0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F5359IZCAR

MSP430F5359IZCAR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFBGA113

  • 描述:

    IC MCU 16BIT 512KB FLSH 113NFBGA

  • 数据手册
  • 价格&库存
MSP430F5359IZCAR 数据手册
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F6659, MSP430F5659, MSP430F6658, MSP430F5658, MSP430F6459, MSP430F5359, MSP430F6458 MSP430F5358 MSP430F5659,SLAS700E MSP430F5658, MSP430F5359, MSP430F5358 – OCTOBER 2012 – REVISED SEPTEMBER 2020 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers 1 Features • • • • • • • • Low supply voltage range: 3.6 V down to 1.8 V Ultra-low power consumption – Active mode (AM): All system clocks active: 295 µA/MHz at 8 MHz, 3.0 V, flash program execution (typical) – Standby mode (LPM3): Watchdog with crystal, and supply supervisor operational, full RAM retention, fast wakeup: 2.0 µA at 2.2 V, 2.2 µA at 3.0 V (typical) – Shutdown, real-time clock (RTC) mode (LPM3.5): Shutdown mode, active RTC with crystal: 1.1 µA at 3.0 V (typical) – Shutdown mode (LPM4.5): 0.45 µA at 3.0 V (typical) Wake up from standby mode in 3 µs (typical) 16-bit RISC architecture, extended memory, up to 20-MHz system clock Flexible power-management system – Fully integrated LDO with programmable regulated core supply voltage – Supply voltage supervision, monitoring, and brownout Unified clock system – FLL control loop for frequency stabilization – Low-power low-frequency internal clock source (VLO) – Low-frequency trimmed internal reference source (REFO) – 32-kHz crystals (XT1) – High-frequency crystals up to 32 MHz (XT2) Four 16-bit timers with 3, 5, or 7 capture/compare registers Three universal serial communication interfaces (USCIs) • • • • • • • • • • – USCI_A0, USCI_A1, and USCI_A2 each support: • Enhanced UART with automatic baud-rate detection • IrDA encoder and decoder • Synchronous SPI – USCI_B0, USCI_B1, and USCI_B2 each support: • I2C • Synchronous SPI Full-speed universal serial bus (USB) – Integrated USB-PHY – Integrated 3.3-V and 1.8-V USB power system – Integrated USB-PLL – Eight input and eight output endpoints 12-bit analog-to-digital converter (ADC) with internal shared reference, sample-and-hold, and autoscan feature Two 12-bit digital-to-analog converters (DACs) with synchronization Voltage comparator Integrated LCD driver with contrast control for up to 160 segments Hardware multiplier supports 32-bit operations Serial onboard programming, no external programming voltage needed 6-channel internal DMA RTC module with supply voltage backup switch Device Comparison summarizes the available family members 2 Applications • • • • • • Analog and digital sensor systems Digital motor controls Remote controls Thermostats Digital timers Hand-held meters 3 Description The TI MSP family of ultra-low-power microcontrollers consists of several devices that feature different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs (typical). An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 1 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 The MSP430F665x and MSP430F565x series are microcontroller configurations with four 16-bit timers, a highperformance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, a comparator, USB 2.0, and up to 74 I/O pins. The MSP430F645x and MSP430F535x series are microcontroller configurations with an integrated 3.3-V LDO, four 16-bit timers, a high-performance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, a comparator, and up to 74 I/O pins. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. Device Information PART NUMBER(1) PACKAGE BODY SIZE(2) MSP430F6659IPZ LQFP (100) 14 mm × 14 mm MSP430F6659IZCA nFBGA (113) 7 mm × 7 mm Junior™ 7 mm × 7 mm MSP430F6659IZQW(3) (1) (2) (3) 2 MicroStar BGA (113) For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 11. All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a status of Last Time Buy. Visit the Product life cycle page for details on this status. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 4 Functional Block Diagrams Figure 4-1 shows the functional block diagram for the MSP430F6659 and MSP430F6658 MCUs. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System MCLK ACLK SMCLK 512KB 384KB MID Memory Integrity Detection Flash 64KB 32KB RAM +2KB RAM USB Buffer +8B Backup RAM Power Management SYS Watchdog LDO, SVM, SVS, Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability I/O Ports P3, P4 2×8 I/Os Interrupt Capability I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0, USCI1, USCI2 Ax: UART, IrDA, SPI USB Full-speed Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) DMA ADC12_A JTAG, SBW Interface PJ.x TA0 MPY32 Timer_A 5 CC Registers Port PJ TA1, TA2 2 Timer_A each with 3 CC Registers TB0 Timer_B 7 CC Registers RTC_B CRC16 Battery Backup System Comp_B 12 bit 200 ksps 16 channels (12 ext, 4 int) Autoscan 6 Channel DAC12_A REF LCD_B 12 bit 2 channels voltage out Reference 1.5 V, 2.0 V, 2.5 V 160 Segments Functional Block Diagram – MSP430F6659, MSP430F6658 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 3 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Figure 4-1 shows the functional block diagram for the MSP430F6459 and MSP430F6458 MCUs XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System ACLK SMCLK 512KB 384KB Flash MCLK MID Memory Integrity Detection 64KB 32KB RAM +2KB RAM +8B Backup RAM Power Management SYS Watchdog LDO, SVM, SVS, Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability I/O Ports P3, P4 2×8 I/Os Interrupt Capability I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os PU.0 LDOO LDOI PU.1 P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0, USCI1, USCI2 Ax: UART, IrDA, SPI PU Port LDO Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) DMA ADC12_A TA0 JTAG, SBW Interface MPY32 Port PJ Timer_A 5 CC Registers TA1, TA2 2 Timer_A each with 3 CC Registers TB0 Timer_B 7 CC Registers PJ.x RTC_B CRC16 12 bit 200 ksps Comp_B Battery Backup System 16 channels (12 ext, 4 int) Autoscan 6 Channel DAC12_A REF LCD_B 12 bit 2 channels voltage out Reference 1.5 V, 2.0 V, 2.5 V 160 Segments Figure 4-1. Functional Block Diagram – MSP430F6459, MSP430F6458 Figure 4-2 shows the functional block diagram for the MSP430F5659 and MSP430F5658 MCUs. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System MCLK ACLK SMCLK 512KB 384KB Flash MID Memory Integrity Detection 64KB 32KB RAM +2KB RAM USB Buffer +8B Backup RAM Power Management SYS Watchdog LDO, SVM, SVS, Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability I/O Ports P3, P4 2×8 I/Os Interrupt Capability I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0, USCI1, USCI2 Ax: UART, IrDA, SPI USB Full-speed Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) DMA ADC12_A JTAG, SBW Interface TA0 MPY32 Port PJ PJ.x Timer_A 5 CC Registers TA1, TA2 2 Timer_A each with 3 CC Registers TB0 Timer_B 7 CC Registers RTC_B CRC16 Battery Backup System Comp_B 12 bit 200 ksps 16 channels (12 ext, 4 int) Autoscan DAC12_A REF 12 bit 2 channels voltage out Reference 1.5 V, 2.0 V, 2.5 V 6 Channel Figure 4-2. Functional Block Diagram – MSP430F5659, MSP430F5658 4 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Figure 4-3 shows the functional block diagram for the MSP430F5359 and MSP430F5358 MCUs. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System MCLK ACLK SMCLK 512KB 384KB Flash MID Memory Integrity Detection 64KB 32KB RAM +2KB RAM +8B Backup RAM Power Management SYS Watchdog LDO, SVM, SVS, Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability I/O Ports P3, P4 2×8 I/Os Interrupt Capability I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os PU.0 LDOO LDOI PU.1 P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0, USCI1, USCI2 Ax: UART, IrDA, SPI PU Port LDO Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) DMA ADC12_A TA0 JTAG, SBW Interface PJ.x MPY32 Timer_A 5 CC Registers Port PJ TA1, TA2 2 Timer_A each with 3 CC Registers TB0 Timer_B 7 CC Registers RTC_B CRC16 Battery Backup System Comp_B 12 bit 200 ksps 16 channels (12 ext, 4 int) Autoscan DAC12_A REF 12 bit 2 channels voltage out Reference 1.5 V, 2.0 V, 2.5 V 6 Channel Figure 4-3. Functional Block Diagram – MSP430F5359, MSP430F5358 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 5 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Functional Block Diagrams............................................ 3 5 Revision History.............................................................. 7 6 Device Comparison......................................................... 9 6.1 Related Products...................................................... 10 7 Terminal Configuration and Functions........................ 11 7.1 Pin Diagrams.............................................................11 7.2 Signal Descriptions................................................... 16 8 Specifications................................................................ 24 8.1 Absolute Maximum Ratings...................................... 24 8.2 ESD Ratings............................................................. 24 8.3 Recommended Operating Conditions.......................24 8.4 Active Mode Supply Current Into VCC Excluding External Current.......................................................... 26 8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current..........................................26 8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current......................... 28 8.7 Thermal Resistance Characteristics......................... 28 8.8 Schmitt-Trigger Inputs – General-Purpose I/O..........29 8.9 Inputs – Ports P1, P2, P3, and P4............................ 29 8.10 Leakage Current – General-Purpose I/O................ 29 8.11 Outputs – General-Purpose I/O (Full Drive Strength)......................................................................29 8.12 Outputs – General-Purpose I/O (Reduced Drive Strength)............................................................ 30 8.13 Output Frequency – Ports P1, P2, and P3..............30 8.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)........................................ 31 8.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)................................................. 32 8.16 Crystal Oscillator, XT1, Low-Frequency Mode........33 8.17 Crystal Oscillator, XT2............................................ 34 8.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)...........................................................35 8.19 Internal Reference, Low-Frequency Oscillator (REFO)........................................................................ 35 8.20 DCO Frequency...................................................... 36 8.21 PMM, Brownout Reset (BOR).................................37 8.22 PMM, Core Voltage.................................................37 8.23 PMM, SVS High Side..............................................38 8.24 PMM, SVM High Side............................................. 38 8.25 PMM, SVS Low Side...............................................39 8.26 PMM, SVM Low Side.............................................. 39 8.27 Wake-up Times From Low-Power Modes...............39 8.28 Timer_A – Timers TA0, TA1, and TA2.....................40 8.29 Timer_B – Timer TB0..............................................40 8.30 Battery Backup........................................................40 8.31 USCI (UART Mode)................................................ 41 8.32 USCI (SPI Master Mode)........................................ 41 8.33 USCI (SPI Slave Mode).......................................... 43 8.34 USCI (I2C Mode)..................................................... 45 8.35 LCD_B Operating Characteristics...........................46 8.36 LCD_B Electrical Characteristics............................ 47 6 Submit Document Feedback 8.37 12-Bit ADC, Power Supply and Input Range Conditions................................................................... 47 8.38 12-Bit ADC, Timing Parameters..............................48 8.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage.........................................48 8.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage.................................................. 49 8.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage..........................................49 8.42 12-Bit ADC, Temperature Sensor and Built-In VMID ............................................................................ 49 8.43 REF, External Reference........................................ 50 8.44 REF, Built-In Reference.......................................... 51 8.45 12-Bit DAC, Supply Specifications..........................52 8.46 12-Bit DAC, Linearity Specifications....................... 53 8.47 12-Bit DAC, Output Specifications.......................... 54 8.48 12-Bit DAC, Reference Input Specifications........... 55 8.49 12-Bit DAC, Dynamic Specifications.......................55 8.50 12-Bit DAC, Dynamic Specifications (Continued)... 56 8.51 Comparator_B.........................................................57 8.52 Ports PU.0 and PU.1...............................................58 8.53 USB Output Ports DP and DM................................58 8.54 USB Input Ports DP and DM...................................58 8.55 USB-PWR (USB Power System)............................ 59 8.56 USB-PLL (USB Phase Locked Loop)..................... 59 8.57 Flash Memory......................................................... 60 8.58 JTAG and Spy-Bi-Wire Interface.............................60 9 Detailed Description......................................................61 9.1 CPU ......................................................................... 61 9.2 Instruction Set........................................................... 62 9.3 Operating Modes...................................................... 63 9.4 Interrupt Vector Addresses....................................... 64 9.5 Memory Organization................................................66 9.6 Bootloader (BSL)...................................................... 67 9.7 JTAG Operation........................................................ 68 9.8 Flash Memory .......................................................... 68 9.9 Memory Integrity Detection (MID) ............................ 69 9.10 RAM ....................................................................... 69 9.11 Backup RAM .......................................................... 69 9.12 Peripherals..............................................................70 9.13 Input/Output Diagrams............................................95 9.14 Device Descriptors................................................121 10 Device and Documentation Support........................122 10.1 Getting Started and Next Steps............................ 122 10.2 Device Nomenclature............................................122 10.3 Tools and Software............................................... 124 10.4 Documentation Support........................................ 126 10.5 Related Links........................................................ 128 10.6 Community Resources..........................................128 10.7 Trademarks........................................................... 128 10.8 Electrostatic Discharge Caution............................128 10.9 Export Control Notice............................................128 10.10 Glossary..............................................................128 11 Mechanical, Packaging, and Orderable Information.................................................................. 129 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changed from revision D to revision E Changes from September 27, 2018 to September 11, 2020 Page • Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1 • Added nFBGA package (ZCA) information throughout document......................................................................1 • Added note about status change for all orderable part numbers in the ZQW package in Device Information .. 