVSS1/2 AVCC AVSS P1.x/P2.x 2x8 ACLK SMCLK MCLK 16MHz CPU incl. 16 Registers Flash RAM 120kB 116kB 92kB 92kB 56kB 4kB 8kB 4kB 8kB 4kB SD16_A (w/o BUF) 7 Sigma-Delta A/D Converter P3.x/P4.x P5.x 3x8 P7.x/P8.x P9.x/P10.x 3x8+1x4 Ports P1/P2 Comparator _A Ports Ports P3/P4 P7/P8 2x8 I/O P5 P9/P10 Interrupt capability & 3x8 I/O with 4x8/2x16 I/O pull--up/down pull--up/down pull--up/down Resistors Resistors Resistors MAB DMA Controller MDB 3 Channels EEM (L: 8 + 2) Brownout Protection JTAG Interface SVS/SVM Hardware Multiplier (32x32) MPY, MPYS, MAC, MACS Watchdog WDT+ 15/16--Bit Timer_A3 3 CC Registers Timer_B3 3 CC Registers, Shadow Reg Basic Timer & Real--Time Clock LCD_A 160 Segments 1,2,3,4 Mux USCI_A0 (UART/LIN, IrDA, SPI) USCI_A1 (UART/LIN, IrDA, SPI) USCI_B0 (SPI, I2C) USCI_B1 (SPI, I2C) P3.x/P4.x P5.x 3x8 P7.x/P8.x P9.x/P10.x 3x8+1x4 RST/NMI functional block diagram, MSP430F471x6 XIN XOUT XT2IN XT2OUT 2 2 Oscillators FLL+ DVCC1/2 ACLK SMCLK Flash RAM 120kB 120kB 116kB 116kB 92kB 92kB 92kB 92kB 56kB 4kB 4kB 8kB 8kB 4kB 4kB 8kB 8kB 4kB AVSS P1.x/P2.x SD16_A (w/o BUF) 6 Sigma-Delta A/D Converter Ports P1/P2 Comparator _A Ports P3/P4 P5 Ports P7/P8 P9/P10 2x8 I/O Interrupt capability & 3x8 I/O with 4x8/2x16 I/O pull--up/down pull--up/down pull--up/down Resistors Resistors Resistors MAB DMA Controller MDB 3 Channels EEM (L: 8 + 2) JTAG Interface AVCC 2x8 MCLK 16MHz CPU incl. 16 Registers DVSS1/2 Brownout Protection SVS/SVM Hardware Multiplier (32x32) MPY, MPYS, MAC, MACS Watchdog WDT+ 15/16--Bit Timer_A3 3 CC Registers Timer_B3 3 CC Registers, Shadow Reg Basic Timer & Real--Time Clock LCD_A 160 Segments 1,2,3,4 Mux USCI_A0 (UART/LIN, IrDA, SPI) USCI_A1 (UART/LIN, IrDA, SPI) USCI_B0 (SPI, I2C) USCI_B1 (SPI, I2C) RST/NMI POST OFFICE BOX 655303  DALLAS, TEXAS 75265 3 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 functional block diagram, MSP430F471x3 XIN XOUT XT2IN XT2OUT 2 2 Oscillators FLL+ DVCC1/2 ACLK SMCLK Flash RAM 120kB 116kB 92kB 92kB 4kB 8kB 4kB 8kB AVSS P1.x/P2.x SD16_A (w/o BUF) 3 Sigma-Delta A/D Converter P7.x/P8.x P9.x/P10.x 3x8+1x4 Ports P1/P2 Comparator _A Ports Ports P3/P4 P7/P8 2x8 I/O P5 P9/P10 Interrupt capability & 3x8 I/O with 4x8/2x16 I/O pull--up/down pull--up/down pull--up/down Resistors Resistors Resistors DMA Controller MDB 3 Channels Brownout Protection SVS/SVM Hardware Multiplier (32x32) MPY, MPYS, MAC, MACS Watchdog WDT+ 15/16--Bit Timer_A3 3 CC Registers Timer_B3 3 CC Registers, Shadow Reg Basic Timer & Real--Time Clock RST/NMI 4 P3.x/P4.x P5.x 3x8 MAB EEM (L: 8 + 2) JTAG Interface AVCC 2x8 MCLK 16MHz CPU incl. 16 Registers DVSS1/2 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 LCD_A 160 Segments 1,2,3,4 Mux USCI_A0 (UART/LIN, IrDA, SPI) USCI_A1 (UART/LIN, IrDA, SPI) USCI_B0 (SPI, I2C) USCI_B1 (SPI, I2C) MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 pin designation, MSP430F471x7IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F471x7IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/TA2/S39 P3.5/TB0/S38 P3.6/TB1/S37 P3.7/TB2/S36 DVSS2 XOUT XIN DVCC2 LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 P5.1/COM0 P5.0/SVSIN P4.0/CAOUT/S35 P4.1/DMAE0/S34 P4.2/S33 P4.3/S32 P9.4/S7 P9.3/S8 P9.2/S9 P9.1/S10 P9.0/S11 P8.7/S12 P8.6/S13 P8.5/S14 P8.4/S15 P8.3/S16 P8.2/S17 P8.1/S18 P8.0/S19 P7.7/S20 P7.6/S21 P7.5/S22 P7.4/S23 P7.3/S24 P7.2/S25 P7.1/S26 P7.0/S27 P4.7/S28 P4.6/S29 P4.5/S30 P4.4/S31 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A0.0+† A0.0-- † A1.0+† A1.0-- † A2.0+† A2.0-- † AVSS AVCC VREF A3.0+† A3.0-- † A4.0+† A4.0-- † A5.0+† A5.0-- † A6.0+† A6.0-- † AVSS P10.3/S0 P10.2/S1 P10.1/S2 P10.0/S3 P9.7/S4 P9.6/S5 P9.5/S6 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 RST/NMI TCK TMS TDI/TCLK TDO/TDI DVSS1 XT2IN XT2OUT DVCC1 P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/UCA1TXD/UCA1SIMO P1.7/UCA1RXD/UCA1SOMI P2.0/UCB1STE/UCA1CLK P2.1/UCB1SIMO/UCB1SDA P2.2/UCB1SOMI/UCB1SCL P2.3/UCB1CLK/UCA1STE P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI P2.6/CA0 P2.7/CA1 PZ PACKAGE (TOP VIEW) † It is recommended to short unused analog input pairs and connect them to analog ground (AVSS). POST OFFICE BOX 655303  DALLAS, TEXAS 75265 5 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 pin designation, MSP430F471x6IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F471x6IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P9.4/S7 P9.3/S8 P9.2/S9 P9.1/S10 P9.0/S11 P8.7/S12 P8.6/S13 P8.5/S14 P8.4/S15 P8.3/S16 P8.2/S17 P8.1/S18 P8.0/S19 P7.7/S20 P7.6/S21 P7.5/S22 P7.4/S23 P7.3/S24 P7.2/S25 P7.1/S26 P7.0/S27 P4.7/S28 P4.6/S29 P4.5/S30 P4.4/S31 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A0.0+† A0.0-- † A1.0+† A1.0-- † A2.0+† A2.0-- † AVSS AVCC VREF A3.0+† A3.0-- † A4.0+† A4.0-- † A5.0+† A5.0-- † NC‡ NC‡ AVSS P10.3/S0 P10.2/S1 P10.1/S2 P10.0/S3 P9.7/S4 P9.6/S5 P9.5/S6 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 RST/NMI TCK TMS TDI/TCLK TDO/TDI DVSS1 XT2IN XT2OUT DVCC1 P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/UCA1TXD/UCA1SIMO P1.7/UCA1RXD/UCA1SOMI P2.0/UCB1STE/UCA1CLK P2.1/UCB1SIMO/UCB1SDA P2.2/UCB1SOMI/UCB1SCL P2.3/UCB1CLK/UCA1STE P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI P2.6/CA0 P2.7/CA1 PZ PACKAGE (TOP VIEW) † ‡ 6 It is recommended to short unused analog input pairs and connect them to analog ground (AVSS). Connect pin to analog ground (AVSS). POST OFFICE BOX 655303  DALLAS, TEXAS 75265 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/TA2/S39 P3.5/TB0/S38 P3.6/TB1/S37 P3.7/TB2/S36 DVSS2 XOUT XIN DVCC2 LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 P5.1/COM0 P5.0/SVSIN P4.0/CAOUT/S35 P4.1/DMAE0/S34 P4.2/S33 P4.3/S32 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 pin designation, MSP430F471x3IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F471x3IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/TA2/S39 P3.5/TB0/S38 P3.6/TB1/S37 P3.7/TB2/S36 DVSS2 XOUT XIN DVCC2 LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 P5.1/COM0 P5.0/SVSIN P4.0/CAOUT/S35 P4.1/DMAE0/S34 P4.2/S33 P4.3/S32 P9.4/S7 P9.3/S8 P9.2/S9 P9.1/S10 P9.0/S11 P8.7/S12 P8.6/S13 P8.5/S14 P8.4/S15 P8.3/S16 P8.2/S17 P8.1/S18 P8.0/S19 P7.7/S20 P7.6/S21 P7.5/S22 P7.4/S23 P7.3/S24 P7.2/S25 P7.1/S26 P7.0/S27 P4.7/S28 P4.6/S29 P4.5/S30 P4.4/S31 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A0.0+† A0.0-- † A1.0+† A1.0-- † A2.0+† A2.0-- † AVSS AVCC VREF NC‡ NC‡ NC‡ NC‡ NC‡ NC‡ NC‡ NC‡ AVSS P10.3/S0 P10.2/S1 P10.1/S2 P10.0/S3 P9.7/S4 P9.6/S5 P9.5/S6 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 RST/NMI TCK TMS TDI/TCLK TDO/TDI DVSS1 XT2IN XT2OUT DVCC1 P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/UCA1TXD/UCA1SIMO P1.7/UCA1RXD/UCA1SOMI P2.0/UCB1STE/UCA1CLK P2.1/UCB1SIMO/UCB1SDA P2.2/UCB1SOMI/UCB1SCL P2.3/UCB1CLK/UCA1STE P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI P2.6/CA0 P2.7/CA1 PZ PACKAGE (TOP VIEW) † ‡ It is recommended to short unused analog input pairs and connect them to analog ground (AVSS). Connect pin to analog ground (AVSS). POST OFFICE BOX 655303  DALLAS, TEXAS 75265 7 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION A0.0+ 1 I SD16_A positive analog input A0.0 (see Note 1) A0.0-- 2 I SD16_A negative analog input A0.0 (see Note 1) A1.0+ 3 I SD16_A positive analog input A1.0 (see Note 1) A1.0-- 4 I SD16_A negative analog input A1.0 (see Note 1) A2.0+ 5 I SD16_A positive analog input A2.0 (see Note 1) A2.0-- 6 I SD16_A negative analog input A2.0 (see Note 1) AVSS 7 Analog supply voltage, negative terminal. AVCC 8 Analog supply voltage, positive terminal. Must not power up prior to DVCC1/DVCC2. VREF 9 I/O A3.0+ (MSP430F471x6/7 only) 10 I SD16_A positive analog input A3.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A3.0-(MSP430F471x6/7 only) 11 I SD16_A negative analog input A3.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A4.0+ (MSP430F471x6/7 only) 12 I SD16_A positive analog input A4.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A4.0-(MSP430F471x6/7 only) 13 I SD16_A negative analog input A4.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A5.0+ (MSP430F471x6/7 only) 14 I SD16_A positive analog input A5.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A5.0-(MSP430F471x6/7 only) 15 I SD16_A negative analog input A5.0 (see Note 1) -Not connected in MSP430F471x3, connect pin to analog ground (AVSS). A6.0+ (MSP430F471x7 only) 16 I SD16_A positive analog input A6.0 (see Note 1) -Not connected in MSP430F471x6, connect pin to analog ground (AVSS). A6.0-(MSP430F471x7 only) 17 I SD16_A negative analog input A6.0 (see Note 1) -Not connected in MSP430F471x6, connect pin to analog ground (AVSS). AVSS 18 P10.3/S0 19 I/O General-purpose digital I/O / LCD segment output 0 P10.2/S1 20 I/O General-purpose digital I/O / LCD segment output 1 P10.1/S2 21 I/O General-purpose digital I/O / LCD segment output 2 P10.0/S3 22 I/O General-purpose digital I/O / LCD segment output 3 P9.7/S4 23 I/O General-purpose digital I/O / LCD segment output 4 P9.6/S5 24 I/O General-purpose digital I/O / LCD segment output 5 P9.5/S6 25 I/O General-purpose digital I/O / LCD segment output 6 P9.4/S7 26 I/O General-purpose digital I/O / LCD segment output 7 P9.3/S8 27 I/O General-purpose digital I/O / LCD segment output 8 P9.2/S9 28 I/O General-purpose digital I/O / LCD segment output 9 P9.1/S10 29 I/O General-purpose digital I/O / LCD segment output 10 P9.0/S11 30 I/O General-purpose digital I/O / LCD segment output 11 P8.7/S12 31 I/O General-purpose digital I/O / LCD segment output 12 P8.6/S13 32 I/O General-purpose digital I/O / LCD segment output 13 P8.5/S14 33 I/O General-purpose digital I/O / LCD segment output 14 P8.4/S15 34 I/O General-purpose digital I/O / LCD segment output 15 P8.3/S16 35 I/O General-purpose digital I/O / LCD segment output 16 P8.2/S17 36 I/O General-purpose digital I/O / LCD segment output 17 P8.1/S18 37 I/O General-purpose digital I/O / LCD segment output 18 Input for an external reference voltage / internal reference voltage output (can be used as mid-voltage) Analog supply voltage, negative terminal. NOTES: 1. It is recommended to short unused analog input pairs and connect them to analog ground. 