1 • Removed package options that are no longer available (MSP430F6658 and MSP430F6458 in the ZQW package) in Table 6-1, Device Comparison ....................................................................................................... 9 • Removed packge options that are no longer available (MSP430F6658IZQW and MSP430F6458IZQW) from the caption of Figure 7-5, 113-Pin ZQW Package (Top View) – MSP430F6659IZQW, MSP430F6459IZQW, MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW .............................. 11 • Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.57, Flash Memory ......... 60 • Corrected the connection of the P7SEL.x signal in Figure 9-11, Port P7 (P7.4 to P7.7) Diagram .................110 Changes from revision C to revision D Changes from October 22, 2013 to September 26, 2018 Page • Format and organization changes throughout document, including addition of section numbering................... 1 • Added Device Information table..........................................................................................................................1 • Added Section 4 and moved all functional block diagrams to it..........................................................................3 • Added Section 6.1, Related Products ..............................................................................................................10 • Added "Port U is supplied the LDOO rail" to the description of PU.0 and PU.1 in Section 7.2, Signal Descriptions ..................................................................................................................................................... 16 • Added Section 8 and moved all electrical specifications to it........................................................................... 24 • Added typical conditions statements at the beginning of Section 8, Specifications .........................................24 • Added Section 8.2, ESD Ratings .....................................................................................................................24 • Moved Section 8.7, Thermal Resistance Characteristics ................................................................................ 28 • Changed the TYP value of the CL,eff parameter with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF in Section 8.16, Crystal Oscillator, XT1, Low-Frequency Mode .............................................................. 33 • Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.21, PMM, Brownout Reset (BOR) .................................................................................................................................... 37 • Updated notes (1) and (2) and added note (3) in Section 8.27, Wake-up Times From Low-Power Modes and Reset ............................................................................................................................................................... 39 • Corrected typo in the description of the VBAT3 parameter: changed "VBAT3 ≠ VBAT/3" to "VBAT3 ≈ VBAT/3" in Section 8.30, Battery Backup .......................................................................................................................... 40 • Removed ADC12DIV from the formula for the TYP value in the second row of the tCONVERT parameter in Section 8.38, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division..................................... 48 • Added the TCSENSOR parameter in Section 8.42, 12-Bit ADC, Temperature Sensor and Built-In VMID ...........49 • Changed the note that starts "The temperature sensor offset ..." from "...offset can be as much as ±20°C" to "...offset can be significant"...............................................................................................................................49 • Changed DAC12xDAT to DAC12_xDAT in IL(DAC12) Test Conditions in Section 8.47, 12-Bit DAC, Output Specifications ...................................................................................................................................................54 • Removed note from "Ri(VREF+), Ri(VeREF+)" parameter in Section 8.48, 12-Bit DAC, Reference Input Specifications ...................................................................................................................................................55 • Changed from fDAC12_0OUT to fDAC12_1OUT in the first row of the Test Conditions for the "Channel-to-channel crosstalk" parameter in Section 8.50, 12-Bit DAC, Dynamic Specifications (Continued) ................................ 56 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 7 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 • • • • • • • • • • • • • • • Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from fToggle to 1/fToggle in Figure 8-22, Crosstalk Test Conditions ............................................................................................................56 Section 8.51, Comparator_B: Added second row for the tEN_CMP parameter with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs; Removed "CBPWRMD = 10" option in first row of Test Conditions.........................................................................................................................................................57 Added note on RPUR in Section 8.55, USB-PWR (USB Power System) ......................................................... 59 Removed RTC_B from LPM4.5 wake-up options in Section 9.3, Operating Modes ....................................... 63 Throughout document, changed "bootstrap loader" to "bootloader".................................................................67 Added the paragraph that begins "Using the MSP430 RTC_B Module With Battery Backup Supply describes how to..." .......................................................................................................................................................... 72 Corrected spelling of NMIIFG in Table 9-12, System Module Interrupt Vector Registers ................................ 72 Corrected register names (added "USB" prefix as required) in Table 9-53, USB Control Registers ............... 80 Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 9-10, Port P7 (P7.3) Diagram 109 Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows in Table 9-63, Port P7 (P7.2 and P7.3) Pin Functions ....................................................................................................................................................... 109 Updated Table 9-67, Port PU.0, PU.1 Functions ............................................................................................116 Added Section 9.13.14, Port PU.0, PU.1 Ports (F645x, F535x) .................................................................... 118 Added Section 10, Device and Documentation Support, and moved Development Tools Support, Device and Development Tool Nomenclature, Trademarks, and Electrostatic Discharge Caution sections to it.............. 122 Replaced former section Development Tools Support with Section 10.3, Tools and Software ..................... 124 Added Section 11, Mechanical, Packaging, and Orderable Information ........................................................129 The following table lists changes to this data sheet from the original release to revision C. REVISION COMMENTS Added Section 2 Removed Ordering Information table—refer to the Package Option Addendum Table 9-12, Corrected Interrupt Event names for PMMSWBOR (BOR) and PMMSWPOR (POR) SLAS700C October 2013 Table 9-20, Added PM5CTL0 register Section 8.3, Added note to CVCORE Section 8.8, Added note to RPull Section 8.54, Corrected VIL and VIH limits Ordering Information, Corrected package type for PZ package (LQFP) Changed functional block diagrams SLAS700B June 2013 Table 7-1, Added note to the RST/NMI/SBWTDIO pin Added Development Tools Support and Device and Development Tool Nomenclature Section 8.3, Fixed typo in fSYSTEM conditions Section 8.20, Added note (1) 8 SLAS700A December 2012 PRODUCTION DATA release SLAS700 October 2012 PRODUCT PREVIEW release Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 6 Device Comparison Table 6-1 summarizes the available family members. Table 6-1. Device Comparison FLASH (KB)(2) SRAM (KB)(5) Timer_A(3) Timer_B(4) USCI_: UART, IrDA, SPI USCI_:B: SPI, I2C ADC12_A (channels) DAC12_A (channels) Comp_B (channels) I/O USB LCD PACKAGE MSP430F6659 512 64 + 2 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 Yes Yes 100 PZ, 113 ZCA, 113 ZQW MSP430F6658 384 32 + 2 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 Yes Yes 100 PZ DEVICE(1) MSP430F6459 512 66 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 No Yes 100 PZ, 113 ZCA, 113 ZQW MSP430F6458 384 34 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 No Yes 100 PZ MSP430F5659 512 64 + 2 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 Yes No 100 PZ, 113 ZCA, 113 ZQW MSP430F5658 384 32 + 2 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 Yes No 100 PZ, 113 ZCA, 113 ZQW MSP430F5359 512 66 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 No No 100 PZ, 113 ZCA, 113 ZQW MSP430F5358 384 34 5, 3, 3 7 3 3 12 ext, 4 int 2 12 74 No No 100 PZ, 113 ZCA, 113 ZQW (1) (2) (3) (4) (5) For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 9 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 6.1 Related Products For information about other devices in this family of products or related products, see the following links. 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous future Products for MSP430 ultra-low-power sensing & measurement MCUs One platform. One ecosystem. Endless possibilities. Companion products for MSP430F6659 Review products that are frequently purchased or used with this product. TI reference designs Find reference designs leveraging the best in TI technology to solve your system-level challenges 10 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 7 Terminal Configuration and Functions 7.1 Pin Diagrams 77 76 78 80 79 82 81 83 84 86 85 87 91 90 89 88 92 94 93 95 98 97 96 3 4 73 72 71 5 6 7 70 69 68 8 9 10 67 66 65 11 12 13 64 MSP430F6659 MSP430F6658 14 63 62 DVSS1 VCORE P9.7/S0 P9.6/UCB2SOMI/UCB2SCL/S1 P9.5/UCB2SIMO/UCB2SDA/S2 P9.4/UCB2CLK/UCA2STE/S3 P9.3/UCA2RXD/UCA2SOMI/S4 P9.2/UCA2TXD/UCA2SIMO/S5 P9.1/UCB2STE/UCA2CLK/S6 P9.0/S7 P8.7/S8 P8.6/UCB1SOMI/UCB1SCL/S9 P8.5/UCB1SIMO/UCB1SDA/S10 DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE/S11 P8.3/UCA1RXD/UCA1SOMI/S12 P8.2/UCA1TXD/UCA1SIMO/S13 P8.1/UCB1STE/UCA1CLK/S14 P8.0/TB0CLK/S15 P4.7/TB0OUTH/SVMOUT/S16 P4.6/TB0.6/S17 P4.5/TB0.5/S18 P4.4/TB0.4/S19 P4.3/TB0.3/S20 P4.2/TB0.2/S21 P4.1/TB0.1/S22 50 48 49 47 45 46 44 52 51 42 43 53 24 25 41 23 38 55 54 39 40 56 21 22 36 37 20 35 58 57 33 34 59 18 19 32 17 30 31 61 60 28 29 15 16 26 XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6/R03 P2.7/P2MAP7/LCDREF/R13 DVCC1 75 74 2 P5.2/R23 LCDCAP/R33 COM0 P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 P4.0/TB0.0/S23 XIN 1 27 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 100 99 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6659 and MSP430F6658 devices. Figure 7-1. 100-Pin PZ Package (Top View) – MSP430F6659IPZ, MSP430F6658IPZ Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 11 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 77 76 78 80 79 82 81 83 84 86 85 87 91 90 89 88 92 94 93 95 98 97 96 1 75 74 2 3 4 73 72 71 5 6 7 70 69 68 8 9 10 67 66 65 11 12 13 64 MSP430F6459 MSP430F6458 14 63 62 50 48 49 47 45 46 44 P9.7/S0 P9.6/UCB2SOMI/UCB2SCL/S1 P9.5/UCB2SIMO/UCB2SDA/S2 P9.4/UCB2CLK/UCA2STE/S3 P9.3/UCA2RXD/UCA2SOMI/S4 P9.2/UCA2TXD/UCA2SIMO/S5 P9.1/UCB2STE/UCA2CLK/S6 P9.0/S7 P8.7/S8 P8.6/UCB1SOMI/UCB1SCL/S9 P8.5/UCB1SIMO/UCB1SDA/S10 DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE/S11 P8.3/UCA1RXD/UCA1SOMI/S12 P8.2/UCA1TXD/UCA1SIMO/S13 P8.1/UCB1STE/UCA1CLK/S14 P8.0/TB0CLK/S15 P4.7/TB0OUTH/SVMOUT/S16 P4.6/TB0.6/S17 P4.5/TB0.5/S18 P4.4/TB0.4/S19 P4.3/TB0.3/S20 P4.2/TB0.2/S21 P4.1/TB0.1/S22 P5.2/R23 LCDCAP/R33 COM0 P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 P4.0/TB0.0/S23 DVSS1 VCORE 42 43 52 51 41 53 24 25 38 23 39 40 55 54 36 37 56 21 22 35 20 33 34 58 57 32 59 18 19 30 31 17 28 29 61 60 26 15 16 27 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6/R03 P2.7/P2MAP7/LCDREF/R13 DVCC1 100 99 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 NC LDOO LDOI PU.1 NC PU.0 VSSU Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6459 and MSP430F6458 devices. Figure 7-2. 100-Pin PZ Package (Top View) – MSP430F6459IPZ, MSP430F6458IPZ 12 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 77 76 78 80 79 82 81 83 84 86 85 87 91 90 89 88 92 94 93 95 98 97 96 1 75 74 2 3 4 73 72 71 5 6 7 70 69 68 8 9 10 67 66 65 11 12 13 64 MSP430F5659 MSP430F5658 14 63 62 50 48 49 47 45 46 44 P9.7 P9.6/UCB2SOMI/UCB2SCL P9.5/UCB2SIMO/UCB2SDA P9.4/UCB2CLK/UCA2STE P9.3/UCA2RXD/UCA2SOMI P9.2/UCA2TXD/UCA2SIMO P9.1/UCB2STE/UCA2CLK P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE P8.3/UCA1RXD/UCA1SOMI P8.2/UCA1TXD/UCA1SIMO P8.1/UCB1STE/UCA1CLK P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT P4.6/TB0.6 P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P5.2 DVSS DNC P5.3 P5.4 P5.5 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 P4.0/TB0.0 DVSS1 VCORE 42 43 52 51 41 53 24 25 38 23 39 40 55 54 36 37 56 21 22 35 20 33 34 58 57 32 59 18 19 30 31 17 28 29 61 60 26 15 16 27 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 DVCC1 100 99 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU Figure 7-3 shows the pinout of the 100-pin PZ package for the MSP430F5659 and MSP430F5658 devices. Figure 7-3. 100-Pin PZ Package (Top View) – MSP430F5659IPZ, MSP430F5658IPZ Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 13 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 77 76 78 80 79 82 81 83 84 86 85 87 91 90 89 88 92 94 93 95 98 97 96 1 75 74 2 3 4 73 72 71 5 6 7 70 69 68 8 9 10 67 66 65 11 12 13 64 MSP430F5359 MSP430F5358 14 63 62 50 48 49 47 45 46 44 P9.7 P9.6/UCB2SOMI/UCB2SCL P9.5/UCB2SIMO/UCB2SDA P9.4/UCB2CLK/UCA2STE P9.3/UCA2RXD/UCA2SOMI P9.2/UCA2TXD/UCA2SIMO P9.1/UCB2STE/UCA2CLK P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE P8.3/UCA1RXD/UCA1SOMI P8.2/UCA1TXD/UCA1SIMO P8.1/UCB1STE/UCA1CLK P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT P4.6/TB0.6 P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P5.2 DVSS DNC P5.3 P5.4 P5.5 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 P4.0/TB0.0 DVSS1 VCORE 42 43 52 51 41 53 24 25 38 23 39 40 55 54 36 37 56 21 22 35 20 33 34 58 57 32 59 18 19 30 31 17 28 29 61 60 26 15 16 27 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 DVCC1 100 99 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 NC LDOO LDOI PU.1 NC PU.0 VSSU Figure 7-4 shows the pinout of the 100-pin PZ package for the MSP430F5359 and MSP430F5358 devices. Figure 7-4. 100-Pin PZ Package (Top View) – MSP430F5359IPZ, MSP430F5358IPZ 14 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Figure 7-4 shows the pinout of the 113-pin ZCA or ZQW package. See Section 7.2 for the pin assignments. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Figure 7-5. 113-Pin ZCA or ZQW Package (Top View) – MSP430F6659IZCA, MSP430F6459IZCA, MSP430F5659IZCA, MSP430F5658IZCA, MSP430F5359IZCA, MSP430F5358IZCA, MSP430F6659IZQW, MSP430F6459IZQW, MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 15 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 7.2 Signal Descriptions Table 7-1 describes the signals for all device variants and package options. Table 7-1. Signal Descriptions TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O P6.4/CB4/A4 1 A1 I/O Comparator_B input CB4 Analog input A4 for ADC General-purpose digital I/O P6.5/CB5/A5 2 B2 I/O Comparator_B input CB5 Analog input A5 for ADC General-purpose digital I/O P6.6/CB6/A6/DAC0 3 B1 I/O Comparator_B input CB6 Analog input A6 for ADC DAC12.0 output General-purpose digital I/O P6.7/CB7/A7/DAC1 4 C2 I/O Comparator_B input CB7 Analog input A7 for ADC DAC12.1 output General-purpose digital I/O P7.4/CB8/A12 5 C1 I/O Comparator_B input CB8 Analog input A12 for ADC General-purpose digital I/O P7.5/CB9/A13 6 C3 I/O Comparator_B input CB9 Analog input A13 for ADC General-purpose digital I/O P7.6/CB10/A14/DAC0 7 D2 I/O Comparator_B input CB10 Analog input A14 for ADC DAC12.0 output General-purpose digital I/O P7.7/CB11/A15/DAC1 8 D1 I/O Comparator_B input CB11 Analog input A15 for ADC DAC12.1 output General-purpose digital I/O P5.0/VREF+/VeREF+ 9 D4 I/O Output of reference voltage to the ADC Input for an external reference voltage to the ADC General-purpose digital I/O P5.1/VREF-/VeREF- 10 E4 AVCC1 11 E1, E2 Analog power supply AVSS1 12 F2 Analog ground supply XIN 13 F1 16 Submit Document Feedback I/O I Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage Input terminal for crystal oscillator XT1 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME I/O(1) PZ ZCA, ZQW XOUT 14 G1 AVSS2 15 G2 O DESCRIPTION Output terminal of crystal oscillator XT1 Analog ground supply General-purpose digital I/O P5.6/ADC12CLK/DMAE0 16 H1 I/O Conversion clock output ADC DMA external trigger input P2.0/P2MAP0 17 G4 I/O P2.1/P2MAP1 18 H2 I/O P2.2/P2MAP2 19 J1 I/O P2.3/P2MAP3 20 H4 I/O P2.4/P2MAP4 21 J2 I/O P2.5/P2MAP5 22 K1 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave in, master out; USCI_B0 I2C data General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave out, master in; USCI_B0 I2C clock General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in, master out General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART receive data; USCI_A0 slave out, master in General-purpose digital I/O with port interrupt and mappable secondary function P2.6/P2MAP6/R03 23 K2 I/O Default mapping: no secondary function Input/output port of lowest analog LCD voltage (V5) (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: no secondary function P2.7/P2MAP7/LCDREF/R13 24 L2 I/O External reference voltage input for regulated LCD voltage (not available on F5659, F5658, F5359, F5358 devices) Input/output port of third most positive analog LCD voltage (V3 or V4) (not available on F5659, F5658, F5359, F5358 devices) DVCC1 25 L1 Digital power supply DVSS1 26 M1 Digital ground supply VCORE(2) 27 M2 Regulated core power supply (internal use only, no external current loading) P5.2/R23 28 L3 I/O LCDCAP/R33 29 M3 I/O DVSS 29 M3 COM0 30 J4 DNC 30 J4 General-purpose digital I/O Input/output port of second most positive analog LCD voltage (V2) (not available on F5659, F5658, F5359, F5358 devices) LCD capacitor connection (not available on F5659, F5658, F5359, F5358 devices) Copyright © 2020 Texas Instruments Incorporated Input/output port of most positive analog LCD voltage (V1) (not available on F5659, F5658, F5359, F5358 devices) Digital ground supply (not available on F6659, F6658, F6459, and F6458 devices) O LCD common output COM0 for LCD backplane (not available on F5659, F5658, F5359, F5358 devices) Do not connect. TI strongly recommends leaving this terminal open (not available on F6659, F6658, F6459, and F6458 devices) Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 17 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O P5.3/COM1/S42 31 L4 I/O LCD common output COM1 for LCD backplane (not available on F5659, F5658, F5359, F5358 devices) LCD segment output S42 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P5.4/COM2/S41 32 M4 I/O LCD common output COM2 for LCD backplane (not available on F5659, F5658, F5359, F5358 devices) LCD segment output S41 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P5.5/COM3/S40 33 J5 I/O LCD common output COM3 for LCD backplane (not available on F5659, F5658, F5359, F5358 devices) LCD segment output S40 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.0/TA0CLK/ACLK/S39 34 L5 I/O Timer TA0 clock signal TACLK input ACLK output (divided by 1, 2, 4, 8, 16, or 32) LCD segment output S39 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.1/TA0.0/S38 35 M5 I/O Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output BSL transmit output LCD segment output S38 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.2/TA0.1/S37 36 J6 I/O Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output BSL receive input LCD segment output S37 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.3/TA0.2/S36 37 H6 I/O Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output S36 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.4/TA0.3/S35 38 M6 I/O Timer TA0 CCR3 capture: CCI3A input compare: Out3 output LCD segment output S35 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.5/TA0.4/S34 39 L6 I/O Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output LCD segment output S34 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.6/TA0.1/S33 40 J7 I/O Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output LCD segment output S33 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P1.7/TA0.2/S32 41 M7 I/O Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output LCD segment output S32 (not available on F5659, F5658, F5359, F5358 devices) 18 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O with port interrupt P3.0/TA1CLK/CBOUT/S31 42 L7 I/O Timer TA1 clock input Comparator_B output LCD segment output S31 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.1/TA1.0/S30 43 H7 I/O Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output LCD segment output S30 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.2/TA1.1/S29 44 M8 I/O Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output LCD segment output S29 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.3/TA1.2/S28 45 L8 I/O Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output LCD segment output S28 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.4/TA2CLK/SMCLK/S27 46 J8 I/O Timer TA2 clock input SMCLK output LCD segment output S27 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.5/TA2.0/S26 47 M9 I/O Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output LCD segment output S26 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.6/TA2.1/S25 48 L9 I/O Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output LCD segment output S25 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P3.7/TA2.2/S24 49 M10 I/O Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output LCD segment output S24 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.0/TB0.0/S23 50 J9 I/O Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output LCD segment output S23 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.1/TB0.1/S22 51 M11 I/O Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output LCD segment output S22 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.2/TB0.2/S21 52 L10 I/O Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output LCD segment output S21 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.3/TB0.3/S20 53 M12 I/O Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output LCD segment output S20 (not available on F5659, F5658, F5359, F5358 devices) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 19 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O with port interrupt P4.4/TB0.4/S19 54 L12 I/O Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output LCD segment output S19 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.5/TB0.5/S18 55 L11 I/O Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output LCD segment output S18 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.6/TB0.6/S17 56 K11 I/O Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output LCD segment output S17 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O with port interrupt P4.7/TB0OUTH/SVMOUT/S16 57 K12 I/O Timer TB0: Switch all PWM outputs high impedance SVM output LCD segment output S16 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P8.0/TB0CLK/S15 58 J11 I/O Timer TB0 clock input LCD segment output S15 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P8.1/UCB1STE/UCA1CLK/S14 59 J12 I/O USCI_B1 SPI slave transmit enable USCI_A1 clock input/output LCD segment output S14 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P8.2/UCA1TXD/UCA1SIMO/S13 60 H11 I/O USCI_A1 UART transmit data USCI_A1 SPI slave in, master out LCD segment output S13 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P8.3/UCA1RXD/UCA1SOMI/S12 61 H12 I/O USCI_A1 UART receive data USCI_A1 SPI slave out, master in LCD segment output S12 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P8.4/UCB1CLK/UCA1STE/S11 62 G11 I/O USCI_B1 clock input/output USCI_A1 SPI slave transmit enable LCD segment output S11 (not available on F5659, F5658, F5359, F5358 devices) DVSS2 63 G12 Digital ground supply DVCC2 64 F12 Digital power supply General-purpose digital I/O P8.5/UCB1SIMO/UCB1SDA/S10 65 F11 I/O USCI_B1 SPI slave in, master out USCI_B1 I2C data LCD segment output S10 (not available on F5659, F5658, F5359, F5358 devices) 20 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O P8.6/UCB1SOMI/UCB1SCL/S9 66 G9 I/O USCI_B1 SPI slave out, master in USCI_B1 I2C clock LCD segment output S9 (not available on F5659, F5658, F5359, F5358 devices) P8.7/S8 67 E12 I/O P9.0/S7 68 E11 I/O General-purpose digital I/O LCD segment output S8 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O LCD segment output S7 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.1/UCB2STE/UCA2CLK/S6 69 F9 I/O USCI_B2 SPI slave transmit enable USCI_A2 clock input/output LCD segment output S6 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.2/UCA2TXD/UCA2SIMO/S5 70 D12 I/O USCI_A2 UART transmit data USCI_A2 SPI slave in, master out LCD segment output S5 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.3/UCA2RXD/UCA2SOMI/S4 71 D11 I/O USCI_A2 UART receive data USCI_A2 SPI slave out, master in LCD segment output S4 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.4/UCB2CLK/UCA2STE/S3 72 E9 I/O USCI_B2 clock input/output USCI_A2 SPI slave transmit enable LCD segment output S3 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.5/UCB2SIMO/UCB2SDA/S2 73 C12 I/O USCI_B2 SPI slave in, master out USCI_B2 I2C data LCD segment output S2 (not available on F5659, F5658, F5359, F5358 devices) General-purpose digital I/O P9.6/UCB2SOMI/UCB2SCL/S1 74 C11 I/O USCI_B2 SPI slave out, master in USCI_B2 I2C clock LCD segment output S1 (not available on F5659, F5658, F5359, F5358 devices) P9.7/S0 75 D9 VSSU 76 B11, B12 PU.0/DP 77 A12 I/O General-purpose digital I/O LCD segment output S0 (not available on F5659, F5658, F5359, F5358 devices) USB PHY or PU ground supply I/O General-purpose digital I/O – controlled by USB or PU control register (Port U is supplied the LDOO rail) USB data terminal DP (not available on F6459, F6458, F5359, F5358 devices) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 21 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ ZCA, ZQW PUR 78 B10 NC 78 B10 PU.1/DM 79 A11 I/O(1) DESCRIPTION I/O USB pullup resistor pin (open drain) (not available on F6459, F6458, F5359, F5358 devices) Not connected (not available on F6659, F6658, F5659, F5658 devices) I/O General-purpose digital I/O – controlled by USB or PU control register (Port U is supplied the LDOO rail) USB data terminal DM (not available on F6459, F6458, F5359, F5358 devices) VBUS 80 A10 USB LDO input (connect to USB power source) (not available on F6459, F6458, F5359, F5358 devices) LDOI 80 A10 LDO input (not available on F6659, F6658, F5659, F5658 devices) VUSB 81 A9 USB LDO output (not available on F6459, F6458, F5359, F5358 devices) LDOO 81 A9 LDO output (not available on F6659, F6658, F5659, F5658 devices) V18 82 B9 USB regulated power (internal use only, no external current loading) (not available on F6459, F6458, F5359, F5358 devices) NC 82 B9 Not connected (not available on F6659, F6658, F5659, F5658 devices) AVSS3 83 A8 Analog ground supply P7.2/XT2IN 84 B8 I/O P7.3/XT2OUT 85 B7 I/O VBAK 86 A7 Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see CBAK in Section 8.3. VBAT 87 D8 Backup supply voltage. If backup voltage is not supplied, connect to DVCC externally. P5.7/RTCCLK 88 D7 DVCC3 89 A6 Digital power supply DVSS3 90 A5 Digital ground supply TEST/SBWTCK 91 B6 I PJ.0/TDO 92 B5 I/O PJ.1/TDI/TCLK 93 A4 I/O PJ.2/TMS 94 E7 I/O PJ.3/TCK 95 D6 I/O I/O General-purpose digital I/O Input terminal for crystal oscillator XT2 General-purpose digital I/O Output terminal of crystal oscillator XT2 General-purpose digital I/O RTCCLK output Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock General-purpose digital I/O Test data output port General-purpose digital I/O Test data input or test clock input General-purpose digital I/O Test mode select General-purpose digital I/O Test clock Reset input active low(3) RST/NMI/SBWTDIO 96 A3 I/O Nonmaskable interrupt input Spy-Bi-Wire data input/output 22 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 7-1. Signal Descriptions (continued) TERMINAL NO. NAME PZ I/O(1) DESCRIPTION ZCA, ZQW General-purpose digital I/O P6.0/CB0/A0 97 B4 I/O Comparator_B input CB0 Analog input A0 for ADC General-purpose digital I/O P6.1/CB1/A1 98 B3 I/O Comparator_B input CB1 Analog input A1 for ADC General-purpose digital I/O P6.2/CB2/A2 99 A2 I/O Comparator_B input CB2 Analog input A2 for ADC General-purpose digital I/O P6.3/CB3/A3 100 D5 I/O Comparator_B input CB3 Analog input A3 for ADC Reserved (1) (2) (3) N/A E5, E6, E8, F4, F5, F8, G5, G8, H5, H8, H9 Reserved BGA package balls. TI recommends connecting to ground (DVSS, AVSS). I = input, O = output, N/A = not available on this package offering VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. When this pin is configured as reset, the internal pullup resistor is enabled by default. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 23 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8 Specifications All graphs in this section are for typical conditions, unless otherwise noted. Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted. 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT Voltage applied at VCC to VSS –0.3 4.1 V Voltage applied to any pin (excluding VCORE, VBUS, V18)(2) –0.3 VCC + 0.3 V ±2 mA –55 150 °C 95 °C Diode current at any device pin Storage temperature, Tstg (3) Maximum junction temperature, TJ (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 8.3 Recommended Operating Conditions MIN PMMCOREVx = 0 Supply voltage during program execution and flash programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = DVCC = VCC)(1) (2) VCC Supply voltage during USB operation, USB PLL disabled, USB_EN = 1, UPLLEN = 0 VCC,USB Supply voltage during USB operation, USB PLL enabled(6), USB_EN = 1, UPLLEN = 1 NOM 1.8 MAX PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 PMMCOREVx = 2 2.2 3.6 PMMCOREVx = 2, 3 2.4 VSS Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS) VBAT,RTC Backup-supply voltage with RTC operational UNIT 3.6 V V 3.6 0 V TA = 0°C to 85°C 1.55 3.6 TA = –40°C to 85°C 1.70 3.6 V VBAT,MEM Backup-supply voltage with backup memory retained. TA = –40°C to 85°C 1.20 3.6 V TA Operating free-air temperature I version –40 85 °C TJ Operating junction temperature I version –40 CBAK Capacitance at pin VBAK CVCORE Capacitor at VCORE(3) 24 Submit Document Feedback 1 4.7 470 85 °C 10 nF nF Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 MIN CDVCC/ CVCORE fSYSTEM Capacitor ratio of DVCC to VCORE Processor frequency (maximum MCLK frequency)(4) (5) (see Figure 8-1) fSYSTEM_USB Minimum processor frequency for USB operation Wait state cycles during USB operation (2) (3) (4) (5) (6) MAX UNIT 10 USB_wait (1) NOM PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREVx = 1, 2 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 16.0 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 20.0 1.5 MHz MHz 16 cycles TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 8.23 threshold parameters for the exact values and further details. A capacitor tolerance of ±20% or better is required. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation. 25 System Frequency - MHz 20 3 16 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V NOTE: The numbers within the fields denote the supported PMMCOREVx settings. Figure 8-1. Frequency vs Supply Voltage Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 25 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.4 Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3) PARAMETER IAM, Flash IAM, RAM (1) (2) (3) EXECUTION MEMORY Flash RAM FREQUENCY (fDCO = fMCLK = fSMCLK) VCC 3V 3V PMMCOREVx 1 MHz 8 MHz 12 MHz TYP MAX TYP MAX 0 0.36 0.45 2.4 2.7 1 0.41 2 20 MHz TYP MAX 2.7 4.0 4.4 0.46 2.9 4.3 3 0.51 3.1 4.5 0 0.18 1 0.20 1.2 1.7 2 0.22 1.3 2.0 3 0.23 1.4 2.2 0.23 1.0 TYP UNIT MAX mA 7.4 1.3 1.9 mA 3.6 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0). fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. 8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) PARAMETER ILPM0,1MHz Low-power mode 0(3) (9) ILPM2 Low-power mode 2(4) (9) VCC PMMCOREVx 2.2 V 0 3V TYP 69 73 95 3 79 83 2.2 V 0 6.1 3V 3 0 3V ILPM3,VLO, WDT Low-power mode 4(7) (9) ILPM4 ILPM3.5,RTC, VCC 26 Low-power mode 3, VLO mode, Watchdog enabled(6) (9) Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DVCC (10) Submit Document Feedback 3V 3V 3V MAX 60°C MAX Low-power mode 3, crystal mode(5) (9) TYP 25°C TYP 2.2 V ILPM3,XT1LF –40°C 85°C MAX TYP MAX 79 85 125 120 87 96 155 6.7 9.0 8.0 13 32 6.5 7.1 9.5 8.5 14 34 1.5 2.0 3.3 3.3 8.2 27 1 1.7 2.2 3.6 8.7 2 1.9 2.4 3.8 8.9 0 1.8 2.2 3.6 8.6 1 1.9 2.4 3.8 9.0 2 2.1 2.6 4.0 9.1 3 2.1 2.6 4.2 4.0 9.1 29 2.7 26 3.5 28 0 1.0 1.3 2.7 7.4 1 1.1 1.5 2.8 7.7 2 1.1 1.6 2.9 7.8 3 1.1 1.6 3.2 2.9 7.8 30 2.5 26 0 0.9 1.3 2.5 6.8 1.0 1.3 2.6 7.0 2 1.0 1.4 2.7 7.2 3 1.0 1.4 2.7 7.2 27 0.75 1.8 0.5 µA µA µA µA 1 3.1 UNIT µA µA Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) PARAMETER Low-power mode 3.5 ILPM3.5,RTC, (LPM3.5) current with active RTC into backup VBAT supply pin VBAT(11) ILPM3.5,RTC, TOT ILPM4.5 VCC PMMCOREVx –40°C TYP 3V MAX 25°C TYP 60°C MAX TYP 3V 1.0 1.1 Low-power mode 4.5(8) 3V 0.4 0.45 0.6 UNIT TYP MAX 0.75 1.0 µA 1.2 1.5 2.8 µA 0.5 0.76 1.8 µA 0.6 Total low-power mode 3.5 (LPM3.5) current with active RTC(12) 85°C MAX (1) (2) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz USB disabled (VUSBEN = 0, SLDOEN = 0). (4) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting = 1-MHz operation, DCO bias generator enabled. USB disabled (VUSBEN = 0, SLDOEN = 0) (5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0) (6) Current for watchdog timer clocked by VLO included. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0) (7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0) (8) Internal regulator disabled. No data retention. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled (SVSH, SVMH). RAM retention enabled. (10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active (11) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK (12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 27 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx –40°C TYP ILPM3 LCD, int. bias ILPM3 LCD,CP (1) (2) (3) Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled(1) (2) Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump enabled(1) (3) 3V 2.2 V 3V MAX 25°C 60°C 85°C TYP MAX TYP 0 2.7 3.3 4.8 4.7 1 2.9 3.5 5.0 9.9 2 3.0 3.7 5.2 10.2 3 3.1 3.7 5.2 10.2 0 3.6 1 3.7 2 4.0 0 3.5 1 3.7 2 3.8 3 3.9 5.3 MAX UNIT TYP MAX 9.5 28 µA 30 µA Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and high-side monitor (SVMH) disabled. RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load. 8.7 Thermal Resistance Characteristics THERMAL METRIC θJA Junction-to-ambient thermal resistance, still air(1) θJC(TOP) Junction-to-case (top) thermal resistance(2) θJB Junction-to-board thermal resistance(3) (1) (2) (3) 28 PACKAGE VALUE QFP (PZ) 122 BGA (ZQW) 108 QFP (PZ) 83 BGA (ZQW) 72 QFP (PZ) 98 BGA (ZQW) 76 UNIT °C/W °C/W °C/W The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.8 Schmitt-Trigger Inputs – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER(1) TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor(2) For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) (2) VCC MIN TYP 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.8 3V 0.4 1.0 20 35 MAX 50 5 UNIT V V V kΩ pF The same parametrics apply to the clock input pin when the crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). Also applies to RST pin when pullup or pulldown resistor is enabled. 8.9 Inputs – Ports P1, P2, P3, and P4 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER(1) External interrupt timing(2) t(int) (1) (2) TEST CONDITIONS VCC Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag MIN 2.2 V, 3 V MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). 8.10 Leakage Current – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) TEST CONDITIONS High-impedance leakage current See VCC (1) (2) MIN 1.8 V, 3 V MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup or pulldown resistor is disabled. 8.11 Outputs – General-Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 VOH High-level output voltage mA(1) I(OHmax) = –10 mA(2) I(OHmax) = –5 mA(1) I(OHmax) = –15 mA(2) I(OLmax) = 3 VOL Low-level output voltage mA(1) I(OLmax) = 10 mA(2) I(OLmax) = 5 mA(1) I(OLmax) = 15 mA(2) (1) (2) VCC 1.8 V 3V 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 29 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.12 Outputs – General-Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3) PARAMETER TEST CONDITIONS I(OHmax) = –1 VOH High-level output voltage mA(1) 1.8 V I(OHmax) = –3 mA(2) I(OHmax) = –2 mA(1) 3V I(OHmax) = –6 mA(2) I(OLmax) = 1 VOL Low-level output voltage mA(1) (2) (3) MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC 1.8 V I(OLmax) = 3 mA(2) I(OLmax) = 2 mA(1) 3V I(OLmax) = 6 mA(2) (1) VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Selecting reduced drive strength may reduce EMI. 8.13 Output Frequency – Ports P1, P2, and P3 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y fPort_CLK (1) (2) (3) 30 TEST CONDITIONS Port output frequency (with load) P3.4/TA2CLK/SMCLK/S27, CL = 20 pF, RL = 1 kΩ (1) or 3.2 kΩ(2) (3) Clock output frequency P1.0/TA0CLK/ACLK/S39, P3.4/TA2CLK/SMCLK/S27, P2.0/P2MAP0 (P2MAP0 = PM_MCLK), CL = 20 pF(3) MIN MAX VCC = 1.8 V, PMMCOREVx = 0 8 VCC = 3 V, PMMCOREVx = 3 20 VCC = 1.8 V, PMMCOREVx = 0 8 VCC = 3 V, PMMCOREVx = 3 20 UNIT MHz MHz Full drive strength of port: A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the divider. Reduced drive strength of port: A resistive divider with two 1.6-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 8.0 VCC = 3.0 V P3.2 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 25.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 7.0 4.0 3.0 2.0 1.0 1.5 2.0 0.0 VCC = 3.0 V P3.2 IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA 1.0 Figure 8-3. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −5.0 −10.0 −25.0 0.0 0.5 VOL – Low-Level Output Voltage – V Figure 8-2. Typical Low-Level Output Current vs Low-Level Output Voltage −20.0 TA = 85°C 5.0 VOL – Low-Level Output Voltage – V −15.0 TA = 25°C 6.0 0.0 0.0 3.5 VCC = 1.8 V P3.2 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH – High-Level Output Voltage – V Figure 8-4. Typical High-Level Output Current vs High-Level Output Voltage Copyright © 2020 Texas Instruments Incorporated −1.0 VCC = 1.8 V P3.2 −2.0 −3.0 −4.0 −5.0 TA = 85°C −6.0 TA = 25°C −7.0 −8.0 0.0 0.5 1.0 1.5 VOH – High-Level Output Voltage – V 2.0 Figure 8-5. Typical High-Level Output Current vs High-Level Output Voltage Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 31 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 55.0 24 VCC = 3.0 V P3.2 TA = 25°C IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 60.0 50.0 TA = 85°C 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 16 8 4 IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA 1.5 2.0 0 VCC = 3.0 V P3.2 −10.0 −15.0 −20.0 −25.0 −30.0 −35.0 −40.0 −45.0 TA = 85°C −55.0 VCC = 1.8 V P3.2 −4 −8 −12 TA = 85°C −16 TA = 25°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH – High-Level Output Voltage – V Figure 8-8. Typical High-Level Output Current vs High-Level Output Voltage 32 1.0 Figure 8-7. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −60.0 0.0 0.5 VOL – Low-Level Output Voltage – V Figure 8-6. Typical Low-Level Output Current vs Low-Level Output Voltage −50.0 TA = 85°C 12 VOL – Low-Level Output Voltage – V −5.0 TA = 25°C 20 0 0.0 3.5 VCC = 1.8 V P3.2 Submit Document Feedback −20 0.0 0.5 1.0 1.5 2.0 VOH – High-Level Output Voltage – V Figure 8-9. Typical High-Level Output Current vs High-Level Output Voltage Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.16 Crystal Oscillator, XT1, Low-Frequency Mode over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER(5) ΔIDVCC,LF TEST CONDITIONS fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C Differential XT1 oscillator crystal current consumption fOSC = 32768 Hz, XTS = 0, from lowest drive setting, LF XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 XT1 oscillator crystal frequency, LF mode XTS = 0, XT1BYPASS = 0 fXT1,LF,SW XT1 oscillator logic-level square-wave input frequency, LF mode XTS = 0, XT1BYPASS = 1(6) (7) OALF Oscillation allowance for LF crystals(8) XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF, TA = 25°C XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF, TA = 25°C VCC MIN TYP 0.075 3V Integrated effective load capacitance, LF mode(1) 0.290 32768 10 32.768 fFault,LF kΩ tSTART,LF (1) (2) (3) (4) (5) (6) (7) (8) Start-up time, LF mode 1 8.5 XTS = 0, XCAPx = 3 12.0 XTS = 0(3) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF kHz 300 5.5 Oscillator fault frequency, LF mode(4) 50 210 XTS = 0, XCAPx = 2 Duty cycle, LF mode Hz 3V XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz µA 0.170 XTS = 0, XCAPx = 0(2) CL,eff MAX UNIT pF 30% 70% 10 10000 Hz 1000 3V ms 500 Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Measured with logic-level input frequency but also applies to operation with crystals. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. To improve EMI on the XT1 oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVEx = 0, CL,eff ≤ 6 pF • For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF • For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF • For XT1DRIVEx = 3, CL,eff ≥ 6 pF Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 33 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.17 Crystal Oscillator, XT2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) (5) PARAMETER TEST CONDITIONS VCC MIN fOSC = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C IDVCC,XT2 fOSC = 12 MHz, XT2OFF = 0, XT2 oscillator crystal current XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C consumption fOSC = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C TYP MAX UNIT 200 260 3V µA 325 fOSC = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C 450 fXT2,HF0 XT2 oscillator crystal frequency, mode 0 XT2DRIVEx = 0, XT2BYPASS = 0(7) 4 8 MHz fXT2,HF1 XT2 oscillator crystal frequency, mode 1 XT2DRIVEx = 1, XT2BYPASS = 0(7) 8 16 MHz fXT2,HF2 XT2 oscillator crystal frequency, mode 2 XT2DRIVEx = 2, XT2BYPASS = 0(7) 16 24 MHz fXT2,HF3 XT2 oscillator crystal frequency, mode 3 XT2DRIVEx = 3, XT2BYPASS = 0(7) 24 32 MHz fXT2,HF,SW XT2 oscillator logic-level square-wave input frequency XT2BYPASS = 1(6) (7) 0.7 32 MHz XT2DRIVEx = 0, XT2BYPASS = 0, fXT2,HF0 = 6 MHz, CL,eff = 15 pF, TA = 25°C Oscillation allowance for HF crystals(8) OAHF XT2DRIVEx = 1, XT2BYPASS = 0, fXT2,HF1 = 12 MHz, CL,eff = 15 pF, TA = 25°C XT2DRIVEx = 2, XT2BYPASS = 0, fXT2,HF2 = 20 MHz, CL,eff = 15 pF, TA = 25°C 450 320 3V Ω 200 XT2DRIVEx = 3, XT2BYPASS = 0, fXT2,HF3 = 32 MHz, CL,eff = 15 pF, TA = 25°C tSTART,HF fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C, CL,eff = 15 pF Start-up time fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C, CL,eff = 15 pF Duty cycle fFault,HF (2) (3) (4) (5) (6) (7) (8) 34 0.5 3V ms 0.3 Integrated effective load capacitance, HF mode(1) (2) CL,eff (1) 200 Oscillator fault 1 Measured at ACLK, fXT2,HF2 = 20 MHz frequency(4) XT2BYPASS = 1(3) 40% 50% 30 pF 60% 300 kHz Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Measured with logic-level input frequency but also applies to operation with crystals. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. To improve EMI on the XT2 oscillator the following guidelines should be observed. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. • Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT2BYPASS is set, the XT2 circuit is automatically powered down. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V dfVLO/dT VLO frequency temperature drift Measured at ACLK(1) 1.8 V to 3.6 V dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) Measured at ACLK(2) 1.8 V to 3.6 V Measured at ACLK 1.8 V to 3.6 V MIN 6 TYP MAX 9.4 14 0.5 kHz %/°C 4 40% UNIT %/V 50% 60% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) 8.19 Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO TEST CONDITIONS REFO oscillator current consumption TA = 25°C VCC MIN TYP 1.8 V to 3.6 V 3 32768 MAX UNIT µA REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V fREFO REFO absolute tolerance calibrated Full temperature range 1.8 V to 3.6 V dfREFO/dT REFO frequency temperature drift Measured at ACLK(1) 1.8 V to 3.6 V 0.01 %/°C dfREFO/dVCC REFO frequency supply voltage drift 1.8 V to 3.6 V 1.0 %/V Duty cycle Measured at ACLK 1.8 V to 3.6 V tSTART REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V (1) (2) TA = 25°C Measured at ACLK(2) Hz ±3.5% 3V ±1.5% 40% 50% 25 60% µs Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 35 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.20 DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS 0)(1) MIN TYP MAX UNIT fDCO(0,0) DCO frequency (0, DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz fDCO(0,31) DCO frequency (0, 31)(1) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0)(1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31)(1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz fDCO(2,0) DCO frequency (2, 0)(1) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31)(1) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0)(1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31)(1) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz fDCO(4,0) DCO frequency (4, 0)(1) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31)(1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0)(1) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz 31)(1) fDCO(5,31) DCO frequency (5, fDCO(6,0) DCO frequency (6, 0)(1) 31)(1) fDCO(6,31) DCO frequency (6, fDCO(7,0) DCO frequency (7, 0)(1) 31)(1) fDCO(7,31) DCO frequency (7, DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK 40% dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C dfDCO/dVCC DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 50% 60% When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. If the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. 