8 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Terminal Functions (continued) TERMINAL NAME NO. I/O DESCRIPTION P8.0/S19 38 I/O General-purpose digital I/O / LCD segment output 19 P7.7/S20 39 I/O General-purpose digital I/O / LCD segment output 20 P7.6/S21 40 I/O General-purpose digital I/O / LCD segment output 21 P7.5/S22 41 I/O General-purpose digital I/O / LCD segment output 22 P7.4/S23 42 I/O General-purpose digital I/O / LCD segment output 23 P7.3/S24 43 I/O General-purpose digital I/O / LCD segment output 24 P7.2/S25 44 I/O General-purpose digital I/O / LCD segment output 25 P7.1/S26 45 I/O General-purpose digital I/O / LCD segment output 26 P7.0/S27 46 I/O General-purpose digital I/O / LCD segment output 27 P4.7/S28 47 I/O General-purpose digital I/O / LCD segment output 28 P4.6/S29 48 I/O General-purpose digital I/O / LCD segment output 29 P4.5/S30 49 I/O General-purpose digital I/O / LCD segment output 30 P4.4/S31 50 I/O General-purpose digital I/O / LCD segment output 31 P4.3/S32 51 I/O General-purpose digital I/O / LCD segment output 32 P4.2/S33 52 I/O General-purpose digital I/O / LCD segment output 33 P4.1/DMAE0/S34 53 I/O General-purpose digital I/O / DMA Channel 0 external trigger / LCD segment output 34 P4.0/CAOUT/S35 54 I/O General-purpose digital I/O / Comparator_A output / LCD segment output 35 P5.0/SVSIN 55 I/O General-purpose digital I/O / analog input to supply voltage supervisor P5.1/COM0 56 I/O General-purpose digital I/O / common output, COM0--3 are used for LCD backplanes. P5.2/COM1 57 I/O General-purpose digital I/O / common output, COM0--3 are used for LCD backplanes. P5.3/COM2 58 I/O General-purpose digital I/O / common output, COM0--3 are used for LCD backplanes. P5.4/COM3 59 I/O General-purpose digital I/O / common output, COM0--3 are used for LCD backplanes. P5.5/R03 60 I/O General-purpose digital I/O / Input port of lowest analog LCD level (V5) P5.6/LCDREF/R13 61 I/O General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input port of third most positive analog LCD level (V4 or V3) P5.7/R23 62 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) LCDCAP/R33 63 I DVCC2 64 XIN 65 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 66 O Output terminal of crystal oscillator XT1 DVSS2 67 P3.7/TB2/S36 68 I/O General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output / LCD segment output 36 P3.6/TB1/S37 69 I/O General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output / LCD segment output 37 P3.5/TB0/S38 70 I/O General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output / LCD segment output 38 P3.4/TA2/S39 71 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output / LCD segment output 39 P3.3/ UCB0CLK/UCA0STE 72 I/O General-purpose digital I/O / USCI_B0 clock input/output / USCI_A0 slave transmit enable P3.2/ UCB0SOMI/UCB0SCL 73 I/O General-purpose digital I/O / USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.1/ UCB0SIMO/UCB0SDA 74 I/O General-purpose digital I/O / USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode LCD Capacitor connection / Input/output port of most positive analog LCD level (V1) Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 9 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Terminal Functions (continued) TERMINAL NAME I/O NO. DESCRIPTION I/O DESCRIPTION P3.0/ UCB0STE/UCA0CLK 75 I/O General-purpose digital I/O / USCI_B0 slave transmit enable / USCI_A0 clock input/output P2.7/CA1 76 I/O General-purpose digital I/O / Comparator_A input P2.6/CA0 77 I/O General-purpose digital I/O / Comparator_A input P2.5/ UCA0RXD/UCA0SOMI 78 I/O General-purpose digital I/O / USCI_A0 receive data input in UART mode, slave out/master in in SPI mode P2.4/ UCA0TXD/UCA0SIMO 79 I/O General-purpose digital I/O / USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode P2.3/ UCB1CLK/UCA1STE 80 I/O General-purpose digital I/O / USCI_B1 clock input/output / USCI_A1 slave transmit enable P2.2/ UCB1SOMI/UCB1SCL 81 I/O General-purpose digital I/O / USCI_B1 slave out/master in in SPI mode, SCL I2C clock in I2C mode P2.1/ UCB1SIMO/UCB1SDA 82 I/O General-purpose digital I/O / USCI_B1 slave in/master out in SPI mode, SDA I2C data in I2C mode P2.0/ UCB1STE/UCA1CLK 83 I/O General-purpose digital I/O / USCI_B1 slave transmit enable / USCI_A1 clock input/output P1.7/ UCA1RXD/UCA1SOMI 84 I/O General-purpose digital I/O / USCI_A1 receive data input in UART mode, slave out/master in in SPI mode P1.6/ UCA1TXD/UCA1SIMO 85 I/O General-purpose digital I/O / USCI_A1 transmit data output in UART mode, slave in/master out in SPI mode P1.5/TACLK/ACLK 86 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/SMCLK 87 I/O General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output P1.3/TBOUTH/SVSOUT 88 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator P1.2/TA1 89 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 90 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 91 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit DVCC1 92 XT2OUT 93 O Output terminal of crystal oscillator XT2 XT2IN 94 I Input port for crystal oscillator XT2. Only standard crystals can be connected. DVSS1 95 TDO/TDI 96 I/O TDI/TCLK 97 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 98 I Test mode select. TMS is used as an input port for device programming and test. TCK 99 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 100 I Reset input or nonmaskable interrupt input port 10 Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. Test data output port. TDO/TDI data output or programming data input terminal POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes. SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5 Single operands, destination only e.g., CALL R8 PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE Register Indexed Symbolic (PC relative) Absolute Indirect S D D D D D D D D D D SYNTAX EXAMPLE OPERATION MOV Rs,Rd MOV R10,R11 R10 ----> R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)----> M(6+R6) MOV EDE,TONI M(EDE) ----> M(TONI) MOV &MEM,&TCDAT M(MEM) ----> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ----> M(Tab+R6) Indirect autoincrement D MOV @Rn+,Rm MOV @R10+,R11 M(R10) ----> R11 R10 + 2----> R10 Immediate D MOV #X,TONI MOV #45,TONI #45 ----> M(TONI) NOTE: S = source, D = destination POST OFFICE BOX 655303  DALLAS, TEXAS 75265 11 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM -- All clocks are active D Low-power mode 0 (LPM0) -- CPU is disabled -- ACLK and SMCLK remain active. MCLK is disabled. -- FLL+ loop control remains active D Low-power mode 1 (LPM1) -- CPU is disabled -- FLL+ loop control is disabled -- ACLK and SMCLK remain active. MCLK is disabled. D Low-power mode 2 (LPM2) -- CPU is disabled -- MCLK and FLL+ loop control and DCOCLK are disabled -- DCO’s dc generator remains enabled -- ACLK remains active D Low-power mode 3 (LPM3) -- CPU is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- ACLK remains active D Low-power mode 4 (LPM4) 12 -- CPU is disabled -- ACLK is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- Crystal oscillator is stopped POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (at 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU enters LPM4 after power-up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory PC Out-of-Range (see Note 4) PORIFG RSTIFG WDTIFG KEYV (see Note 1) Reset 0FFFEh 31, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 30 Timer_B3 TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 29 Timer_B3 TBCCR1 to TBCCR2 CCIFGs TBIFG (see Notes 1 and 2) Maskable 0FFF8h 28 Comparator_A CAIFG Maskable 0FFF6h 27 Watchdog Timer WDTIFG Maskable 0FFF4h 26 USCI_A0/B0 Receive USCI_B0 I2C Status UCA0RXIFG, UCB0RXIFG (see Notes 1 and 5) Maskable 0FFF2h 25 USCI_A0/B0 Transmit USCI_B0 I2C Receive/Transmit UCA0TXIFG, UCB0TXIFG (see Notes 1 and 6) Maskable 0FFF0h 24 SD16_A SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG (see Notes 1 and 2) Maskable 0FFEEh 23 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 22 Timer_A3 TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 and 2) Maskable 0FFEAh 21 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 20 USCI_A1/B1 Receive USCI_B1 I2C Status UCA1RXIFG, UCB1RXIFG (see Notes 1 and 5) Maskable 0FFE6h 19 USCI_A1/B1 Transmit USCI_B1 I2C Receive/Transmit UCA1TXIFG, UCB1TXIFG (see Notes 1 and 6) Maskable 0FFE4h 18 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 17 Basic Timer1/RTC BTIFG Maskable 0FFE0h 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (see Notes 1 and 2) Maskable 0FFDEh 15 Reserved Reserved (see Note 8) 0FFDCh to 14 to 0FFC0h 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. 4. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges. 5. USCI_B in SPI mode: UCBxRXIFG. USCI_B in I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG 6. USCI_B in SPI mode: UCBxTXIFG. USCI_B in I2C mode: UCBxRXIFG, UCBxTXIFG 7. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if necessary. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 13 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 special function registers The MSP430 special function registers (SFR) are located in the lowest address space and are organized as byte mode registers. SFRs should be accessed with byte instructions. interrupt enable 1 and 2 Address 7 6 00h 4 ACCVIE rw--0 3 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable Address 01h 14 5 7 6 5 4 3 2 1 0 BTIE UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 rw--0 UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable BTIE Basic timer interrupt enable POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) WDTIFG Set on watchdog timer overflow or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up PORIFG Power-on interrupt flag. Set on VCC power-up. NMIIFG Set via RST/NMI-pin Address 7 03h UCA0RXIFG 6 5 3 2 1 0 BTIFG UCB0 TXIFG UCB0 RXIFG UCA0 TXIFG UCA0 RXIFG rw--0 rw--1 rw--0 rw--1 rw--0 USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag BTIFG Basic Timer1 interrupt flag Legend 4 rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device POST OFFICE BOX 655303  DALLAS, TEXAS 75265 15 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 memory organization MSP430F47126/ MSP430F47127 MSP430F47163/ MSP430F47166/ MSP430F47167 MSP430F47173/ MSP430F47176/ MSP430F47177 MSP430F47183/ MSP430F47186/ MSP430F47187 MSP430F47193/ MSP430F47196/ MSP430F47197 Size Flash Flash 56KB 0FFFFh -- 0FFC0h 0FFFFh--002100h 92KB 0FFFFh -- 0FFC0h 018FFFh-002100h 92KB 0FFFFh -- 0FFC0h 019FFFh-003100h 116KB 0FFFFh -- 0FFC0h 01FFFFh-003100h 120KB 0FFFFh -- 0FFC0h 01FFFFh-002100h Size 4KB 020FFh--01100h 4KB 020FFh--01100h 8KB 030FFh--01100h 8KB 030FFh--01100h 4KB 020FFh--01100h Extended Size 2KB 020FFh--01900h 2KB 020FFh--01900h 6KB 030FFh--01900h 6KB 030FFh--01900h 2KB 020FFh--01900h Mirrored Size 2KB 018FFh--01100h 2KB 018FFh--01100h 2KB 018FFh--01100h 2KB 018FFh--01100h 2KB 018FFh--01100h Information memory Size Flash 256 Byte 010FFh--01000h 256 Byte 010FFh--01000h 256 Byte 010FFh--01000h 256 Byte 010FFh--01000h 256 Byte 010FFh--01000h Boot memory Size ROM 1KB 0FFFh--0C00h 1KB 0FFFh--0C00h 1KB 0FFFh -- 0C00h 1KB 0FFFh--0C00h 1KB 0FFFh--0C00h Size 2KB 09FFh--0200h 2KB 09FFh--0200h 2KB 09FFh--0200h 2KB 09FFh--0200h 2KB 09FFh--0200h 16-bit 8-bit 8-bit SFR 01FFh--0100h 0FFh--010h 0Fh--00h 01FFh--0100h 0FFh--010h 0Fh--00h 01FFh--0100h 0FFh--010h 0Fh--00h 01FFh--0100h 0FFh--010h 0Fh--00h 01FFh--0100h 0FFh--010h 0Fh--00h Memory Main: interrupt vector Main: code memory RAM (Total) RAM (mirrored at 018FFh -- 01100h) Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature number SLAU265. BSL FUNCTION PZ PACKAGE PINS Data Transmit 91 - P1.0 Data Receive 90 - P1.1 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A might contain calibration data. After reset segment A is protected against programming or erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is required. D Flash content integrity check with marginal read modes. 16 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and an 8-MHz high-frequency crystal oscillator (XT1) plus a 16-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal Main clock (MCLK), the system clock used by the CPU Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 brownout, supply voltage supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are nine 8-bit I/O ports implemented—ports P1 through P5 and P7 through P10. D D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively. Each I/O has an individually programmable pullup/pulldown resistor. Note: Only four bits of port P10 (P10.0 to P10.3) are available on external pins, but all control and data bits for port P10 are implemented. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 17 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 DMA controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from a USCI module to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. DMA TRIGGER SELECT DMAXTSELX DESCRIPTION 0000 DMAREQ bit (software trigger) 0001 TACCR2 CCIFG bit 0010 TBCCR2 CCIFG bit 0011 UCA0RXIFG bit 0100 UCA0TXIFG bit 0101 N/A 0110 SD16IFG bit 0111 TACCR0 CCIFG bit 1000 TBCCR0 CCIFG bit 1001 UCA1RXIFG bit 1010 UCA1TXIFG bit 1011 Multiplier ready 1100 UCB0RXIFG bit 1101 UCB0TXIFG bit 1110 1111 DMA0IFG bit triggers DMA channel 1 DMA1IFG bit triggers DMA channel 2 DMA2IFG bit triggers DMA channel 0 External trigger DMAE0 hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Basic Timer1 and Real-Time Clock (RTC) The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap year correction. 18 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 universal serial communication interfaces (USCIs) (USCI_A0, USCI_B0, USCI_A1, USCI_B1) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I2C and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI_A0 and USCI_A1 provides support for SPI (3-pin or 4-pin), UART, enhanced UART, and IrDA. USCI_B0 and USCI_B1 provides support for SPI (3-pin or 4-pin) and I2C. Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME 86 - P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK 86 - P1.5 TACLK INCLK 91 - P1.0 TA0 CCI0A 90 - P1.1 TA0 CCI0B DVSS GND 89 - P1.2 71 - P3.4 DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC POST OFFICE BOX 655303 MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 91 - P1.0 CCR0 TA0 89 - P1.2 CCR1 TA1 71 - P3.4 CCR2  DALLAS, TEXAS 75265 TA2 19 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_B3 SIGNAL CONNECTIONS INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME 87 - P1.4 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 87 - P1.4 TBCLK INCLK 70 -- P3.5 TB0 CCI0A TB0 CCI0B DVSS GND 70 -- P3.5 DVCC VCC 69 - P3.6 TB1 CCI1A 69 - P3.6 TB1 CCI1B DVSS GND 68 - P3.7 68 - P3.7 DVCC VCC TB2 CCI2A TB2 CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 70 - P3.5 CCR0 TB0 69 - P3.6 CCR1 TB1 68 - P3.7 CCR2 TB2 Comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. SD16_A The SD16_A module integrates three (MSP430F471x3), six (MSP430F471x6) or seven (MSP430F471x7) independent 16-bit sigma-delta A/D converters. Each channel is designed with a fully differential analog input pair and programmable gain amplifier input stage. In addition to external analog inputs, an internal VCC sense and temperature sensor are also available. LCD driver with regulated charge pump The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and thus contrast in software. 20 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 embedded emulation module (EEM) All MSP430F471x3, MSP430F471x6, and MSP430F471x7 devices have an EEM that supports real-time in-system debugging. The implemented L version of the EEM has the following features: D D D D D D D Eight hardware triggers on memory address or data bus Two hardware triggers on write accesses to CPU register Eight combinational triggers to combine any of the 10 above hardware triggers Trigger sequencer CPU break reaction on combinational triggers for breakpoints State storage to trace internal buses Clock control on module level POST OFFICE BOX 655303  DALLAS, TEXAS 75265 21 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Flash_A Flash control 4 Flash control 3 Flash control 2 FCTL4 FCTL3 FCTL2 01BEh 012Ch 012Ah Flash control 1 FCTL1 0128h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh MPY32 control 0 MPY32CTL0 015Ch 64-bit result 3 -- most significant word RES3 015Ah 64-bit result 2 RES2 0158h 64-bit result 1 RES1 0156h 64-bit result 0 -- least significant word RES0 0154h Second 32-bit operand, high word OP2H 0152h Second 32-bit operand, low word OP2L 0150h Multiply signed + accumulate/ 32-bit operand1, high word MACS32H 014Eh Multiply signed + accumulate/ 32-bit operand1, low word MACS32L 014Ch Multiply + accumulate/ 32-bit operand1, high word MAC32H 014Ah Multiply + accumulate/ 32-bit operand1, low word MAC32L 0148h Multiply signed/32-bit operand1, high word MPYS32H 0146h Multiply signed/32-bit operand1, low word MPYS32L 0144h Multiply unsigned/32-bit operand1, high word MPY32H 0142h Multiply unsigned/32-bit operand1, low word MPY32L 0140h Timer_B3 _ Timer_A3 _ 32-bit Hardware M l i li Multiplier 22 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) 32-bit Hardware Multiplier Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h USCI_B0 USCI_B0 I2C own address (see also: Peripherals with Byte Ac- USCI_B0 I2C slave address cess) UCB0I2COA 016Ch UCB0I2CSA 016Eh USCI_B1 USCI_B1 I2C own address (see also: Peripherals with Byte Ac- USCI_B1 I2C slave address cess) UCB1I2COA 017Ch UCB1I2CSA 017Eh SD16_A _ General Control ( (see also: l PeripherP i h Channel 0 Control als with Byte Access)) Channel 1 Control SD16CTL 0100h SD16CCTL0 0102h SD16CCTL1 0104h Channel 2 Control SD16CCTL2 0106h Channel 3 Control SD16CCTL3 0108h Channel 4 Control SD16CCTL4 010Ah Channel 5 Control SD16CCTL5 010Ch Channel 6 Control SD16CCTL6 010Eh Channel 0 conversion memory SD16MEM0 0110h Channel 1 conversion memory SD16MEM1 0112h Channel 2 conversion memory SD16MEM2 0114h Channel 3 conversion memory SD16MEM3 0116h Channel 4 conversion memory SD16MEM4 0118h Channel 5 conversion memory SD16MEM5 011Ah Channel 6 conversion memory SD16MEM6 011Ch SD16 Interrupt vector word register SD16IV 01AEh Port PA resistor enable PAREN 014h Port PA selection PASEL 03Eh Port PA direction PADIR 03Ch Port PA output PAOUT 03Ah Port PA input PAIN 038h Port PB resistor enable PBREN 016h Port PB selection PBSEL 00Eh Port PB direction PBDIR 00Ch Port PB output PBOUT 00Ah Port PB input PBIN 008h Port PA Port PB POST OFFICE BOX 655303  DALLAS, TEXAS 75265 23 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) DMA DMA Channel 0 DMA Channel 1 DMA Channel 2 24 DMA module control 0 DMACTL0 0122h DMA module control 1 DMACTL1 0124h DMA interrupt vector DMAIV 0126h DMA channel 0 control DMA0CTL 01D0h DMA channel 0 source address DMA0SA 01D2h DMA channel 0 destination address DMA0DA 01D6h DMA channel 0 transfer size DMA0SZ 01DAh DMA channel 1 control DMA1CTL 01DCh DMA channel 1 source address DMA1SA 01DEh DMA channel 1 destination address DMA1DA 01E2h DMA channel 1 transfer size DMA1SZ 01E6h DMA channel 2 control DMA2CTL 01E8h DMA channel 2 source address DMA2SA 01EAh DMA channel 2 destination address DMA2DA 01EEh DMA channel 2 transfer size DMA2SZ 01F2h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS SD16_A (see also: Peripherals with Word Access) LCD_A Channel 0 Input Control Channel 1 Input Control Channel 2 Input Control SD16INCTL0 SD16INCTL1 SD16INCTL2 0B0h 0B1h 0B2h Channel 3 Input Control Channel 4 Input Control Channel 5 Input Control Channel 6 Input Control SD16INCTL3 SD16INCTL4 SD16INCTL5 SD16INCTL6 0B3h 0B4h 0B5h 0B6h Reserved Channel 0 preload Channel 1 preload Channel 2 preload SD16PRE0 SD16PRE1 SD16PRE2 0B7h 0B8h 0B9h 0BAh Channel 3 preload Channel 4 preload Channel 5 preload Channel 6 preload SD16PRE3 SD16PRE4 SD16PRE5 SD16PRE6 0BBh 0BCh 0BDh 0BEh Reserved SD16CONF1 0BFh LCD Voltage Control 1 LCD Voltage Control 0 LCD Voltage Port Control 1 LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 0AFh 0AEh 0ADh LCD Voltage Port Control 0 LCD memory 20 : LCD memory 16 LCDAPCTL0 LCDM20 : LCDM16 0ACh 0A4h : 0A0h LCD memory 15 : LCD memory 1 LCD control and mode LCDM15 : LCDM1 LCDACTL 09Fh : 091h 