100 VCC = 3.0 V TA = 25°C fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 8-10. Typical DCO Frequency 36 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.21 PMM, Brownout Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET Pulse duration required at RST/NMI pin to accept a reset MIN TYP 0.80 1.30 50 MAX UNIT 1.45 V 1.50 V 250 mV 2 µs 8.22 PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.90 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.80 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA 1.60 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA 1.40 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.94 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.84 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.64 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.44 V Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 37 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.23 PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption 0 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 V(SVSH_IT+) SVSH on voltage level(1) SVSH off voltage level(1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time (1) 2.0 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69 SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVSHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0→1, SVSHFP = 1 12.5 SVSHE = 0→1, SVSHFP = 0 100 0 UNIT nA 200 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 V(SVSH_IT–) MAX V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage. 8.24 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVMHE = 0, DVCC = 3.6 V I(SVMH) V(SVMH) SVMH current consumption SVMH on or off voltage level(1) SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 2.0 t(SVMH) (1) 38 SVMH on or off delay time UNIT nA µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35 SVMHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVMHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) SVMH propagation delay MAX 0 V 3.75 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0→1, SVMHFP = 1 12.5 SVMHE = 0→1, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.25 PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on or off delay time MAX 0 SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0→1, SVSLFP = 1 12.5 SVSLE = 0→1, SVSLFP = 0 100 UNIT nA µA µs µs 8.26 PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on or off delay time MAX 0 SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 2.0 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0→1, SVMLFP = 1 12.5 SVMLE = 0→1, SVMLFP = 0 100 UNIT nA µA µs µs 8.27 Wake-up Times From Low-Power Modes over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode(1) TYP MAX PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1, fMCLK ≥ 4.0 MHz TEST CONDITIONS 3 6.5 PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1, 1 MHz < fMCLK < 4.0 MHz 4 8.0 150 165 PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 MIN UNIT µs tWAKE-UP-SLOW Wake-up time from LPM2, LPM3, or LPM4 to active mode(2) (3) tWAKE-UP LPM5 Wake-up time from LPM3.5 or LPM4.5 to active mode(4) 2 3 ms tWAKE-UP-RESET Wake-up time from RST or BOR event to active mode(4) 2 3 ms (1) (2) (3) (4) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide. This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide. The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4. This value represents the time from the wake-up event to the reset vector execution. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 39 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.28 Timer_A – Timers TA0, TA1, and TA2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 1.8 V, 3 V MIN MAX UNIT 20 MHz 20 ns 8.29 Timer_B – Timer TB0 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B input clock frequency Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10% tTB,cap Timer_B capture timing All capture inputs, Minimum pulse duration required for capture VCC 1.8 V, 3 V 1.8 V, 3 V MIN MAX UNIT 20 MHz 20 ns 8.30 Battery Backup over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VBAT = 1.7 V, DVCC not connected, RTC running Current into VBAT terminal if no primary battery is connected IVBAT VBAT = 2.2 V, DVCC not connected, RTC running VBAT = 3 V, DVCC not connected, RTC running VCC MIN TA = –40°C 0.43 TA = 25°C 0.52 TA = 60°C 0.58 TA = 85°C 0.66 TA = –40°C 0.50 TA = 25°C 0.59 TA = 60°C 0.64 TA = 85°C 0.72 TA = –40°C 0.68 TA = 25°C 0.75 TA = 60°C 0.79 TA = 85°C Switch-over level (VCC to VBAT) CVCC = 4.7 µF RON_VBAT On-resistance of switch between VBAT = 1.8 V VBAT and VBAK VBAT3 VBAT to ADC input channel 12: VBAT divided, VBAT3 ≈ VBAT/3 tSample, µA SVSHRL = 0 1.59 1.69 SVSHRL = 1 1.79 1.91 SVSHRL = 2 1.98 2.11 SVSHRL = 3 2.10 2.23 0V 0.35 1 1.8 V 0.6 ±5% 3V 1.0 ±5% 3.6 V 1.2 ±5% VBAT3 ADC12ON = 1, Error of conversion result ≤ 2 LSB 1000 VCHVx Charger end voltage CHVx = 2 2.65 RCHARGE Charge limiting resistor Submit Document Feedback UNIT VSVSH_IT- VBAT to ADC: Sampling time required if VBAT3 selected 40 MAX 0.87 General VSWITCH TYP V kΩ V ns 2.7 2.9 CHCx = 1 5.2 CHCx = 2 10.2 CHCx = 3 20 V kΩ Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.31 USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) tτ UART receive deglitch time(1) (1) VCC MIN Internal: SMCLK or ACLK, External: UCLK Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 600 3V 50 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. 8.32 USCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8-11 and ) PARAMETERFigure 8-12 fUSCI USCI input clock frequency TEST CONDITIONS SOMI input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,MI SOMI input data hold time PMMCOREV = 3 tVALID,MO SIMO output data valid time(2) SIMO output data hold (2) (3) fSYSTEM 1.8 V 55 3V 38 2.4 V 30 3V 25 1.8 V 0 3V 0 2.4 V 0 3V 0 ns 20 3V 18 UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 3 2.4 V 16 time(3) 3V MHz ns UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 0 CL = 20 pF, PMMCOREV = 3 (1) MAX UNIT 1.8 V CL = 20 pF, PMMCOREV = 0 tHD,MO MIN SMCLK or ACLK, Duty cycle = 50% ±10% PMMCOREV = 0 tSU,MI VCC ns 15 1.8 V –10 3V –8 2.4 V –10 3V –8 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-11 and Figure 8-12. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 8-11 and Figure 8-12. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 41 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 8-11. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 8-12. SPI Master Mode, CKPH = 1 42 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.33 USCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8-13 and Figure 8-14) PARAMETER TEST CONDITIONS PMMCOREV = 0 tSTE,LEAD STE lead time, STE low to clock PMMCOREV = 3 PMMCOREV = 0 tSTE,LAG STE lag time, last clock to STE high PMMCOREV = 3 PMMCOREV = 0 tSTE,ACC STE access time, STE low to SOMI data out PMMCOREV = 3 PMMCOREV = 0 tSTE,DIS STE disable time, STE high to SOMI high impedance PMMCOREV = 3 PMMCOREV = 0 tSU,SI SIMO input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,SI SIMO input data hold time PMMCOREV = 3 tVALID,SO SOMI output data valid time(2) (2) (3) 1.8 V 11 3V 8 2.4 V 7 3V 6 1.8 V 1 3V 1 2.4 V 1 3V 1 MAX ns 1.8 V 66 3V 50 2.4 V 36 3V 30 1.8 V 30 3V 30 2.4 V 30 3V ns ns 30 1.8 V 5 3V 5 2.4 V 2 3V 2 1.8 V 5 3V 5 2.4 V 5 3V 5 ns ns 76 3V 60 UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 3 2.4 V 44 SOMI output data hold time(3) UNIT ns UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 0 CL = 20 pF, PMMCOREV = 3 (1) MIN 1.8 V CL = 20 pF, PMMCOREV = 0 tHD,SO VCC 3V ns 40 1.8 V 12 3V 12 2.4 V 12 3V 12 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-13 and Figure 8-14. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8-13 and Figure 8-14. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 43 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tSU,SI tLO/HI tHD,SI SIMO tHD,SO tVALID,SO tSTE,ACC tSTE,DIS SOMI Figure 8-13. SPI Slave Mode, CKPH = 0 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tSTE,ACC tHD,MO tVALID,SO tSTE,DIS SOMI Figure 8-14. SPI Slave Mode, CKPH = 1 44 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.34 USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-15) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN Internal: SMCLK or ACLK, External: UCLK Duty cycle = 50% ±10% 2.2 V, 3 V tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time tSU,DAT Data setup time fSCL ≤ 100 kHz fSCL ≤ 100 kHz fSCL ≤ 100 kHz Setup time for STOP tSP Pulse duration of spikes suppressed by input filter tSU,STA tHD,STA MHz 400 kHz µs 4.7 µs 0.6 2.2 V, 3 V 0 ns 2.2 V, 3 V 250 ns 4.0 2.2 V, 3 V fSCL > 100 kHz fSYSTEM 0.6 2.2 V, 3 V fSCL > 100 kHz UNIT 4.0 2.2 V, 3 V fSCL > 100 kHz tSU,STO 0 MAX µs 0.6 2.2 V 50 600 3V 50 600 tHD,STA ns tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 8-15. I2C Mode Timing Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 45 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.35 LCD_B Operating Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER CONDITIONS MIN TYP MAX UNIT VCC,LCD_B,CP en,3.6 Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V VCC,LCD_B,CP en,3.3 Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_B,int. bias Supply voltage range, internal LCDCPEN = 0, VLCDEXT = 0 biasing, charge pump disabled 2.4 3.6 V VCC,LCD_B,ext. bias Supply voltage range, external LCDCPEN = 0, VLCDEXT = 0 biasing, charge pump disabled 2.4 3.6 V VCC,LCD_B,VLCDEXT Supply voltage range, external LCD voltage, internal or LCDCPEN = 0, VLCDEXT = 1 external biasing, charge pump disabled 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/R33, internal or LCDCPEN = 0, VLCDEXT = 1 external biasing, charge pump disabled 2.4 3.6 V CLCDCAP Capacitor on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) 10 µF fFrame LCD frame frequency range fLCD = 2 × mux × fFRAME with mux = 1 (static), 2, 3, 4 100 Hz fACLK,in ACLK input frequency range 40 kHz CPanel Panel capacitance 100-Hz frame frequency 10000 pF VCC + 0.2 V 4.7 0 30 32 VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR03 + 2/3 × (VR33 – VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 VR03 + 1/3 × (VR33 – VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 VR03 + 1/2 × (VR33 – VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VSS VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 46 Submit Document Feedback 2.4 V 1.2 VCC + 0.2 V 1.5 V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.36 LCD_B Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN TYP VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.59 LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.66 LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.72 LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.79 LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.85 LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.92 LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.98 LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.05 LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.10 LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.17 LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.24 LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.30 LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.36 LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.42 MAX UNIT V LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.48 ICC,Peak,CP Peak supply currents due to charge pump activities 3.6 LCDCPEN = 1, VLCDx = 1111 2.2 V 400 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx = 1111 2.2 V 100 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ µA 500 50 ms µA 8.37 12-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range(3) All ADC12 analog input pins Ax IADC12_A Operating supply current into AVCC terminal(4) fADC12CLK = 5.0 MHz(1) CI Input capacitance Only one terminal Ax can be selected at one time RI Input MUX ON resistance 0 V ≤ VIN ≤ V(AVCC) (1) (2) (3) (4) VCC MIN TYP MAX UNIT 2.2 3.6 V 0 AVCC V 2.2 V 150 200 3V 150 250 2.2 V 20 25 pF 200 1900 Ω 10 µA ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 The leakage current is specified by the digital I/O input leakage. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 8.43 and Section 8.44. The internal reference supply current is not included in current consumption parameter IADC12. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 47 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.38 12-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference(1) fADC12CLK ADC conversion clock For specified performance of ADC12 linearity parameters using the internal reference(2) 2.2 V, 3 V For specified performance of ADC12 linearity parameters using the internal reference(3) fADC12OSC tCONVERT tSample (1) (2) (3) (4) (5) Internal ADC12 oscillator(5) Conversion time Sampling time MIN TYP MAX 0.45 4.8 5.0 0.45 2.4 4.0 0.45 2.4 2.7 4.8 5.4 ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V, 3 V 4.2 REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock 2.2 V, 3 V 2.4 External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 RS = 400 Ω, RI = 200 Ω, CI = 20 pF, τ = [RS + RI] × CI (4) UNIT MHz MHz 3.1 µs 13 × 1 / fADC12CLK 2.2 V, 3 V 1000 ns REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz. SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1 SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2. Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance The ADC12OSC is sourced directly from MODOSC inside the UCS. 8.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER EI Integral linearity error(2) ED Differential linearity error(2) EO Offset error(3) EG Gain error(3) ET (1) (2) (3) 48 Total unadjusted error TEST CONDITIONS 1.4 V ≤ dVREF ≤ 1.6 V(1) 1.6 V < dVREF (1) See (1) VCC MIN TYP MAX 2.2 V, 3 V ±1.7 2.2 V, 3 V ±1 V(1) 2.2 V, 3 V ±3 ±5.6 dVREF > 2.2 V(1) 2.2 V, 3 V ±1.5 ±3.5 See (1) 2.2 V, 3 V ±1 ±2.5 dVREF ≤ 2.2 V(1) 2.2 V, 3 V ±3.5 ±7.1 dVREF > 2.2 V(1) 2.2 V, 3 V ±2 ±5 dVREF ≤ 2.2 UNIT ±2 LSB LSB LSB LSB LSB The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ – VR–. VR+ < AVCC. VR– > AVSS. Unless otherwise mentioned dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current. Also see the MSP430F5xx and MSP430F6xx Family User's Guide. Parameters are derived using the histogram method. Parameters are derived using a best fit curve. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER EI Integral linearity ED Differential linearity error(2) Offset EG Gain error(3) (1) (2) (3) MAX UNIT 2.2 V, 3 V ±2.0 LSB 2.2 V, 3 V ±1 LSB ±1 ±2 LSB ±2 ±4 LSB ±2 ±5 LSB See (1) (1) 2.2 V, 3 V See (1) 2.2 V, 3 V (1) 2.2 V, 3 V See Total unadjusted error VCC (1) See error(3) EO ET TEST CONDITIONS error(2) See MIN TYP AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0. Parameters are derived using the histogram method. Parameters are derived using a best fit curve. 8.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS(1) PARAMETER EI Integral linearity error(2) ED Differential linearity error(2) EO Offset error(3) EG Gain error(3) ET (1) (2) (3) (4) Total unadjusted error ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz VCC MIN TYP MAX ±2.0 2.2 V, 3 V ±2.5 –1 +1.5 –1 +2.5 2.2 V, 3 V ±1 2.2 V, 3 V 2.2 V, 3 V ±2 ±4 ±2 ±4 ±1 ±2.5 ±1%(4) ±2 2.2 V, 3 V ±5 ±1%(4) UNIT LSB LSB LSB LSB VREF LSB VREF The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ – VR–. Parameters are derived using the histogram method. Parameters are derived using a best fit curve. The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode, the reference voltage used by the ADC12_A is not available on a pin. 8.42 12-Bit ADC, Temperature Sensor and Built-In VMID over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER(1) TEST CONDITIONS VSENSOR Temperature sensor voltage(2) (see Figure 8-16) ADC12ON = 1, INCH = 0Ah, TA = 0°C TCSENSOR Temperature coefficient of sensor ADC12ON = 1, INCH = 0Ah VCC MIN TYP 2.2 V 680 3V 680 MAX mV 2.25(2) 2.2 V, 3V tSENSOR(sample) Sample time required if channel 10 is selected(3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID ≈ 0.5 × VAVCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected(4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V, 3 V 1000 (2) 3V 30 mV/°C 2.2 V (1) 30 UNIT µs V ns The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of the temperature sensor. The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 49 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 (3) (4) VSENSOR can be computed from the calibration values for higher accuracy. Also see the MSP430F5xx and MSP430F6xx Family User's Guide. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. Typical Temperature Sensor Voltage (mV) 1000 950 900 850 800 750 700 650 600 550 500 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Ambient Temperature (°C) Figure 8-16. Typical Temperature Sensor Voltage 8.43 REF, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER MIN MAX UNIT VeREF+ > VREF–/VeREF– (2) 1.4 AVCC V VeREF+ > VREF–/VeREF– (3) 0 1.2 V Differential external reference VeREF+ > VREF–/VeREF– (4) voltage input 1.4 AVCC V –26 26 VeREF+ Positive external reference voltage input VREF–/VeREF– Negative external reference voltage input (VeREF+ – VREF–/VeREF–) IVeREF+, IVREF–/ VeREF– CVREF+/(1) (2) (3) (4) (5) 50 Static input current Capacitance at VREF+ or VREF- terminal(5) TEST CONDITIONS VCC 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC12CLK = 5 MHz, ADC12SHTx = 1h, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC12CLK = 5 MHz, ADC12SHTx = 8h, Conversion rate 20 ksps 2.2 V, 3 V µA –1.2 10 +1.2 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.44 REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER VREF+ AVCC(min) Positive built-in reference voltage output AVCC minimum voltage, Positive built-in reference active TEST CONDITIONS VCC REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1, IVREF+ = 0 A MIN TYP MAX 3V 2.5 ±1% REFVSEL = {1} for 2 V, REFON = REFOUT = 1, IVREF+ = 0 A 3V 2.0 ±1% REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, IVREF+ = 0 A 2.2 V, 3 V 1.5 ±1% REFVSEL = {0} for 1.5 V 2.2 REFVSEL = {1} for 2 V 2.3 REFVSEL = {2} for 2.5 V 2.8 ADC12SR = 1(8), REFON = 1, REFOUT = 0, REFBURST = 0 Operating supply current into AVCC terminal (2) (7) IREF+ UNIT V V 70 100 µA 0.45 0.75 mA 210 310 µA ADC12SR = 0(8), REFON = 1, REFOUT = 1, REFBURST = 0 0.95 1.7 mA 1500 2500 µV/mA 100 pF ADC12SR = 1(8), REFON = 1, REFOUT = 1, REFBURST = 0 ADC12SR = 0(8), REFON = 1, REFOUT = 0, REFBURST = 0 3V IL(VREF+) Load-current regulation, VREF+ terminal(3) REFVSEL = {0, 1, 2}, IVREF+ = +10 µA or –1000 µA, AVCC = AVCC(min) for each reference level, REFVSEL = {0, 1, 2}, REFON = REFOUT = 1 CVREF+ Capacitance at VREF+ terminal REFON = REFOUT = 1(6), 0 mA ≤ IVREF+ ≤ IVREF+(max) TCREF+ Temperature coefficient of built-in reference(4) IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA REFOUT = 0 2.2 V, 3 V 20 ppm/ °C TCREF+ Temperature coefficient of built-in reference(4) IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA REFOUT = 1 2.2 V, 3 V 20 50 ppm/ °C PSRR_DC Power supply rejection ratio (DC) AVCC = AVCC(min) to AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 120 PSRR_AC Power supply rejection ratio (AC) AVCC = AVCC(min) to AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 1 tSETTLE (1) (2) (3) (4) (5) Settling time of reference voltage(5) 2.2 V, 3 V 20 AVCC = AVCC(min) to AVCC(max), REFVSEL = {0, 1, 2}, REFOUT = 0, REFON = 0 → 1 75 AVCC = AVCC(min) to AVCC(max), CVREF = CVREF(max), REFVSEL = {0, 1, 2}, REFOUT = 1, REFON = 0 → 1 75 300 µV/V mV/V µs The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer. The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load. Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace or other causes. Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)). The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 51 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 (6) (7) (8) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide. The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to IREF+ with REFON = 1 and REFOUT = 0. For devices without the ADC12, the parametric with ADC12SR = 0 are applicable. 8.45 12-Bit DAC, Supply Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC Analog supply voltage TEST CONDITIONS DAC12AMPx = 2, DAC12IR = 0, DAC12IOG = 1 DAC12_xDAT = 0800h VeREF+ = VREF+ = 1.5 V Supply current, single DAC channel(1) (2) IDD VCC AVCC = DVCC, AVSS = DVSS = 0 V 3V DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC PSRR (1) (2) (3) (4) 52 DAC12_xDAT = 800h, VeREF+ = 1.5 V, ΔAVCC = 100 mV DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, ΔAVCC = 100 mV TYP MAX UNIT 3.60 V 65 110 65 110 µA 2.2 V, 3 V DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC Power supply rejection ratio(3) (4) MIN 2.20 250 300 750 1000 2.2 V 70 3V 70 dB No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT) The internal reference is not used. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.46 12-Bit DAC, Linearity Specifications See Figure 8-17, over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Resolution TEST CONDITIONS MIN 12-bit monotonic INL Integral nonlinearity(1) DNL Differential nonlinearity(1) EG Gain error dE(G)/dT Gain temperature coefficient(1) tOffset_Cal Time for offset calibration(3) 12 ±4 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±2 ±4 VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V ±0.4 ±1 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±0.4 ±1 VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V ±21 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±21 VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V ±1.5 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±1.5 With calibration 2.2 V, 3 V ±10 VeREF+ = 1.5 V 2.2 V ±2.5 VeREF+ = 2.5 V 3V ±2.5 2.2 V, 3 V LSB µV/°C %FSR ppm of FSR/°C 10 165 DAC12AMPx = 3, 5 66 2.2 V, 3 V DAC12AMPx = 4, 6, 7 (2) (3) LSB mV DAC12AMPx = 2 (1) UNIT bits ±2 With calibration(1) (2) Offset error temperature coefficient(1) MAX 2.2 V Offset voltage dE(O)/dT TYP VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 Without calibration(1) (2) EO VCC ms 16.5 Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC VOUT DAC Output VR+ RLoad = ¥ Ideal transfer function AVCC 2 CLoad = 100 pF Offset Error Positive Negative Gain Error DAC Code Figure 8-17. Linearity Test Load Conditions and Gain/Offset Definition Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 53 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.47 12-Bit DAC, Output Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC No load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 No load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 Output voltage range(1) (see Figure RLoad = 3 kΩ, VeREF+ = AVCC, 8-18) DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 VO Maximum DAC12 load capacitance IL(DAC12) Maximum DAC12 load current MAX 0 0.005 AVCC – 0.05 AVCC 0 0.1 AVCC – 0.13 AVCC DAC12AMPx = 2, DAC12_xDAT = 0FFFh, VO/P(DAC12) > AVCC – 0.3 100 mA 1 RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V, DAC12_xDAT = 0FFFh 2.2 V, 3 V 150 250 150 250 RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V (1) pF –1 2.2 V, 3 V DAC12AMPx = 2, DAC12_xDAT = 0h, VO/P(DAC12) < 0.3 V Output resistance (see Figure 8-18) UNIT V 2.2 V, 3 V RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h RO/P(DAC12) TYP 2.2 V, 3 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) MIN Ω 6 Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) ILoad Max RLoad AVCC DAC12 2 O/P(DAC12_x) CLoad = 100 pF Min 0.3 AVCC – 0.3 V VOUT AVCC Figure 8-18. DAC12_x Output Resistance Tests 54 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.48 12-Bit DAC, Reference Input Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN DAC12IR = 0(1) (2) VeREF+ Reference input voltage range MAX AVCC/3 AVCC + 0.2 AVCC AVCC + 0.2 2.2 V, 3 V DAC12IR = 1(3) (4) DAC12_0 IR = DAC12_1 IR = 0 Ri(VREF+), Ri(VeREF+) TYP 20 DAC12_0 IR = 0, DAC12_1 IR = 1 52 2.2 V, 3 V 52 DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx(5) (1) (2) (3) (4) (5) V MΩ DAC12_0 IR = 1, DAC12_1 IR = 0 Reference input resistance UNIT kΩ 26 For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. 8.49 12-Bit DAC, Dynamic Specifications VREF = VCC, DAC12IR = 1 (see Figure 8-19 and Figure 8-20), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tON DAC12 on time TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB(1) (see Figure 8-19) VCC MIN TYP DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V, 3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) Settling time, full scale DAC12_xDAT = 80h → F7Fh → 80h DAC12AMPx = 3, 5 2.2 V, 3 V DAC12AMPx = 4, 6, 7 tS(C-C) Settling time, code to code DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h DAC12AMPx = 2 DAC12AMPx = 3, 5 DAC12_xDAT = 80h → F7Fh → 80h(2) Slew rate (1) (2) DAC12_xDAT = 800h → 7FFh → 800h DAC12AMPx = 7 30 6 12 100 200 40 80 15 30 µs µs µs 1 2.2 V, 3 V DAC12AMPx = 4, 6, 7 Glitch energy 120 2 DAC12AMPx = 4, 6, 7 DAC12AMPx = 3, 5 60 15 5 2.2 V, 3 V DAC12AMPx = 2 SR MAX UNIT 0.05 0.35 0.35 1.10 1.50 5.20 2.2 V, 3 V 35 V/µs nV-s RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-19. Slew rate applies to output voltage steps ≥200 mV. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 55 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Conversion 1 VOUT DAC Output ILoad Conversion 2 ±1/2 LSB Glitch Energy RLoad = 3 kW Conversion 3 AVCC 2 ±1/2 LSB CLoad = 100 pF RO/P(DAC12.x) tsettleLH tsettleHL Figure 8-19. Settling Time and Glitch Energy Testing Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 8-20. Slew Rate Testing 8.50 12-Bit DAC, Dynamic Specifications (Continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER BW–3dB TEST CONDITIONS VCC MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TA = 25°C 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 8-21) DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TA = 25°C (1) MAX UNIT 40 2.2 V, 3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TA = 25°C 180 kHz 550 DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz at 50/50 duty cycle, TA = 25°C Channel-to-channel crosstalk(1) (see Figure 8-22) TYP DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz at 50/50 duty cycle, TA = 25°C –80 2.2 V, 3 V dB –80 RLoad = 3 kΩ, CLoad = 100 pF RLoad = 3 kW ILoad VeREF+ AVCC DAC12_x AC 2 DACx CLoad = 100 pF DC Figure 8-21. Test Conditions for 3-dB Bandwidth Specification 56 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 RLoad ILoad AVCC DAC12_0 DAC12_xDAT 080h 2 DAC0 080h F7Fh 080h F7Fh VOUT CLoad = 100 pF VREF+ VDAC12_yOUT RLoad ILoad AVCC DAC12_1 VDAC12_xOUT 2 DAC1 1/fToggle CLoad = 100 pF Figure 8-22. Crosstalk Test Conditions 8.51 Comparator_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC Supply voltage MIN TYP 1.8 3.6 1.8 V IAVCC_COMP Comparator operating supply current into AVCC terminal, Excludes reference resistor ladder IAVCC_REF Quiescent current of local reference voltage amplifier into AVCC terminal VIC Common mode input range VOFFSET Input offset voltage CIN Input capacitance RSIN Series input resistance tPD Propagation delay, response time tPD,filter tEN_CMP Propagation delay with filter active Comparator enable time 2.2 V 30 50 3V 40 65 CBPWRMD = 01 2.2 V, 3 V 10 30 CBPWRMD = 10 2.2 V, 3 V 0.1 0.5 CBREFACC = 1, CBREFLx = 01 0 VCC – 1 V CBPWRMD = 01 or 10 ±10 5 On (switch closed) 3 4 50 450 600 CBPWRMD = 10, CBF = 0 50 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 0.35 0.6 1.0 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 0.6 1.0 1.8 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 1.0 1.8 3.4 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 1.8 3.4 6.5 1 2 Reference voltage for a given tap VIN = reference into resistor ladder (n = 0 to 31) ns µs µs µs CBON = 0 to CBON = 1 CBPWRMD = 10 VCB_REF kΩ MΩ CBPWRMD = 00, CBF = 0 CBON = 0 to CBON = 1 mV pF CBPWRMD = 01, CBF = 0 Resistor reference enable time µA µA ±20 CBON = 0 to CBON = 1 CBPWRMD = 00 or 01 V 22 CBPWRMD = 00 Off (switch open) UNIT 40 CBPWRMD = 00 tEN_REF Copyright © 2020 Texas Instruments Incorporated MAX 100 0.3 1.5 µs VIN × VIN × VIN × (n + 0.5) / (n + 1) / 3 (n + 1.5) / 32 2 32 V Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 57 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.52 Ports PU.0 and PU.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage VUSB = 3.3 V ±10%, IOH = –25 mA VOL Low-level output voltage VUSB = 3.3 V ±10%, IOL = 25 mA VIH High-level input voltage VUSB = 3.3 V ±10% VIL Low-level input voltage VUSB = 3.3 V ±10% MIN MAX 2.4 UNIT V 0.4 2.0 V V 0.8 V 8.53 USB Output Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT VOH D+, D- single ended USB 2.0 load conditions 2.8 3.6 V VOL D+, D- single ended USB 2.0 load conditions 0 0.3 V Z(DRV) D+, D- impedance Including external series resistor of 27 Ω 28 44 Ω tRISE Rise time Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns tFALL Fall time Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns 8.54 USB Input Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MIN MAX V(CM) Differential input common mode range PARAMETER TEST CONDITIONS 0.8 2.5 Z(IN) Input impedance 300 VCRS Crossover voltage 1.3 VIL Static SE input logic low level VIH Static SE input logic high level VDI Differential input voltage 58 Submit Document Feedback UNIT V kΩ 2.0 0.8 2.0 V V V 0.2 V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.55 USB-PWR (USB Power System) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 3.75 V 5.5 V VLAUNCH VBUS detection threshold VBUS USB bus voltage VUSB USB LDO output voltage 3.3 V18 Internal USB voltage(1) 1.8 IUSB_EXT Maximum external current from VUSB terminal(2) IDET USB LDO current overload detection(3) ISUSPEND Operating supply current into VBUS terminal.(4) CBUS VBUS terminal recommended capacitance 4.7 µF CUSB VUSB terminal recommended capacitance 220 nF C18 V18 terminal recommended capacitance 220 nF tENABLE Settling time VUSB and V18 RPUR Pullup resistance of PUR terminal(5) (1) (2) (3) (4) (5) Normal operation 3.76 USB LDO is on 60 USB LDO is on, USB PLL disabled Within 2%, recommended capacitances 70 110 ±9% V V 12 mA 100 mA 250 µA 2 ms 150 Ω This voltage is for internal use only. No external DC loading should be applied. This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation. A current overload will be detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value. Does not include current contribution of Rpu and Rpd as outlined in the USB specification. This value, in series with an external resistor between PUR and D+, produces the Rpu as outlined in the USB specification. 8.56 USB-PLL (USB Phase Locked Loop) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IPLL Operating supply current fPLL PLL frequency fUPD PLL reference frequency tLOCK PLL lock time tJitter PLL jitter MIN TYP 7 48 1.5 1000 Copyright © 2020 Texas Instruments Incorporated MAX UNIT mA MHz 3 MHz 2 ms ps Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 59 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 8.57 Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TJ DVCC(PGM/ERASE) Program and erase supply voltage IPGM MIN TYP 1.8 MAX 3.6 Average supply current from DVCC during program 3 5 UNIT V mA IERASE Average supply current from DVCC during erase 6 19 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 19 mA tCPT Cumulative program time(1) 16 104 Program and erase endurance tRetention Data retention duration tWord Word or byte program time(2) 25°C word(2) 105 ms cycles 100 years 64 85 µs tBlock, 0 Block program time for first byte or 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word(2) 37 49 µs tBlock, N Block program time for last byte or word(2) 55 73 µs tSeg Erase Erase time for segment, mass erase, and bank erase when available(2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1) 0 1 MHz (1) (2) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word write, individual byte write, and block write modes. These values are hardwired into the state machine of the flash controller. 