090h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 25 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) USCI_A0 USCI_A0 transmit buffer USCI_A0 receive buffer USCI_A0 status USCI_A0 modulation control USCI_A0 baud rate control 1 USCI_A0 baud rate control 0 USCI_A0 control 1 USCI_A0 control 0 USCI_A0 IrDA receive control USCI_A0 IrDA transmit control USCI_A0 auto baud rate control UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCTL UCA0ABCTL 067h 066h 065h 064h 063h 062h 061h 060h 05Fh 05Eh 05Dh USCI_B0 USCI_B0 transmit buffer USCI_B0 receive buffer USCI_B0 status USCI_B1 I2C interrupt enable USCI_B0 bit rate control 1 USCI_B0 bit rate control 0 USCI_B0 control 1 USCI_B0 control 0 UCB0TXBUF UCB0RXBUF UCB0STAT UCB0I2CIE UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 06Fh 06Eh 06Dh 06Ch 06Bh 06Ah 069h 068h USCI_A1 USCI_A1 transmit buffer USCI_A1 receive buffer USCI_A1 status USCI_A1 modulation control USCI_A1 baud rate control 1 USCI_A1 baud rate control 0 USCI_A1 control 1 USCI_A1 control 0 USCI_A1 IrDA receive control USCI_A1 IrDA transmit control USCI_A1 auto baud rate control USCI_A1 interrupt flag USCI_A1 interrupt enable UCA1TXBUF UCA1RXBUF UCA1STAT UCA1MCTL UCA1BR1 UCA1BR0 UCA1CTL1 UCA1CTL0 UCA1IRRCTL UCA1IRTCTL UCA1ABCTL UC1IFG UC1IE 0D7h 0D6h 0D5h 0D4h 0D3h 0D2h 0D1h 0D0h 0CFh 0CEh 0CDh 007h 006h USCI_B1 USCI_B1 transmit buffer USCI_B1 receive buffer USCI_B1 status USCI_B1 I2C interrupt enable USCI_B1 bit rate control 1 USCI_B1 bit rate control 0 USCI_B1 control 1 USCI_B1 control 0 USCI_A1 interrupt flag USCI_A1 interrupt enable UCB1TXBUF UCB1RXBUF UCB1STAT UCB1I2CIE UCB1BR1 UCB1BR0 UCB1CTL1 UCB1CTL0 UC1IFG UC1IE 0DFh 0DEh 0DDh 0DCh 0DBh 0DAh 0D9h 0D8h 007h 006h Comparator_A p _ Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h SVS control register (Reset by brownout signal) SVSCTL 056h BrownOUT, SVS 26 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) FLL+ Clock RTC (Basic Timer 1) Port P10 Port P9 Port P8 Port P7 FLL+ Control2 FLL_CTL2 055h FLL+ Control1 FLL_CTL1 054h FLL+ Control0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Real Time Clock Year High Byte RTCYEARH 04Fh Real Time Clock Year Low Byte RTCYEARL 04Eh Real Time Clock Month RTCMON 04Dh Real Time Clock Day of Month RTCDAY 04Ch Basic Timer1 Counter 2 BTCNT2 047h Basic Timer1 Counter 1 BTCNT1 046h Real Time Counter 4 (Real Time Clock Day of Week) RTCNT4 (RTCDOW) 045h Real Time Counter 3 (Real Time Clock Hour) RTCNT3 (RTCHOUR) 044h Real Time Counter 2 (Real Time Clock Minute) RTCNT2 (RTCMIN) 043h Real Time Counter 1 (Real Time Clock Second) RTCNT1 (RTCSEC) 042h Real Time Clock Control RTCCTL 041h Basic Timer1 Control BTCTL 040h Port P10 resistor enable P10REN 017h Port P10 selection P10SEL 00Fh Port P10 direction P10DIR 00Dh Port P10 output P10OUT 00Bh Port P10 input P10IN 009h Port P9 resistor enable P9REN 016h Port P9 selection P9SEL 00Eh Port P9 direction P9DIR 00Ch Port P9 output P9OUT 00Ah Port P9 input P9IN 008h Port P8 resistor enable P8REN 015h Port P8 selection P8SEL 03Fh Port P8 direction P8DIR 03Dh Port P8 output P8OUT 03Bh Port P8 input P8IN 039h Port P7 resistor enable P7REN 014h Port P7 selection P7SEL 03Eh Port P7 direction P7DIR 03Ch Port P7 output P7OUT 03Ah Port P7 input P7IN 038h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 27 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P5 Port P4 Port P3 Port P2 Port P1 Special p Functions 28 Port P5 resistor enable P5REN 012h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 resistor enable P4REN 011h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 resistor enable P3REN 010h Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 resistor enable P2REN 02Fh Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 resistor enable P1REN 027h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA Storage temperature, Tstg: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . --55C to 150C Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . --40C to 85C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J--STD--020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 29 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 recommended operating conditions MIN NOM MAX UNIT Supply voltage during program execution, VCC (AVCC = DVCC = VCC) (see Note 1) 1.8 3.6 V Supply voltage during program execution, SVS enabled, PORON = 1, VCC (AVCC = DVCC = VCC) (see Notes 1, 2) 2.0 3.6 V Supply voltage during program/erase flash memory, VCC (AVCC = DVCC = VCC) (see Note 1) 2.2 3.6 V --40 85 C VCC = 1.8 V, Duty cycle = 50% 10% dc 4.15 MHz VCC = 2.2 V, Duty cycle = 50% 10% dc 7.5 MHz VCC = 2.7 V, Duty cycle = 50% 10% dc 12 VCC  3.3 V, Duty cycle = 50% 10% dc 16 Supply voltage, VSS 0 Operating free-air temperature range, TA Processor frequency fSYSTEM (Maximum MCLK frequency) (see Notes 3, 4 and Figure 1) V MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage. POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry. 3. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 4. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. Legend: System Frequency --MHz 16 MHz Supply voltage range, during flash memory programming 12 MHz Supply voltage range, during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage --V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area 30 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS TYP MAX 2.2 V 350 400 3V 500 560 2.2 V 45 70 3V 75 110 2.2 V 11 14 3V 17 22 TA = --40C 0.7 2.0 TA = 25C 0.8 2.0 2.0 3.5 TA = 85C 5.0 9.5 TA = --40C 1.1 3.0 1.2 3.0 2.5 4.0 TA = 85C 6.0 10.0 TA = --40C 3.5 5.5 TA = 25C 3.5 5.5 5.5 7.0 TA = 85C 11.0 17.0 TA = --40C 4.0 6.5 TA = 25C 4.0 6.5 6.0 8.0 TA = 85C 13.0 20.0 TA = --40C 0.1 1.0 TA = 25C 0.2 1.0 1.0 2.5 TA = 85C 4.5 8.5 TA = --40C 0.1 2.0 TA = 25C 0.2 2.0 1.5 3.0 5.0 9.0 Active mode, (see Note 1) f((MCLK)) = f((SMCLK)) = 1 MHz, f(ACLK) = 32768 Hz XTS = 0, SELM = (0,1) (Program executes from flash) TA = --40C 40C to 85C I(LPM0) Low power mode, (LPM0) Low-power (see Notes 1, 4) 40C to 85C TA = --40C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, MHz f(ACLK) = 32768 Hz, SCG0 = 0 (see Notes 2, 4) TA = --40C 40C to 85C I(AM) I(LPM3) Low-power Low power mode mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 1 Basic Timer1 and RTC enabled , ACLK selected LCD A enabled, LCD_A enabled LCDCPEN = 0: (static mode , fLCD = f(ACLK)/32) (see Notes otes 2,, 3, and a d 4)) TA = 60C TA = 25C TA = 60C I(LPM3) Low-power Low power mode mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 1 Basic Timer1 and RTC enabled , ACLK selected LCD A enabled, LCD_A enabled LCDCPEN = 0: (4-mux mode, fLCD = f(ACLK)/32) (see Notes otes 2,, 3, and a d 4)) TA = 60C TA = 60C I(LPM4) Low-power mode, (LPM4) f(MCLK) = 0 MHz, MHz f(SMCLK) = 0 MHz, MHz f(ACLK) = 0 Hz, SCG0 = 1 (see Notes 2 and 4) TA = 60C TA = 60C TA = 85C NOTES: 1. 2. 3. 4. VCC MIN UNIT A A 22V 2.2 3V 22V 2.2 3V 22V 2.2 3V A A A A A A A A A A A A A A A A Timer_A is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9 pF) crystal and OSCCAPx = 01h. Current for brownout included. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 31 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 typical characteristics -- active mode supply current (into VCC) 11.0 fDCO = 16 MHz 10.0 fDCO = 12 MHz 7.0 6.0 fDCO = 8 MHz 5.0 4.0 3.0 2.0 fDCO = 1 MHz 1.0 0.0 1.5 2.0 2.5 3.0 3.5 4.0 Active Mode Current -- mA Active Mode Current -- mA 9.0 8.0 TA = 85 C 6.0 TA = 25 C 5.0 4.0 3.0 VCC = 3 V TA = 25 C 2.0 32 POST OFFICE BOX 655303 VCC = 2.2 V 1.0 0.0 0.0 VCC -- Supply Voltage -- V Figure 2. Active Mode Current vs VCC, TA = 25C TA = 85 C 4.0 8.0 12.0 16.0 fDCO -- DCO Frequency -- MHz Figure 3. Active Mode Current vs DCO Frequency  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs -- Ports P1 to P5, P7 to P10, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) PARAMETER VIT+ VIT-- TEST CONDITIONS Positive-going P iti i input i t threshold th h ld voltage Negative-going N ti i input i t threshold th h ld voltage Vhys Input voltage hysteresis (VIT+ -VIT-- ) RPull Pullup/pulldown resistor (not RST/NMI and JTAG pins) For pullup: VIN = VSS, For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN MAX UNIT 0.45 0.75 VCC 2.2 V 1.00 1.65 3V 1.35 2.25 0.25 0.55 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1.0 3V 0.3 1.0 20 TYP 35 50 5 V VCC V V kΩ pF inputs -- Ports P1, P2 PARAMETER t(int) TEST CONDITIONS Port P1, P2: P1.x to P2.x, external trigger puls width to set interrupt flag (see Note 1) External interrupt timing VCC 2.2 V/3 V MIN MAX 20 UNIT ns NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals shorter than t(int). leakage current -- Ports P1 to P5, P7 to P10 PARAMETER Ilkg(Px.x) TEST CONDITIONS High-impedance leakage current See Notes 1 and 2 VCC 2.2 V/3 V MIN MAX UNIT 50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 33 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1 to P5, P7 to P10 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level VCC MIN I(OHmax) = --1.5 mA (see Note 1) TEST CONDITIONS 2.2 V VCC --0.25 MAX VCC UNIT I(OHmax) = --6 mA (see Note 2) 2.2 V VCC --0.6 VCC I(OHmax) = --1.5 mA (see Note 1) 3V VCC --0.25 VCC I(OHmax) = --6 mA (see Note 2) 3V VCC --0.6 VCC I(OLmax) = 1.5 mA (see Note 1) 2.2 V VSS VSS+0.25 I(OLmax) = 6 mA (see Note 2) 2.2 V VSS VSS+0.6 I(OLmax) = 1.5 mA (see Note 1) 3V VSS VSS+0.25 I(OLmax) = 6 mA (see Note 2) 3V VSS VSS+0.6 V V NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed 12 mA to hold the maximum voltage drop specified. 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed 48 mA to hold the maximum voltage drop specified. output frequency -- Ports P1 to P5, P7 to P10 PARAMETER fPx.y Port output frequency (with load) TEST CONDITIONS P1.4/TBCLK/SMCLK, CL = 20 pF pF, RL = 1 kΩ against VCC/2 (see Notes 1 and 2) MAX UNIT 2.2 V VCC MIN 10 MHz 3V 12 MHz P1.1/TA0/MCLK, P1.5/TACLK/ACLK, 2.2 V 12 MHz fPort_CLK Clock output frequency P1 4/TBCLK/SMCLK P1.4/TBCLK/SMCLK, 3V 16 MHz CL = 20 pF (see Note 2) NOTES: 1. Alternatively a resistive divider with 2 times 2 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. 34 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 VCC = 2.2 V P1.6 25.0 I OL -- Typical Low-Level Output Current -- mA I OL -- Typical Low-Level Output Current -- mA 30.0 TA = 25C TA = 85C 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P1.6 40.0 TA = 85C 30.0 20.0 10.0 0.0 0.0 2.5 0.5 VOL -- Low-Level Output Voltage -- V 2.0 2.5 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 0.0 VCC = 2.2 V P1.6 I OH -- Typical High-Level Output Current -- mA I OH -- Typical High-Level Output Current -- mA 1.5 Figure 5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE --5.0 --10.0 --15.0 --20.0 TA = 85C --25.0 TA = 25C 0.5 1.0 VOL -- Low-Level Output Voltage -- V Figure 4 --30.0 0.0 TA = 25C 1.0 1.5 2.0 2.5 VOH -- High-Level Output Voltage -- V VCC = 3 V P1.6 --10.0 --20.0 --30.0 --40.0 TA = 85C --50.0 TA = 25C --60.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH -- High-Level Output Voltage -- V Figure 6 Figure 7 NOTE: One output loaded at a time. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 35 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC(start) (See Figure 8) dVCC/dt  3 V/s V(B_IT--) (See Figure 8 through Figure 10) dVCC/dt  3 V/s Vhys(B_IT--) (See Figure 8) dVCC/dt  3 V/s td(BOR) (See Figure 8) t(reset) Pulse length needed at RST/NMI pin to accepted reset internally VCC MIN TYP MAX 0.7  V(B_IT--) 70 2.2 V/3 V 2 130 UNIT V 1.71 V 180 mV 2000 s s NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is  1.8 V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default FLL+ settings must not be changed until VCC  VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. VCC Vhys(B_IT--) V(B_IT--) VCC(start) 1 0 t d(BOR) Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage 36 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) VCC 3V VCC(drop) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- s 1 ns tpw -- Pulse Width -- s Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(drop) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- s tpw -- Pulse Width -- s Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303  DALLAS, TEXAS 75265 37 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) SVS (supply voltage supervisor/monitor) (see Note 1) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt  30 V/ms (see Figure 11) 5 dVCC/dt  30 V/ms td(SVSon) SVSon, switch from VLD = 0 to VLD  0, VCC = 3 V tsettle VLD  0 (see Note 2) V(SVSstart) VLD  0, VCC/dt  3 V/s (see Figure 11) 150 1.55 VLD = 1 VCC/dt  3 V/s (see Figure 11) Vhys(SVS_IT--) hys(SVS IT--) VCC/dt  3 V/s (see Figure 11), External voltage applied on A7 VCC/dt  3 V/s (see Figure 11) V(SVS_IT--) (SVS IT ) VCC/dt  3 V/s (see Figure 11), External voltage applied on A7 ICC(SVS) (see Note 1) TYP VLD = 2 to 14 VLD = 15 70 120 MAX UNIT 150 s 2000 s 300 s 12 s 1.7 V 155 mV V(SVS_IT--)  0.001 V(SVS_IT--)  0.016 4.4 10.4 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD  0, VCC = 2.2 V/3 V mV V A † The recommended operating voltage range is limited to 3.6 V. NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data. 2. tsettle is the settling time that the comparator output needs to have a stable level after VLD is switched VLD  0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. 38 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 typical characteristics Software Sets VLD>0: SVS is Active VCC V(SVS_IT--) V(SVSstart) Vhys(SVS_IT--) Vhys(B_IT--) V(B_IT--) VCC(start) BrownOut Region Brownout Region Brownout 1 0 td(BOR) SVSOut 1 0 td(SVSon) Set POR 1 t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT--) td(SVSR) undefined 0 Figure 11. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(min) VCC(min) -- V 1.5 Triangular Drop 1 1 ns 1 ns VCC 0.5 t pw 3V 0 1 10 100 tpw -- Pulse Width -- s 1000 VCC(min) tf = tr tf tr t -- Pulse Width -- s Figure 12. VCC(min) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303  DALLAS, TEXAS 75265 39 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER MIN f(DCOCLK) f(DCO = 2) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0 0, DCOPLUS = 1 f(DCO = 27) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0 0, DCOPLUS = 1 VCC = 2.2 V/3 V FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1 f(DCO = 2) TYP MAX 1 VCC = 2.2 V 0.3 0.65 1.25 VCC = 3 V 0.3 0.7 1.3 VCC = 2.2 V 2.5 5.6 10.5 VCC = 3 V 2.7 6.1 11.3 VCC = 2.2 V 0.7 1.3 2.3 VCC = 3 V 0.8 1.5 2.5 VCC = 2.2 V 5.7 10.8 18 VCC = 3 V 6.5 12.1 20 VCC = 2.2 V 1.2 2 3 VCC = 3 V 1.3 2.2 3.5 FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = 0, 0 FN FN_2 2=1 1, DOPLUS = 1 f(DCO = 2) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN FN_3 3 = 1, 1 FN FN_2 2 = x, x DCOPLUS = 1 f(DCO = 27) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN FN_3 3 = 1, 1 FN FN_2 2 = x, x DCOPLUS = 1 f(DCO = 2) FN 8 = 0, FN_8 0 FN FN_4 4 = 1, 1 FN FN_3 3 = FN_2 FN 2 = x, x DCOPLUS = 1 f(DCO = 27) FN 8 = 0, FN_8 0 FN FN_4 4 = 1, 1 FN FN_3 3 = FN_2 FN 2 = x, x DCOPLUS = 1 f(DCO = 2) FN 8 = 1, FN_8 1 FN FN_4 4 = FN_3 FN 3 = FN_2 FN 2 = x, x DCOPLUS = 1 f(DCO = 27) FN 8 = 1,FN_4 FN_8 1 FN 4 = FN_3 FN 3 = FN_2 FN 2 = x, x DCOPLUS = 1 Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 14 for taps 21 to 27) 1 < TAP  20 1.06 TAP = 27 1.07 Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0 D = 2, DCOPLUS = 0 VCC = 2.2 V –0.2 –0.4 –0.6 VCC = 3 V –0.2 –0.4 –0.6 0 5 15 f (DCO) f (DCO3V) 9 15.5 25 10.3 17.9 28.5 VCC = 2.2 V 1.8 2.8 4.2 VCC = 3 V 2.1 3.4 5.2 13.5 21.5 33 VCC = 3 V 16 26.6 41 VCC = 2.2 V 2.8 4.2 6.2 VCC = 3 V 4.2 6.3 9.2 VCC = 2.2 V 21 32 46 VCC = 3 V 30 46 70 VCC = 3 V VCC = 2.2 V Drift with VCC variation, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 DV f VCC = 2.2 V VCC = 2.2 V/3 V MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1.11 1.17 %_C %/V (DCO) (DCO25C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC -- V --40 --20 0 20 40 60 Figure 13. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 40 UNIT MHz f(DCO = 27) Dt f TEST CONDITIONS N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 85 TA -- C MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 1.17 Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 14. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 2 5 in SCFI1 {N (DCO)} Tolerance at Tap 2 Overlapping DCO Ranges: uninterrupted frequency range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 15. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303  DALLAS, TEXAS 75265 41 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low-frequency mode (see Note 4) PARAMETER TEST CONDITIONS LFXT1 oscillator crystal frequency, LF mode fLFXT1,LF XTS = 0 Oscillation allowance for LF crystals OALF Integrated effective load capacitance LF mode capacitance, (see Note 1) CL,eff VCC MIN TYP 1.8 V to 3.6 V MAX UNIT 32768 Hz XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 6 pF 500 kΩ XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 12 pF 200 kΩ XTS = 0, XCAPxPF = 0 1 pF XTS = 0, XCAPxPF = 1 5.5 pF XTS = 0, XCAPxPF = 2 8.5 pF XTS = 0, XCAPxPF = 3 11 pF Duty Cycle LF mode XTS = 0, fLFXT1,LF = 32768 Hz Measured at P1.5/TACLK/ACLK fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0 (see Note 2) 2.2 V/3 V 30 2.2 V/3 V 10 50 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. ---- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. crystal oscillator, LFXT1, high-frequency mode PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fXT1 XT1 oscillator crystal frequency XTS = 1, Ceramic resonator 1.8 V to 3.6 V 0.45 6 MHz fXT1 XT1 oscillator crystal frequency XTS = 1, Crystal 1.8 V to 3.6 V 1 6 MHz CL,eff Integrated effective load capacitance (see Note 1) (see Note 2) Duty Cycle 1 Measured at P1.5/TACLK/ACLK 2.2 V/3 V 40 50 pF 60 % NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 42 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, XT2 oscillator (see Note 5) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fXT2,0 XT2 oscillator crystal frequency, mode 0 XT2Sx = 0 1.8 V to 3.6 V 0.4 1 MHz fXT2,1 XT2 oscillator crystal frequency, mode 1 XT2Sx = 1 1.8 V to 3.6 V 1 4 MHz XT2 oscillator ill t crystal t l frequency, f mode 2 1.8 V to 3.6 V 2 10 MHz fXT2,2 XT2Sx = 2 2.2 V to 3.6 V 2 12 MHz 3.0 V to 3.6 V 2 16 MHz 1.8 V to 3.6 V 0.4 10 MHz 2.2 V to 3.6 V 0.4 12 MHz 3.0 V to 3.6 V 0.4 16 MHz XT2 oscillator ill t logic l i level l l square wave input frequency fXT2,logic Oscillation allowance for HF crystals (see Figure 16) OAXT2 Integrated effective load capacitance (see Note 1) CL,eff Duty cycle Oscillator fault frequency (see Note 4) fFault,XT2 XT2Sx = 3 XT2Sx = 0, fXT2 = 1 MHz, CL,eff = 15 pF 2700 Ω XT2Sx = 1 fXT2 = 4 MHz, CL,eff = 15 pF 800 Ω XT2Sx = 2 fXT2 = 16 MHz, CL,eff = 15 pF 300 Ω 1 pF (see Note 2) Measured at P1.5/TACLK/ACLK, fXT2 = 10 MHz 2.2 V/3 V 40 50 60 % Measured at P1.5/TACLK/ACLK, fXT2 = 16 MHz 2.2 V/3 V 40 50 60 % XT2Sx = 3 (see Notes 3) 2.2 V/3 V 30 300 kHz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 3. Measured with logic level input frequency but also applies to operation with crystals. 4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. 5. To improve EMI on the XT2 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. -- Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. --- Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 43 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- XT2 oscillator Oscillation Allowance -- Ohms 100000.00 10000.00 1000.00 XT2Sx = 2 100.00 XT2Sx = 0 10.00 0.10 1.00 XT2Sx = 1 10.00 100.00 Crystal Frequency -- MHz Figure 16. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25C 44 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS VCC MIN f = 1 MHz td(LPM3) UNIT 6 f = 2 MHz Delay time MAX 6 2.2 V/3 V f = 3 MHz s 6 LCD_A PARAMETER TEST CONDITIONS VCC(LCD) Supply voltage range Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) CLCD Capacitor on LCDCAP (see Note 1) Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) VCC MIN 2.2 4.7 TYP MAX 3.6 UNIT V F VLCD(typ) = 3 V, LCDCPEN = 1, VLCDx = 1000, all segments on, ICC(LCD) Supply current fLCD LCD frequency VLCD LCD voltage VLCDx = 0000 VCC V VLCD LCD voltage VLCDx = 0001 2.60 V VLCD LCD voltage VLCDx = 0010 2.66 V VLCD LCD voltage VLCDx = 0011 2.72 V VLCD LCD voltage VLCDx = 0100 2.78 V VLCD LCD voltage VLCDx = 0101 2.84 V VLCD LCD voltage VLCDx = 0110 2.90 V VLCD LCD voltage VLCDx = 0111 2.96 V VLCD LCD voltage VLCDx = 1000 3.02 V VLCD LCD voltage VLCDx = 1001 3.08 V VLCD LCD voltage VLCDx = 1010 3.14 V VLCD LCD voltage VLCDx = 1011 3.20 V VLCD LCD voltage VLCDx = 1100 3.26 V VLCD LCD voltage VLCDx = 1101 3.32 V VLCD LCD voltage VLCDx = 1110 3.38 VLCD LCD voltage VLCDx = 1111 3.44 RLCD LCD driver output impedance VLCD = 3 V, LCDCPEN = 1, VLCDx = 1000, ILOAD = 10 A fLCD = fACLK/32 no LCD connected (see Note 2), TA = 25C 2.2 V 3.8 A 1.1 2.2 V kHz V 3.60 10 V k NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. 2. Connecting an actual display will increase the current consumption depending on the size of the LCD. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 45 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON = 1, 1 CARSEL = 0 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P2.6/CA0 and P2.7/CA1 V(Ref025) V(Ref050) Voltage @ 0.25 V V CC Voltage @ 0.5 V V MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 80 node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P2.6/CA0 and P2.7/CA1 2.2 V / 3 V 0.23 0.24 0.25 node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P2.6/CA0 and P2.7/CA1 2.2V / 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 CC CC VCC CC UNIT A A A A V(RefVT) See Figure 17 and Figure 18 PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P2.6/CA0 P2 6/CA0 and P2 P2.7/CA1, 7/CA1 TA = 85C VIC Common-mode input voltage range CAON = 1 2.2 V / 3 V 0 VCC --1 Vp --VS Offset voltage See Note 2 2.2 V / 3 V --30 30 mV Vhys Input hysteresis CAON = 1 2.2 V / 3 V 0 0.7 1.4 mV TA = 25 25C, C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 80 165 300 3V 70 120 240 TA = 25 25C C Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 t(response LH and HL) (See Note 3) mV V ns s s NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 3. The response time is measured at P2.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. 46 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V 600 VREF -- Reference Voltage -- mV VREF -- Reference Voltage -- mV VCC = 3 V Typical 550 500 450 400 --45 --25 --5 15 35 55 75 600 Typical 550 500 450 400 --45 95 --25 TA -- Free-Air Temperature -- C 0 15 35 55 75 95 TA -- Free-Air Temperature -- C Figure 17. V(RefVT) vs Temperature 0V --5 Figure 18. V(RefVT) vs Temperature VCC CAF 1 CAON Low-Pass Filter V+ V-- + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag   2 s Figure 19. Block Diagram of Comparator_A Module VCAOUT Overdrive V-400 mV V+ t(response) Figure 20. Overdrive Definition POST OFFICE BOX 655303  DALLAS, TEXAS 75265 47 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER TEST CONDITIONS fTA Timer A clock frequency Timer_A Internal: SMCLK, ACLK, External: TACLK, TACLK INCLK INCLK, Duty cycle = 50% 10% tTA,cap Timer_A, capture timing TA0, TA1, TA2 VCC MIN MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer_B PARAMETER TEST CONDITIONS fTB Timer B clock frequency Timer_B Internal: SMCLK, ACLK, External: TBCLK TBCLK, Duty cycle = 50% 10% tTB,cap Timer_B, capture timing TB0, TB1, TB2 48 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 VCC MIN MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) -- recommended operating conditions PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) CONDITIONS MIN Internal: SMCLK, ACLK External: UCLK Duty cycle = 50%  10% MAX UNIT fSYSTEM MHz 1 MHz USCI (UART mode) PARAMETER TEST CONDITIONS UART receive deglitch time (see Note 1) t VCC MIN TYP MAX UNIT 2.2 V 50 150 600 ns 3V 50 100 600 ns NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI master mode) -- recommended operating conditions PARAMETER fUSCI CONDITIONS MIN SMCLK, ACLK Duty cycle = 50%  10% USCI input clock frequency MAX UNIT fSYSTEM MHz MAX UNIT fSYSTEM MHz USCI (SPI master mode) (see Note 1, Figure 21, and Figure 22) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI TEST CONDITIONS SIMO output data valid time (Note 2) tHD,MO SIMO output data hold time (Note 3) NOTES: 1. f UCxCLK = MIN SMCLK, ACLK Duty cycle = 50%  10% SOMI input data hold time tVALID,MO VCC UCLK edge to SIMO valid, CL = 20 pF CL = 20 pF 2.2 V 110 ns 3V 75 ns 2.2 V 0 ns 3V 0 2.2 V 3V ns 30 ns 20 ns 2.2 V 0 ns 3V 0 ns 1 with t LO∕HI ≥ max(t VALID,MO(USCI) + t SU,SI(Slave), t SU,MI(USCI) + t VALID,SO(Slave)). 2t LO∕HI For the slave’s parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave. 2. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 21 and Figure 22. 3. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in Figure 21 and Figure 22. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 49 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 21. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tHD,MI tSU,MI SOMI tHD,MO tVALID,MO SIMO Figure 22. SPI Master Mode, CKPH = 1 50 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (SPI slave mode) (see Note 1, Figure 23, and Figure 24) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time STE low to clock 2.2 V/3 V tSTE,LAG STE lag time Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (Note 2) UCLK edge to SOMI valid, CL = 20 pF tHD,MO SOMI output data hold time (Note 3) CL = 20 pF NOTES: 1. f UCxCLK = 1 2t LO∕HI with 50 ns 10 ns 2.2 V 20 ns 3V 15 ns 2.2 V 10 ns 3V 10 ns 2.2 V 75 110 ns 3V 50 75 ns 2.2 V 0 ns 3V 0 ns t LO∕HI ≥ max(t VALID,MO(Master) + t SU,SI(USCI), t SU,MI(Master) + t VALID,SO(USCI)). For the master’s parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached master. 2. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 23 and Figure 24. 3. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SOMI output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in Figure 23 and Figure 24. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 51 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tHD,SO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 23. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tHD,SO tSTE,ACC tVALID,SO SOMI Figure 24. SPI Slave Mode, CKPH = 1 52 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 tSTE,DIS MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 25) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50%  10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3 V 0 fSCL  100kHz (standard mode) 2.2 V/3 V 4.0 s fSCL > 100kHz (fast mode) 2.2 V/3 V 0.6 s fSCL  100kHz (standard mode) 2.2 V/3 V 4.7 s fSCL > 100kHz (fast mode) 2.2 V/3 V 0.6 s ns tHD,STA Hold time (repeated) START tSU,STA Set p time for a repeated START Setup tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data setup time 2.2 V/3 V 250 ns fSCL  100kHz (standard mode) 2.2 V/3 V 4.0 s fSCL > 100kHz (fast mode) 2.2 V/3 V 0.6 2.2 V 50 150 600 ns 3V 50 100 600 ns tSU,STO Setup time for STOP tSP Pulse width of spikes suppressed by input filter tHD,STA s tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 25. I2C Mode Timing POST OFFICE BOX 655303  DALLAS, TEXAS 75265 53 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, power supply and recommended operating conditions PARAMETER AVCC ISD16 fSD16 TEST CONDITIONS VCC MIN AVCC = DVCC AVSS = DVSS = 0V Analog supply voltage Analog supply s ppl current: c rrent 1 acti active e SD16 A channel including SD16_A internal reference Analog front front-end end input clock frequency TYP MAX 2.5 3.6 SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 GAIN: 1,2 3V 800 1100 GAIN: 4,8,16 3V 900 1200 GAIN: 32 3V 1200 1700 SD16LP = 1, fSD16 = 0 0.5 5 MHz, MHz SD16OSR = 256 GAIN: 1 3V 800 1100 GAIN: 32 3V 900 1200 1.1 SD16LP = 0 (low-power mode disabled) 3V 0.03 1 SD16LP = 1 (low-power mode enabled) 3V 0.03 0.5 UNIT V A MH MHz SD16_A, input range (see Note 1) PARAMETER VID,FSR VID Differential full scale input voltage range Differential input voltage range for specified performance (see Note 2) TEST CONDITIONS VCC Bipolar mode, SD16UNI = 0 MIN Unipolar mode, SD16UNI = 1 SD16REFON = 1 TYP --VREF/2GAIN 0 SD16GAINx = 1 500 SD16GAINx = 2 250 SD16GAINx = 4 125 SD16GAINx = 8 62 SD16GAINx = 16 31 SD16GAINx = 32 15 MAX UNIT +VREF/2GAIN mV +VREF/2GAIN mV mV ZI Input impedance (one input pin to AVSS) fSD16 = 1 MHz ZID Differential input impedance (IN+ to IN--) fSD16 = 1 MHz VI Absolute input voltage range AVSS -1V AVCC V VIC Common-mode input voltage range AVSS -1V AVCC V SD16GAINx = 1 3V 200 SD16GAINx = 32 3V 75 SD16GAINx = 1 3V 300 400 SD16GAINx = 32 3V 100 150 k k NOTES: 1. All parameters pertain to each SD16_A channel. 2. The full-scale range is defined by VFSR+ = +(VREF/2)/GAIN and VFSR-- = --(VREF/2)/GAIN. If VREF is sourced externally, the analog input range should not exceed 80% of VFSR+ or VFSR--; i.e., VID = 0.8 VFSR-- to 0.8 VFSR+. If VREF is sourced internally, the given VID ranges apply. 54 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, performance (fSD16 = 1 MHz, SD16OSRx = 256, SD16REFON = 1) PARAMETER SINAD G TEST CONDITIONS EOS Offset error dEOS/dT Offset error temperature coefficient CMRR Common mode rejection Common-mode ratio MIN TYP MAX SD16GAINx = 1, Signal amplitude VPP = 500 mV 3V 83 85 SD16GAINx = 2, Signal amplitude VPP = 250 mV 3V 81 84 3V 76 79 3V 73 76 SD16GAINx = 16, Signal amplitude VPP = 31 mV 3V 69 73 SD16GAINx = 32, Signal amplitude VPP = 15 mV 3V 62 69 SD16GAINx = 1 3V 0.97 1.00 1.02 SD16GAINx = 2 3V 1.90 1.96 2.02 SD16GAINx = 4 3V 3.76 3.86 3.96 SD16GAINx = 8 3V 7.36 7.62 7.84 SD16GAINx = 16 3V 14.56 15.04 15.52 SD16GAINx = 32 3V 27.20 28.35 29.76 SD16GAINx = 1 3V 0.2 SD16GAINx = 32 3V 1.5 SD16GAINx = 4, Signal to noise + distortion Signal amplitude VPP = 125 mV Signal-to-noise ratio SD16GAINx = 8, Signal amplitude VPP = 62 mV Nominal gain VCC fIN = 50 Hz, 100 Hz (see Note 1) UNIT dB SD16GAINx = 1 3V 4 20 SD16GAINx = 32 3V 20 100 SD16GAINx = 1, Common-mode input signal: VID = 500 mV, fIN = 50 Hz, 100 Hz 3V 90 SD16GAINx = 32, Common-mode input signal: VID = 16 mV, fIN = 50 Hz, 100 Hz 3V 75 %FSR ppm FSR/_C dB AC PSRR AC power supply rejection ratio SD16GAINx = 1, VCC = 3 V  100 mV, fVCC = 50 Hz 3V 80 dB XT Crosstalk SD16GAINx = 1, VID = 500 mV, fIN = 50 Hz, 100 Hz 3V 1, SD16VMIDON = 0, CREF = 100nF 3V DC PSR DC power supply rejection VREF/VCC SD16REFON = 1, SD16VMIDON = 0, VCC = 2.5 V to 3.6 V MIN 1.14 TYP MAX UNIT 1.20 1.26 V 175 260 A 18 50 ppm/C 100 nF 200 5 nA ms 100 uV/V NOTES: 1. Calculated using the box method: (MAX(-40...85C) -- MIN(-40...85C)) / MIN(--40...85C) / (85C -- (-40C)) 2. There is no capacitance required on VREF. However, a capacitance of at least 100 nF is recommended to reduce any reference voltage noise. SD16_A, reference output buffer PARAMETER TEST CONDITIONS VCC VREF,BUF Reference buffer output voltage SD16REFON = 1, SD16VMIDON = 1 3V 1.2 IREF,BUF Reference supply + reference output buffer quiescent current SD16REFON = 1, SD16VMIDON = 1 3V 385 CREF(O) Required load capacitance on VREF SD16REFON = 1, SD16VMIDON = 1 ILOAD,Max Maximum load current on VREF SD16REFON = 1, SD16VMIDON = 1 3V Maximum voltage variation vs load current |ILOAD| = 0 to 1mA 3V Turn-on time SD16REFON = 0-->1, SD16VMIDON = 0-->1, CREF = 470nF 3V tON MIN TYP MAX UNIT V 600 470 A nF --15 1 mA +15 mV 100 s SD16_A, external reference input PARAMETER TEST CONDITIONS VCC VREF(I) Input voltage range SD16REFON = 0 3V IREF(I) Input current SD16REFON = 0 3V POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MIN 1.0 TYP 1.25 MAX UNIT 1.5 V 50 nA 57 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory PARAMETER VCC(PGM/ ERASE) TEST CONDITIONS VCC Program and erase supply voltage MIN TYP 2.2 fFTG Flash timing generator frequency IPGM Supply current from VCC during program 2.2 V/3.6 V 257 3 IERASE Supply current from VCC during erase 2.2 V/3.6 V 3 tCPT Cumulative program time (see Note 1) 2.2 V/3.6 V tCMErase Cumulative mass erase time 2.2 V/3.6 V TJ = 25C UNIT 3.6 V 476 kHz 5 mA 7 mA 10 ms 20 104 Program/Erase endurance MAX ms 105 cycles tRetention Data retention duration 100 tWord Word or byte program time 30 tFTG tBlock, 0 Block program time for 1st byte or word 25 tFTG tBlock, 1-63 Block program time for each additional byte or word 18 tFTG tBlock, End Block program end-sequence wait time 6 tFTG tMass Erase Mass erase time 10593 tFTG tSeg Erase Segment erase time 4819 tFTG fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1) see Note 2 years 0 1 MHz NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). RAM PARAMETER V(RAMh) TEST CONDITIONS RAM retention supply voltage (see Note 1) MIN CPU halted MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. JTAG interface TEST CONDITIONS PARAMETER fTCK TCK inp inputt frequency freq enc See Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See Note 2 VCC MIN 2.2 V 0 TYP MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 40 90 k MIN NOM MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow: F versions IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25C VCC 2.5 6 UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/test and emulation features is possible. The JTAG block is switched to bypass mode. 58 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 APPLICATION INFORMATION input/output schematics Port P1, P1.0 to P1.5, input/output with Schmitt trigger DVSS P1REN.x P1DIR.x 0 P1OUT.x 0 1 0 DVCC 1 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select POST OFFICE BOX 655303  DALLAS, TEXAS 75265 59 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P1 (P1.0 to P1.5) pin functions PIN NAME (P1.X) (P1 X) P1.0/TA0 / X 0 FUNCTION P1.0 (I/O) Timer_A3.CCI0A Timer_A3.TA0 P1.1/TA0/MCLK / / P1.2/TA1 / P1.3// TBOUTH/SVSOUT P1.4/TBCLK/SMCLK / / P1.5/TACLK/ACLK / / 1 2 3 4 5 P1DIR.x P1SEL.x I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 Timer_A3.CCI0B 0 1 MCLK 1 1 I: 0, O: 1 0 Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1 I: 0, O: 1 0 Timer_B7.TBOUTH 0 1 SVSOUT 1 1 P1.4 (I/O) I: 0, O: 1 0 Timer_B7.TBCLK 0 1 SMCLK 1 1 P1.1 (I/O) P1.2 (I/O) P1.3 (I/O) P1.5 (I/O) I: 0, O: 1 0 Timer_A3.TACLK 0 1 ACLK 1 1 NOTES: 1. X: Don’t care 60 CONTROL BITS / SIGNALS POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P1, P1.6 and P1.7, input/output with Schmitt trigger DVSS P1REN.x P1DIR.x USCI Direction Control 0 P1OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 Bus Keeper P1SEL.x P1.6/UCA1TXD/UCA1SIMO P1.7/UCA1RXD/UCA1SOMI EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Port P1 (P1.6 and P1.7) pin functions PIN NAME (P1.X) (P1 X) X P1.6// UCA1TXD/UCA1SIMO 4 P1.7// UCA1RXD/UCA1SOMI 5 FUNCTION P1.6 (I/O) UCA1TXD/UCA1SIMO (see Note 1, 2) P1.7 (I/O) UCA1RXD/UCA1SOMI (see Note 1, 2) CONTROL BITS / SIGNALS P1DIR.x P1SEL.x I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 61 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P2, P2.0 to P2.5, input/output with Schmitt trigger CAPD.x P2REN.x P2DIR.x USCI Direction Control 0 P2OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output 1 Bus Keeper P2SEL.x EN P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x 62 1 Set Interrupt Edge Select POST OFFICE BOX 655303  DALLAS, TEXAS 75265 P2.0/UCB1STE/UCA1CLK P2.1/UCB1SIMO/UCB1SDA P2.2/UCB1SOMI/UCB1SCL P2.3/UCB1CLK/UCA1STE P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P2 (P2.0 to P2.5) pin functions PIN NAME (P2.X) (P2 X) X P2.0// UCB1STE/UCA1CLK 4 P2.1// UCB1SIMO/UCB1SDA 4 CONTROL BITS / SIGNALS FUNCTION P2.0 (I/O) UCB1STE/UCA1CLK (see Note 1, 2, 3) Input buffer disabled (see Note 6) P2.2// UCB1SOMI/UCB1SCL P2.3// UCB1CLK/UCA1STE P2.4// UCA0TXD/UCA0SIMO P2.5// UCA0RXD/UCA0SOMI 4 4 4 5 P2.1 (I/O) P2DIR.x P2SEL.x CAPD.x I: 0, O: 1 0 0 X 1 0 X X 1 I: 0, O: 1 0 0 UCB1SIMO/UCB1SDA (see Note 1, 2, 4) X 1 0 Input buffer disabled (see Note 6) X X 1 I: 0, O: 1 0 0 P2.2 (I/O) UCB1SOMI/UCB1SCL (see Note 1, 2, 4) X 1 0 Input buffer disabled (see Note 6) X X 1 I: 0, O: 1 0 0 P2.3 (I/O) UCB1CLK/UCA1STE (see Note 1, 2, 5) X 1 0 Input buffer disabled (see Note 6) X X 1 I: 0, O: 1 0 0 P2.4 (I/O) UCA0TXD/UCA0SIMO (see Note 1, 2) X 1 0 Input buffer disabled (see Note 6) X X 1 P2.5 (I/O) I: 0, O: 1 0 0 UCA0RXD/UCA0SOMI (see Note 1, 2) X 1 0 Input buffer disabled (see Note 6) X X 1 NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI_B1 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected. 4. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. 5. UCB1CLK function takes precedence over UCA1STE function. If the pin is required as UCB1CLK input or output USCI_A1 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected. 6. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 63 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P2, P2.6 and P2.7, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A (internal signal) CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS DVCC P2.6/CA0 P2.7/CA1 Bus Keeper P2SEL.x EN P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x Set Interrupt Edge Select P2SEL.x P2IES.x Port P2 (P2.6 and P2.7) pin functions PIN NAME (P2.X) (P2 X) P2.6/CA0 / X 6 CONTROL BITS / SIGNALS FUNCTION P2.6 (I/O) 7 P2SEL.x CAPD.x I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 CA0 (see Note 3) P2.7/CA1 / P2DIR.x P2.7 (I/O) N/A X X 1 I: 0, O: 1 0 0 0 1 0 DVSS 1 1 0 CA1 (see Note 3) X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 64 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P3, P3.0 to P3.3, input/output with Schmitt trigger Pad Logic DVSS P3REN.x P3DIR.x USCI Direction Control 0 P3OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 Bus Keeper P3SEL.x P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE EN P3IN.x EN Module X IN D Port P3 (P3.0 to P3.3) pin functions PIN NAME (P3.X) (P3 X) X P3.0// UCA0CLK/UCB0STE 0 P3.1/ UCB0SIMO/ UCB0SDA 1 P3.2/ UCB0SOMI/ UCB0SCL 2 P3.3// UCB0CLK/UCA0STE 3 FUNCTION P3.0 (I/O) UCA0CLK/UCB0STE (see Notes 1, 2, 3) P3.1 (I/O) UCB0SIMO/UCB0SDA (see Notes 1, 2, 4) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Notes 1, 2, 4) P3.3 (I/O) UCB0CLK/UCA0STE (see Notes 1, 2, 5) CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output USCI_B0 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected. 4. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. 5. UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output USCI_A0 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 65 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P3, P3.4, input/output with Schmitt trigger Pad Logic Segment S39 LCDS36 P3REN.4 P3DIR.4 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P3OUT.4 DVSS DVCC P3.4/TA2/S39 Bus Keeper P3SEL.4 EN P3IN.4 EN Module X IN D Port P3 (P3.4) pin functions PIN NAME (P3.X) (P3 X) P3.4/TA2/S39 / / X 4 FUNCTION P3SEL.x LCDS36 I: 0, O: 1 0 0 Timer_A3.CCI2A 0 1 0 Timer_A3.TA2 1 1 0 S39 X X 1 P3.4 (I/O) NOTES: 1. X: Don’t care 66 CONTROL BITS / SIGNALS P3DIR.x POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P3, P3.5 to P3.7, input/output with Schmitt trigger Timer_B Output Tristate Logic P1.3/TBOUTH/SVSOUT P1SEL.3 P1DIR.3 Pad Logic Segment Sz LCDS36 P3REN.x P3DIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P3OUT.x DVSS DVCC Bus Keeper P3SEL.x P3.5/TB0/S38 P3.6/TB1/S37 P3.7/TB2/S36 EN P3IN.x EN Module X IN D Port P3 (P3.5 to P3.7) pin functions PIN NAME (P3.X) (P3 X) P3.5/TB0/S38 / / P3.6/TB1/S37 / / X 5 6 FUNCTION P3SEL.x LCDS36 I: 0, O: 1 0 0 Timer_B3.CCI0A and Timer_B3.CCI0B 0 1 0 Timer_B3.TB0 (see Note 2) 1 1 0 S38 X X 1 P3.5 (I/O) P3.6 (I/O) I: 0, O: 1 0 0 Timer_B3.CCI1A and Timer_B3.CCI1B 0 1 0 Timer_B3.TB1 (see Note 2) 1 1 0 S37 P3.7/TB2/S36 / / 7 CONTROL BITS / SIGNALS P3DIR.x X X 1 I: 0, O: 1 0 0 Timer_B3.CCI2A and Timer_B3.CCI2B 0 1 0 Timer_B3.TB3 (see Note 2) 1 1 0 S36 X X 1 P3.7 (I/O) NOTES: 1. X: Don’t care 2. Setting TBOUTH causes all Timer_B outputs to be set to high impedance. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 67 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P4, P4.0 and P4.1, input/output with Schmitt trigger Pad Logic Segment Sz LCDS32 P4REN.x P4DIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS DVCC P4.0/CAOUT/S35 P4.1/DMAE0/S34 Bus Keeper P4SEL.x EN P4IN.x EN Module X IN D Port P4 (P4.0 and P4.1) pin functions PIN NAME (P4.X) (P4 X) P4.0/CAOUT/S35 / / P4.1/DMAE0/S34 / / X 0 1 FUNCTION P4DIR.x P4SEL.x LCDS32 I: 0, O: 1 0 0 N/A 0 1 0 CAOUT 1 1 0 S35 X X 1 P4.0 (I/O) P4.1 (I/O) I: 0, O: 1 0 0 DMAE0 0 1 0 DVSS 1 1 0 S34 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 68 CONTROL BITS / SIGNALS POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P4, P4.2 to P4.7, input/output with Schmitt trigger Pad Logic Segment Sz LCDS... P4REN.x P4DIR.x 0 0 Module X OUT 1 0 1 Bus Keeper P4SEL.x EN P4IN.x EN Module X IN 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS DVCC P4.2/S33 P4.3/S32 P4.4/S31 P4.5/S30 P4.6/S29 P4.7/S28 D POST OFFICE BOX 655303  DALLAS, TEXAS 75265 69 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P4 (P4.2 and P4.3) pin functions PIN NAME (P4.X) (P4 X) P4.2/S33 / X 2 CONTROL BITS / SIGNALS FUNCTION P4.2 (I/O) N/A P4.3/S32 / 3 P4DIR.x P4SEL.x LCDS32 I: 0, O: 1 0 0 0 1 0 DVSS 1 1 0 S33 X X 1 P4.3 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S32 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. Port P4 (P4.4 to P4.7) pin functions PIN NAME (P4.X) (P4 X) P4.4/S31 / X 4 CONTROL BITS / SIGNALS FUNCTION P4.4 (I/O) N/A P4.5/S30 / P4.6/S29 / 5 5 5 LCDS28 0 0 0 1 0 1 1 0 S31 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S30 X X 1 I: 0, O: 1 0 0 0 1 0 P4.5 (I/O) P4.6 (I/O) DVSS 1 1 0 S29 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S28 X X 1 P4.7 (I/O) NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 70 P4SEL.x DVSS N/A P4.7/S28 / P4DIR.x I: 0, O: 1 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P5, P5.0, input/output with Schmitt trigger Pad Logic To SVS SVSCTL.VLDx=15 P5REN.0 P5DIR.0 0 1 P5OUT.0 0 DVSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P5.0/SVSIN Bus Keeper P5SEL.0 EN P5IN.0 Port P5 (P5.0) pin functions PIN NAME (P5.X) (P5 X) P5.0/SVSIN / X 0 FUNCTION P5.0 (I/O) (see Note 1) SVSIN (see Notes 1 and 3) CONTROL BITS / SIGNALS P5DIR.x P5SEL.x I: 0, O: 1 0 X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. To enable the SVSIN function the SVS input also needs to be selected in the SVS module by setting the VLDx bits to 15. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 71 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P5, P5.1 to P5.7, input/output with Schmitt trigger Pad Logic LCD Signal P5REN.x P5DIR.x 0 0 DVSS 1 0 1 1 Direction 0: Input 1: Output 1 P5OUT.x DVSS DVCC Bus Keeper P5SEL.x EN P5IN.x P5.1/COM0 P5.2/COM1 P5.3/COM2 P5.4/COM3 P5.5/R03 P5.6/LCDREF/R13 P5.7/R23 Port P5 (P5.1 to P5.7) pin functions PIN NAME (P5 (P5.X) X) X P5.1/COM0 2 P5.2/COM1 / 2 FUNCTION P5.1 (I/O) COM0 (see Note 2) P5.2 (I/O) COM1 (see Note 2) P5.3/COM2 / 3 P5.3 (I/O) COM2 (see Note 2) P5.4/COM3 / 4 P5.4 (I/O) COM3 (see Note 2) P5.5/R03 / 5 P5.6/LCDREF/R13 / / 6 P5.5 (I/O) R03 (see Note 2) P5.6 (I/O) R13 or LCDREF (see Notes 2 and 3) P5.7/R23 / 7 P5.7 (I/O) R23 (see Note 2) CONTROL BITS / SIGNALS P5DIR.x P5SEL.x I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 NOTES: 1. X: Don’t care 2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 3. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected. 72 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P7 to port P10, input/output with Schmitt trigger Pad Logic Segment Sz LCDS... PyREN.x PyDIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS DVCC Py.x/Sz Bus Keeper PySEL.x EN PyIN.x EN Module X IN D POST OFFICE BOX 655303  DALLAS, TEXAS 75265 73 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P7 (P7.0 to P7.3) pin functions PIN NAME (P7.X) (P7 X) P7.0/S27 / X 0 CONTROL BITS / SIGNALS FUNCTION P7.0 (I/O) N/A P7.1/S26 / 1 2 3 LCDS24 0 0 0 1 0 1 1 0 S27 X X 1 P7.1 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.2 (I/O) N/A P7.3/S24 / P7SEL.x DVSS S26 P7.2/S25 / P7DIR.x I: 0, O: 1 X X 1 I: 0, O: 1 0 0 0 1 0 DVSS 1 1 0 S25 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S24 X X 1 P7.3 (I/O) NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. Port P7 (P7.4 to P7.7) pin functions PIN NAME (P7.X) (P7 X) P7.4/S23 / X 4 CONTROL BITS / SIGNALS FUNCTION P7.4 (I/O) N/A P7.5/S22 / P7.6/S21 / 5 6 7 LCDS20 I: 0, O: 1 0 0 0 1 0 1 1 0 S23 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 P7.5 (I/O) P7.6 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.7 (I/O) N/A X X 1 I: 0, O: 1 0 0 0 1 0 DVSS 1 1 0 S20 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 74 P7SEL.x DVSS S21 P7.7/S20 / P7DIR.x POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P8 (P8.0 to P8.3) pin functions PIN NAME (P8.X) (P8 X) P8.0/S19 P8.1/S18 X 0 1 CONTROL BITS / SIGNALS FUNCTION P8DIR.x P8SEL.x LCDS16 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S19 X X 1 P8.0 (I/O) P8.0 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 P8.2/S17 P8.3/S16 2 3 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S17 X X 1 I: 0, O: 1 0 0 0 1 0 P8.2 (I/O) P8.3 (I/O) N/A DVSS 1 1 0 S16 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. Port P8 (P8.4 to P8.7) pin functions PIN NAME (P8.X) (P8 X) P8.4/S15 P8.5/S14 X 4 5 CONTROL BITS / SIGNALS FUNCTION P8DIR.x P8SEL.x LCDS12 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S15 X X 1 I: 0, O: 1 0 0 0 1 0 P8.4 (I/O) P8.5 (I/O) N/A P8.6/S13 6 DVSS 1 1 0 S14 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P8.6 (I/O) S13 P8.7/S12 7 P8.7 (I/O) N/A X X 1 I: 0, O: 1 0 0 0 1 0 DVSS 1 1 0 S12 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 75 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P9 (P9.0 to P9.3) pin functions PIN NAME (P9.X) (P9 X) P9.0/S11 P9.1/S10 X 0 1 CONTROL BITS / SIGNALS FUNCTION P9DIR.x P9SEL.x LCDS8 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 P9.0 (I/O) P9.1 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 P9.2/S9 P9.3/S8 2 3 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S9 X X 1 I: 0, O: 1 0 0 0 1 0 P9.2 (I/O) P9.3 (I/O) N/A DVSS 1 1 0 S8 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. Port P9 (P9.4 to P9.7) pin functions PIN NAME (P9.X) (P9 X) P9.4/S7 P9.5/S6 X 4 5 CONTROL BITS / SIGNALS FUNCTION P9DIR.x P9SEL.x LCDS4 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S7 X X 1 I: 0, O: 1 0 0 0 1 0 P9.4 (I/O) P9.5 (I/O) N/A P9.6/S5 6 DVSS 1 1 0 S6 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 P9.6 (I/O) S5 P9.7/S4 7 P9.7 (I/O) N/A X 1 0 0 0 1 0 DVSS 1 1 0 S4 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 76 X I: 0, O: 1 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Port P10 (P10.0 to P10.3) pin functions PIN NAME (P10.X) (P10 X) P10.0/S3 P10.1/S2 X 0 1 CONTROL BITS / SIGNALS FUNCTION P10DIR.x P10SEL.x LCDS0 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 P10.0 (I/O) P10.1 (I/O) I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 P10.2/S1 P10.3/S0 2 3 X X 1 I: 0, O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S1 X X 1 I: 0, O: 1 0 0 0 1 0 P10.2 (I/O) P10.3 (I/O) N/A DVSS 1 1 0 S0 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 77 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 JTAG pins (TMS, TCK, TDI/TCLK, TDO/TDI), input/output with Schmitt trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 78 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 G D U S G D U S MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF)) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 27). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS ITDI/TCLK I(TF) Figure 27. Fuse Check Mode Current MSP430F471x3/6/7 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 79 MSP430F471x3, MSP430F471x6, MSP430F471x7 MIXED SIGNAL MICROCONTROLLER SLAS626C -- OCTOBER 2008 -- REVISED MARCH 2011 Data Sheet Revision History LITERATURE NUMBER SUMMARY SLAS626 Product Preview release SLAS626A Production Data release SLAS626B Added MSP430F471x3, MSP430F47126, and MSP430F47127 devices SLAS626C Corrected pin numbers in BSL function table (page 16) Changed limits on td(SVSon) parameter (page 38) NOTE: Page and figure numbers refer to the respective document revision and may differ in other revisions. 80 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) MSP430F47126IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47126 MSP430F47126IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47126 MSP430F47127IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47127 MSP430F47127IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47127 MSP430F47163IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47163 MSP430F47163IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47163 MSP430F47166IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47166 REV # MSP430F47166IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47166 REV # MSP430F47167IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47167 REV # MSP430F47167IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47167 REV # MSP430F47173IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47173 MSP430F47173IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47173 MSP430F47176IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47176 REV # MSP430F47176IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47176 REV # MSP430F47177IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47177 REV # MSP430F47177IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47177 REV # MSP430F47183IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47183 MSP430F47183IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47183 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) MSP430F47186IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47186 REV # MSP430F47186IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47186 REV # MSP430F47187IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47187 REV # MSP430F47187IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47187 REV # MSP430F47193IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47193 MSP430F47193IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47193 MSP430F47196IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47196 REV # MSP430F47196IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47196 REV # MSP430F47197IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47197 REV # MSP430F47197IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F47197 REV # (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F47173IPZR 价格&库存

很抱歉,暂时无法提供与“MSP430F47173IPZR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MSP430F47173IPZR
    •  国内价格
    • 1000+45.43000

    库存:9284