8.58 JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs 1 µs 15 100 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency for 4-wire JTAG(2) Rinternal Internal pulldown resistance on TEST (1) (2) 60 edge)(1) 2.2 V, 3 V 2.2 V 0 5 3V 0 10 2.2 V, 3 V 45 60 80 MHz kΩ Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9 Detailed Description 9.1 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 9-1). Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 9-1. Integrated CPU Registers Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 61 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.2 Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 9-1 lists examples of the three types of instruction formats. Table 9-2 lists the address modes. Table 9-1. Instruction Word Formats INSTRUCTION WORD FORMAT Dual operands, source-destination EXAMPLE ADD Single operands, destination only R4 + R5 → R5 R8 PC → (TOS), R8 → PC CALL Relative jump, unconditional or conditional OPERATION R4,R5 JNE Jump-on-equal bit = 0 Table 9-2. Address Mode Descriptions (1) 62 ADDRESS MODE S(1) D(1) Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) SYNTAX EXAMPLE OPERATION Symbolic (PC relative) + + MOV EDE,TONI M(EDE) → M(TONI) Absolute + + MOV &MEM, &TCDAT M(MEM) → M(TCDAT) Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect auto-increment + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) S = source, D = destination Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.3 Operating Modes The MCUs have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. Software can configure the following operating modes: • • • • • • • • Active mode (AM) – All clocks are active Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled Low-power mode 2 (LPM2) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – ACLK remains active Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped – Complete data retention Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No data retention – RTC enabled and clocked by low-frequency oscillator – Wake-up input from RST/NMI, RTC_B, P1, P2, P3, and P4 Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No data retention – Wake-up input from RST/NMI, P1, P2, P3, and P4 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 63 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.4 Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 9-3. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power up, External Reset Watchdog time-out, key violation Flash memory key violation WDTIFG, KEYV (SYSRSTIV)(1) (3) Reset 0FFFEh 63, highest System NMI PMM Vacant memory access JTAG mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, SVMLVLRIFG, SVMHVLRIFG, VMAIFG, JMBINIFG, JMBOUTIFG (SYSSNIV)(1) (Non)maskable 0FFFCh 62 (Non)maskable 0FFFAh 61 User NMI NMI Oscillator fault Flash memory access violation (1) (3) Comp_B Comparator B interrupt flags (CBIV)(1) (2) Maskable 0FFF8h 60 Timer TB0 TB0CCR0 CCIFG0 (2) Maskable 0FFF6h 59 Timer TB0 TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TB0IV)(1) (2) Maskable 0FFF4h 58 Watchdog interval timer mode WDTIFG Maskable 0FFF2h 57 USCI_A0 receive or transmit UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2) Maskable 0FFF0h 56 USCI_B0 receive or transmit UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2) Maskable 0FFEEh 55 ADC12_A Maskable 0FFECh 54 TA0CCR0 CCIFG0(2) Maskable 0FFEAh 53 Timer TA0 TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV)(1) (2) Maskable 0FFE8h 52 USB_UBM(5) USB interrupts (USBIV)(1) (2) LDO-PWR (7) LDOOFFIFG, LDOONIFG, LDOOVLIFG Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV)(1) (2) Maskable 0FFE4h 50 Timer TA1 TA1CCR0 CCIFG0(2) Maskable 0FFE2h 49 Timer TA1 TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV)(1) (2) Maskable 0FFE0h 48 I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV)(1) (2) Maskable 0FFDEh 47 USCI_A1 receive or transmit UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2) Maskable 0FFDCh 46 USCI_B1 receive or transmit (UCB1IV)(1) (2) LCD_B(6) ADC12IFG0 to ADC12IFG15 (ADC12IV)(1) (2) Timer TA0 I/O port P2 UCB1RXIFG, UCB1TXIFG P2IFG.0 to P2IFG.7 (P2IV)(1) (2) LCD_B Interrupt Flags (LCDBIV)(1) Maskable 0FFDAh 45 Maskable 0FFD8h 44 Maskable 0FFD6h 43 RTC_B RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (2) Maskable 0FFD4h 42 DAC12_A DAC12_0IFG, DAC12_1IFG(1) (2) Maskable 0FFD2h 41 Timer TA2 64 NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) TA2CCR0 CCIFG0(2) Maskable 0FFD0h 40 Timer TA2 TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV)(1) (2) Maskable 0FFCEh 39 I/O port P3 P3IFG.0 to P3IFG.7 (P3IV)(1) (2) Maskable 0FFCCh 38 I/O Port P4 (P4IV)(1) (2) Maskable 0FFCAh 37 USCI_A2 receive or transmit UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (2) 0FFC8h 36 USCI_B2 receive or transmit (UCB2IV)(1) (2) 0FFC6h 35 Submit Document Feedback P4IFG.0 to P4IFG.7 UCB2RXIFG, UCB2TXIFG Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-3. Interrupt Sources, Flags, and Vectors (continued) (1) (2) (3) (4) (5) (6) (7) INTERRUPT SOURCE INTERRUPT FLAG Reserved Reserved(4) SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FFC4h 34 ⋮ ⋮ 0FF80h 0, lowest Multiple source flags Interrupt flags are in the module. A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it. Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations. Only on devices with peripheral module USB (MSP430F665x and MSP430F565x) Only on devices with peripheral module LCD_B (MSP430F665x and MSP430F645x), otherwise reserved (MSP430F535x and MSP430F565x) Only on devices with peripheral module LDO-PWR (MSP430F535x and MSP430F645x) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 65 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.5 Memory Organization Table 9-4 summarizes the memory map of all device variants. Table 9-4. Memory Organization MSP430F6458 MSP430F5358 (1) Memory (flash) Total Size MSP430F6659 MSP430F5659 384KB 512KB 384KB 512KB 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 N/A 128KB 087FFFh to 068000h N/A 128KB 087FFFh to 068000h Bank 2 128KB 067FFFh to 048000h 128KB 067FFFh-48000h 128KB 067FFFh to 048000h 128KB 067FFFh-48000h Bank 1 128KB 047FFFh to 028000h 128KB 047FFFh to 028000h 128KB 047FFFh to 028000h 128KB 047FFFh to 028000h Bank 0 128KB 027FFFh to 008000h 128KB 027FFFh to 008000h 128KB 027FFFh to 008000h 128KB 027FFFh to 008000h Total Size 1KB 006FFFh to 006C00h 1KB 006FFFh to 006C00h 1KB 006FFFh to 006C00h 1KB 006FFFh to 006C00h Sector 3 16KB 0FBFFFh to 0F8000h 16KB 0FBFFFh to 0F8000h 16KB 0FBFFFh to 0F8000h 16KB 0FBFFFh to 0F8000h Sector 2 N/A 16KB 0F7FFFh to 0F4000h N/A 16KB 0F7FFFh to 0F4000h Sector 1 N/A 16KB 0F3FFFh to 0F0000h N/A 16KB 0F3FFFh to 0F0000h Main: code memory RAM MSP430F6658 MSP430F5658 00FFFFh to 00FF80h Main: interrupt vector MID support software (ROM) MSP430F6459 MSP430F5359 16KB 16KB 16KB 16KB 0063FFh to 002400h 0063FFh to 002400h 0063FFh to 002400h 0063FFh to 002400h Sector 0 (mirrored at address (mirrored at address (mirrored at address range (mirrored at address range range range 0FFFFFh to 0FC000h) 0FFFFFh to 0FC000h) 0FFFFFh to 0FC000h) 0FFFFFh to 0FC000h) RAM(3) Sector 7 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h N/A N/A USB RAM(2) Sector 7 N/A N/A 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h Info A 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h Info B 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h Info C 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h Info D 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h BSL 3 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h BSL 2 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h BSL 1 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h BSL 0 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h Size 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h Information memory (flash) Bootloader (BSL) memory (flash) Peripherals (1) (2) (3) 66 N/A = Not available Only available on F6659, F6658, F5659, F5658 devices. USB RAM can be used as general-purpose RAM when not used for USB operation. Only available on F6459, F6458, F5359, F5358 devices. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.6 Bootloader (BSL) The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory by the BSL is protected by an user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL) User's Guide. 9.6.1 USB BSL The devices MSP430F565x and MSP430F665x come preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins (see Table 9-5). In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling. Table 9-5. USB BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal PU.0/DP USB data terminal DP PU.1/DM USB data terminal DM PUR USB pullup resistor terminal VBUS USB bus power supply VSSU USB ground supply Note The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a 1-MΩ resistor to ground. 9.6.2 UART BSL All devices without a USB module (MSP430F535x and MSP430F645x) come preprogrammed with the UART BSL. A UART BSL is also available for devices with USB module that can be programmed by the user into the BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to six pins (see Table 9-6). Table 9-6. UART BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.1 Data transmit P1.2 Data receive Copyright © 2020 Texas Instruments Incorporated VCC Power supply VSS Ground supply Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 67 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.7 JTAG Operation 9.7.1 JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the BSL and its implementation, see MSP430 Programming With the JTAG Interface. Table 9-7. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply 9.7.2 Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-8 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Table 9-8. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output VCC Power supply VSS Ground supply 9.8 Flash Memory The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • • • • 68 Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. Segments 0 to n may be erased in one step, or each segment may be individually erased. Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. Segment A can be locked separately. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.9 Memory Integrity Detection (MID) The MID is an add-on to the flash memory controller. MID provides additional functionality over the regular flash operation methods. The main purpose of the MID function is to gain higher reliability of flash content and overall system integrity in harsh environments and in application areas that require such features. The on-chip MID ROM contains the factory-programmed MID support software. This software package provides several software functions that allow an application to use all of the features of the MID. The MID functionality can be enabled for different flash memory ranges. These memory ranges are selectable by the cw0 parameter of the MID function MidEnable() (see Table 9-9). Table 9-9. Address Range Coverage of cw0 Parameter of MidEnable() Function MSP430F6659 MSP430F6459 MSP430F5659 MSP430F5359 MSP430F6658 MSP430F6458 MSP430F5658 MSP430F5358 cw0.15 087FFFh to 080000h N/A cw0.14 07FFFFh to 078000h N/A cw0.13 077FFFh to 070000h N/A cw0.12 06FFFFh to 068000h N/A BITS OF cw0 PARAMETER cw0.11 067FFFh to 060000h 067FFFh to 060000h cw0.10 05FFFFh to 058000h 05FFFFh to 058000h cw0.9 057FFFh to 050000h 057FFFh to 050000h cw0.8 04FFFFh to 048000h 04FFFFh to 048000h cw0.7 047FFFh to 040000h 047FFFh to 040000h cw0.6 03FFFFh to 038000h 03FFFFh to 038000h cw0.5 037FFFh to 030000h 037FFFh to 030000h cw0.4 02FFFFh to 028000h 02FFFFh to 028000h cw0.3 027FFFh to 020000h 027FFFh to 020000h cw0.2 01FFFFh to 018000h 01FFFFh to 018000h cw0.1 017FFFh to 010000h 017FFFh to 010000h cw0.0 00FFFFh to 008000h 00FFFFh to 008000h 9.10 RAM The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data are lost. Features of the RAM include: • • • • RAM has n sectors. The size of a sector can be found in Section 9.5. Each sector 0 to n can be complete disabled; however, data retention is lost. Each sector 0 to n automatically enters low-power retention mode when possible. For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required. 9.11 Backup RAM The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the battery backup system module is implemented. There are 8 bytes of backup RAM available. It can be word-wise accessed by the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 69 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12 Peripherals Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. 9.12.1 Digital I/O Nine 8-bit I/O ports are implemented: P1 through P9 are complete, and port PJ contains four individual I/O ports. • • • • • • • All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Programmable pullup or pulldown on all ports. Programmable drive strength on all ports. Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4. Read and write access to port-control registers is supported by all instructions. Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD). 9.12.2 Port Mapping Controller The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table 9-10 lists the available mappings, and Table 9-11 lists the default settings. Table 9-10. Port Mapping Mnemonics and Functions VALUE 0 1 2 INPUT PIN FUNCTION OUTPUT PIN FUNCTION PM_NONE None DVSS PM_CBOUT – Comparator_B output PM_TB0CLK Timer TB0 clock input – PM_ADC12CLK – ADC12CLK PM_DMAE0 DMAE0 Input – PM_SVMOUT – SVM output PM_TB0OUTH Timer TB0 high impedance input TB0OUTH – 4 PM_TB0CCR0B Timer TB0 CCR0 capture input CCI0B Timer TB0: TB0.0 compare output Out0 5 PM_TB0CCR1B Timer TB0 CCR1 capture input CCI1B Timer TB0: TB0.1 compare output Out1 6 PM_TB0CCR2B Timer TB0 CCR2 capture input CCI2B Timer TB0: TB0.2 compare output Out2 7 PM_TB0CCR3B Timer TB0 CCR3 capture input CCI3B Timer TB0: TB0.3 compare output Out3 8 PM_TB0CCR4B Timer TB0 CCR4 capture input CCI4B Timer TB0: TB0.4 compare output Out4 9 PM_TB0CCR5B Timer TB0 CCR5 capture input CCI5B Timer TB0: TB0.5 compare output Out5 10 PM_TB0CCR6B Timer TB0 CCR6 capture input CCI6B Timer TB0: TB0.6 compare output Out6 3 11 12 13 14 15 16 17 70 PxMAPy MNEMONIC PM_UCA0RXD USCI_A0 UART RXD (Direction controlled by USCI – input) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) PM_UCA0TXD USCI_A0 UART TXD (Direction controlled by USCI – output) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI – input) PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI) PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI) PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) PM_MCLK Submit Document Feedback – MCLK Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-10. Port Mapping Mnemonics and Functions (continued) VALUE PxMAPy MNEMONIC 18 Reserved OUTPUT PIN FUNCTION Reserved for test purposes. Do not use this setting. 19 Reserved 20-30 Reserved 31 (0FFh)(1) PM_ANALOG (1) INPUT PIN FUNCTION Reserved for test purposes. Do not use this setting. None DVSS Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are ignored, which results in a read value of 31. Table 9-11. Default Mapping PIN PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION P2.0/P2MAP0 PM_UCB0STE, PM_UCA0CLK P2.1/P2MAP1 PM_UCB0SIMO, PM_UCB0SDA P2.2/P2MAP2 PM_UCB0SOMI, PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI) P2.3/P2MAP3 PM_UCB0CLK, PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) P2.4/P2MAP4 PM_UCA0TXD, PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) P2.5/P2MAP5 PM_UCA0RXD, PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) P2.6/P2MAP6/ R03 PM_NONE – DVSS P2.7/P2MAP7/LCDREF/R13 PM_NONE – DVSS USCI_B0 SPI slave transmit enable (direction controlled by USCI – input), USCI_A0 clock input/output (direction controlled by USCI) USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I2C data (open drain and direction controlled by USCI) USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 UART TXD (direction controlled by USCI – output), USCI_A0 UART RXD (direction controlled by USCI – input), 9.12.3 Oscillator and System Clock The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power lowfrequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • • • • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitallycontrolled oscillator DCO. Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK. Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 71 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.4 Power-Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. 9.12.5 Hardware Multiplier (MPY) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 9.12.6 Real-Time Clock (RTC_B) The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply. Using the MSP430 RTC_B Module With Battery Backup Supply describes how to use the RTC_B with battery backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, as well as how to handle correct reinitialization when the main power supply is restored. 9.12.7 Watchdog Timer (WDT_A) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 9.12.8 System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application. Table 9-12 lists the SYS module interrupt vector registers. 72 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-12. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset INTERRUPT EVENT WORD ADDRESS 00h Brownout (BOR) 02h RST/NMI (BOR) 04h PMMSWBOR (BOR) 06h LPM3.5 or LPM4.5 wakeup (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SVMH_OVP (POR) 019Eh SYSUNIV, User NMI 14h 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h 0Ch 0Eh SVMLVLRIFG 10h SVMHVLRIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIIFG 02h OFIFG 04h 019Ah 08h Reserved 0Ah to 1Eh No interrupt pending 00h Copyright © 2020 Texas Instruments Incorporated 02h 0198h Lowest Highest 06h BUSIFG Reserved Highest 0Ah JMBINIFG USB wait state time-out SYSBERRIV, Bus Error Lowest 08h 019Ch JMBOUTIFG ACCVIFG Highest 12h PMMSWPOR (POR) VMAIFG PRIORITY 10h WDT time-out (PUC) DLYHIFG SYSSNIV, System NMI OFFSET No interrupt pending Lowest Highest 04h MID error 06h Reserved 08h to 1Eh Lowest Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 73 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.9 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments described in Table 9-13. The USB timestamp generator is available only on devices with the USB module (MSP430F565x and MSP430F665x). Table 9-13. DMA Trigger Assignments CHANNEL TRIGGE R(1) 0 1 0 DMAREQ TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 TA1CCR2 CCIFG 5 TA2CCR0 CCIFG 6 TA2CCR2 CCIFG 7 TBCCR0 CCIFG 8 TBCCR2 CCIFG 9 Reserved 10 Reserved 11 Reserved 12 UCA2RXIFG 13 UCA2TXIFG 14 UCB2RXIFG 15 UCB2TXIFG 16 UCA0RXIFG 17 UCA0TXIFG 18 UCB0RXIFG 19 UCB0TXIFG 20 UCA1RXIFG 21 UCA1TXIFG 22 UCB1RXIFG 23 UCB1TXIFG 24 ADC12IFGx 25 DAC12_0IFG 26 DAC12_1IFG 27 USB FNRXD (2) 28 USB ready (2) 29 74 4 5 DMA3IFG DMA4IFG MPY ready DMA5IFG 31 (2) 3 1 30 (1) 2 DMA0IFG DMA1IFG DMA2IFG DMAE0 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Only on devices with peripheral module USB (MSP430F565x and MSP430F665x), otherwise reserved (MSP430F535x and MSP430F645x). Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.10 Universal Serial Communication Interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B. The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA. The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C. These MCUs include three complete USCI modules (n = 0 to 2). 9.12.11 Timer TA0 Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-14). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/ compare registers. Table 9-14. Timer TA0 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL 34-P1.0 L5-P1.0 TA0CLK MODULE INPUT SIGNAL TACLK ACLK ACLK SMCLK SMCLK 34-P1.0 L5-P1.0 TA0CLK TACLK 35-P1.1 M5-P1.1 TA0.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 36-P1.2 J6-P1.2 TA0.1 CCI1A 40-P1.6 J7-P1.6 TA0.1 CCI1B DVSS GND DVCC VCC 37-P1.3 H6-P1.3 TA0.2 CCI2A 41-P1.7 M7-P1.7 TA0.2 CCI2B DVSS GND 38-P1.4 39-P1.5 M6-P1.4 L6-P1.5 DVCC VCC TA0.3 CCI3A DVSS CCI3B DVSS GND DVCC VCC TA0.4 CCI4A DVSS CCI4B DVSS GND DVCC VCC Copyright © 2020 Texas Instruments Incorporated MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 CCR2 CCR3 CCR4 TA0 TA1 TA2 TA3 TA4 OUTPUT PIN NUMBER PZ ZCA, ZQW 35-P1.1 M5-P1.1 36-P1.2 J6-P1.2 40-P1.6 J7-P1.6 TA0.0 TA0.1 TA0.2 ADC12_A (internal) ADC12SHSx = {1} 37-P1.3 H6-P1.3 41-P1.7 M7-P1.7 38-P1.4 M6-P1.4 39-P1.5 L6-P1.5 TA0.3 TA0.4 Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 75 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.12 Timer TA1 Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-15). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/ compare registers. Table 9-15. Timer TA1 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL 42-P3.0 L7-P3.0 TA1CLK TACLK ACLK ACLK SMCLK SMCLK 42-P3.0 L7-P3.0 TA1CLK TACLK 43-P3.1 H7-P3.1 TA1.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC TA1.1 CCI1A 44-P3.2 45-P3.3 76 MODULE INPUT SIGNAL M8-P3.2 CBOUT (internal) CCI1B DVSS GND DVCC VCC TA1.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC L8-P3.3 Submit Document Feedback MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 TA0 TA1 OUTPUT PIN NUMBER PZ ZCA, ZQW 43-P3.1 H7-P3.1 44-P3.2 M8-P3.2 TA1.0 TA1.1 DAC12_A DAC12_0, DAC12_1 (internal) 45-P3.3 CCR2 TA2 L8-P3.3 TA1.2 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.13 Timer TA2 Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-16). TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/ compare registers. Table 9-16. Timer TA2 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 46-P3.4 J8-P3.4 TA2CLK TACLK ACLK ACLK SMCLK SMCLK 46-P3.4 J8-P3.4 TA2CLK TACLK 47-P3.5 M9-P3.5 TA2.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 48-P3.6 49-P3.7 L9-P3.6 M10-P3.7 TA2.1 CCI1A CBOUT (internal) CCI1B DVSS GND DVCC VCC TA2.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC Copyright © 2020 Texas Instruments Incorporated MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 CCR2 TA0 TA1 TA2 OUTPUT PIN NUMBER PZ ZCA, ZQW 47-P3.5 M9-P3.5 48-P3.6 L9-P3.6 49-P3.7 M10-P3.7 TA2.0 TA2.1 TA2.2 Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 77 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.14 Timer TB0 Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-17). TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/ compare registers. Table 9-17. Timer TB0 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW 58-P8.0 P2MAPx(1) J11-P8.0 P2MAPx(1) MODULE INPUT SIGNAL TB0CLK TB0CLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA OUTPUT PIN NUMBER PZ ZCA, ZQW 58-P8.0 P2MAPx(1) J11-P8.0 P2MAPx(1) TB0CLK TB0CLK 50-P4.0 J9-P4.0 TB0.0 CCI0A 50-P4.0 J9-P4.0 P2MAPx(1) P2MAPx(1) TB0.0 CCI0B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR0 TB0 TB0.0 ADC12 (internal) ADC12SHSx = {2} 51-P4.1 M11-P4.1 TB0.1 CCI1A 51-P4.1 M11-P4.1 P2MAPx(1) P2MAPx(1) TB0.1 CCI1B P2MAPx(1) P2MAPx(1) DVSS GND 52-P4.2 L10-P4.2 P2MAPx(1) P2MAPx(1) CCR1 TB1 TB0.1 ADC12 (internal) ADC12SHSx = {3} DVCC VCC TB0.2 CCI2A 52-P4.2 L10-P4.2 TB0.2 CCI2B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR2 TB2 TB0.2 DAC12_A DAC12_0, DAC12_1 (internal) 53-P4.3 M12-P4.3 TB0.3 CCI3A 53-P4.3 M12-P4.3 P2MAPx(1) P2MAPx(1) TB0.3 CCI3B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR3 TB3 TB0.3 54-P4.4 L12-P4.4 TB0.4 CCI4A 54-P4.4 L12-P4.4 P2MAPx(1) P2MAPx(1) TB0.4 CCI4B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR4 TB4 TB0.4 55-P4.5 L11-P4.5 TB0.5 CCI5A 55-P4.5 L11-P4.5 P2MAPx(1) P2MAPx(1) TB0.5 CCI5B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR5 TB5 TB0.5 56-P4.6 K11-P4.6 TB0.6 CCI6A 56-P4.6 K11-P4.6 P2MAPx(1) P2MAPx(1) TB0.6 CCI6B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC (1) 78 DEVICE INPUT SIGNAL CCR6 TB6 TB0.6 Timer functions are selectable through the port mapping controller. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.15 Comparator_B The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. 9.12.16 ADC12_A The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16 word conversion-and-control buffer. The conversionand-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 9.12.17 DAC12_A The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation. 9.12.18 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 9.12.19 Voltage Reference (REF) Module The REF module generates all critical reference voltages that can be used by the various analog peripherals in the device. 9.12.20 LCD_B The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments. The LCD_B module is available only on the MSP430F665x and MSP430F645x devices. 9.12.21 USB Universal Serial Bus The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and supports a wide range of input clock frequencies. When USB RAM is not used for USB communication, it can be used by the system. The USB module is available only on the MSP430F665x and MSP430F565x devices. 9.12.22 LDO and PU Port The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system. Alternatively, the power system can supply power only to other components within the system, or it can be unused altogether. The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied externally. The LDO-PWR module (LDO and PU Port) is available on only the MSP430F645x and MSP430F535x devices. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 79 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.12.23 Embedded Emulation Module (EEM) (L Version) The EEM supports real-time in-system debugging. The L version of the EEM has the following features: • • • • • • • Eight hardware triggers or breakpoints on memory access Two hardware triggers or breakpoints on CPU register write access Up to 10 hardware triggers can be combined to form complex triggers or breakpoints Two cycle counters Sequencer State storage Clock control on module level 9.12.24 Peripheral File Map Table 9-18 lists the base register address for each available peripheral. Table 9-18. Peripherals BASE ADDRESS OFFSET ADDRESS RANGE(1) Special Functions (see Table 9-19) 0100h 000h to 01Fh PMM (see Table 9-20) 0120h 000h to 010h Flash Control (see Table 9-21) 0140h 000h to 00Fh CRC16 (see Table 9-22) 0150h 000h to 007h RAM Control (see Table 9-23) 0158h 000h to 001h Watchdog (see Table 9-24) 015Ch 000h to 001h UCS (see Table 9-25) 0160h 000h to 01Fh SYS (see Table 9-26) 0180h 000h to 01Fh Shared Reference (see Table 9-27) 01B0h 000h to 001h MODULE NAME 80 Port Mapping Control (see Table 9-28) 01C0h 000h to 003h Port Mapping Port P2 (see Table 9-28) 01D0h 000h to 007h Port P1, P2 (see Table 9-29) 0200h 000h to 01Fh Port P3, P4 (see Table 9-30) 0220h 000h to 01Fh Port P5, P6 (see Table 9-31) 0240h 000h to 00Bh Port P7, P8 (see Table 9-32) 0260h 000h to 00Bh Port P9 (see Table 9-33) 0280h 000h to 00Bh Port PJ (see Table 9-34) 0320h 000h to 01Fh Timer TA0 (see Table 9-35) 0340h 000h to 02Eh Timer TA1 (see Table 9-36) 0380h 000h to 02Eh Timer TB0 (see Table 9-37) 03C0h 000h to 02Eh Timer TA2 (see Table 9-38) 0400h 000h to 02Eh Battery Backup (see Table 9-39) 0480h 000h to 01Fh RTC_B (see Table 9-40) 04A0h 000h to 01Fh 32-Bit Hardware Multiplier (see Table 9-41) 04C0h 000h to 02Fh DMA General Control (see Table 9-42) 0500h 000h to 00Fh DMA Channel 0 (see Table 9-42) 0510h 000h to 00Ah DMA Channel 1 (see Table 9-42) 0520h 000h to 00Ah DMA Channel 2 (see Table 9-42) 0530h 000h to 00Ah DMA Channel 3 (see Table 9-42) 0540h 000h to 00Ah DMA Channel 4 (see Table 9-42) 0550h 000h to 00Ah DMA Channel 5 (see Table 9-42) 0560h 000h to 00Ah USCI_A0 (see Table 9-43) 05C0h 000h to 01Fh USCI_B0 (see Table 9-44) 05E0h 000h to 01Fh Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-18. Peripherals (continued) MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE(1) USCI_A1 (see Table 9-45) 0600h 000h to 01Fh USCI_B1 (see Table 9-46) 0620h 000h to 01Fh USCI_A2 (see Table 9-47) 0640h 000h to 01Fh USCI_B2 (see Table 9-48) 0660h 000h to 01Fh ADC12_A (see Table 9-49) 0700h 000h to 03Fh DAC12_A (see Table 9-50) 0780h 000h to 01Fh Comparator_B (see Table 9-51) 08C0h 000h to 00Fh USB configuration (see Table 9-52) (2) 0900h 000h to 014h 0920h 000h to 01Fh 0900h 000h to 014h 0A00h 000h to 05Fh USB control (see Table 9-53) (2) LDO-PWR; LDO and Port U configuration (see Table 9-54) (3) LCD_B control (see Table 9-55) (1) (2) (3) (4) (4) For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's Guide. Only on devices with peripheral module USB. Only on devices with peripheral module LDO-PWR. Only on devices with peripheral module LCD_B. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 81 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-19. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION SFR interrupt enable SFR interrupt flag SFR reset pin control REGISTER OFFSET SFRIE1 00h SFRIFG1 02h SFRRPCR 04h Table 9-20. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION PMM control 0 PMM control 1 REGISTER OFFSET PMMCTL0 00h PMMCTL1 02h SVS high-side control SVSMHCTL 04h SVS low-side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMMIE 0Eh PM5CTL0 10h PMM interrupt enable PMM power mode 5 control Table 9-21. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 9-22. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION CRC data input CRC result REGISTER OFFSET CRC16DI 00h CRC16INIRES 04h Table 9-23. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER OFFSET RCCTL0 00h Table 9-24. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER OFFSET WDTCTL 00h Table 9-25. UCS Registers (Base Address: 0160h) REGISTER OFFSET UCS control 0 REGISTER DESCRIPTION UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h Table 9-26. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION System control Bootloader configuration area 82 Submit Document Feedback REGISTER OFFSET SYSCTL 00h SYSBSLC 02h Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-26. SYS Registers (Base Address: 0180h) (continued) REGISTER OFFSET JTAG mailbox control REGISTER DESCRIPTION SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch SYSRSTIV 1Eh Reset vector generator Table 9-27. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER OFFSET REFCTL 00h Table 9-28. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P4: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password PMAPPWD 00h Port mapping control PMAPCTL 02h Port P2.0 mapping P2MAP0 00h Port P2.1 mapping P2MAP1 01h Port P2.2 mapping P2MAP2 02h Port P2.3 mapping P2MAP3 03h Port P2.4 mapping P2MAP4 04h Port P2.5 mapping P2MAP5 05h Port P2.6 mapping P2MAP6 06h Port P2.7 mapping P2MAP7 07h Table 9-29. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 resistor enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection Port P1 input P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h P1IE 1Ah P1IFG 1Ch P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 resistor enable P2REN 07h Port P1 interrupt enable Port P1 interrupt flag Port P2 input Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 83 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-29. Port P1, P2 Registers (Base Address: 0200h) (continued) REGISTER OFFSET Port P2 interrupt vector word REGISTER DESCRIPTION P2IV 1Eh Port P2 interrupt edge select P2IES 19h P2IE 1Bh P2IFG 1Dh Port P2 interrupt enable Port P2 interrupt flag Table 9-30. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION Port P3 input REGISTER OFFSET P3IN 00h P3OUT 02h Port P3 direction P3DIR 04h Port P3 resistor enable P3REN 06h Port P3 output Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P3 interrupt vector word P3IV 0Eh Port P3 interrupt edge select P3IES 18h Port P3 interrupt enable Port P3 interrupt flag Port P4 input P3IE 1Ah P3IFG 1Ch P4IN 01h P4OUT 03h Port P4 direction P4DIR 05h Port P4 resistor enable P4REN 07h Port P4 output Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh Port P4 interrupt vector word P4IV 1Eh Port P4 interrupt edge select P4IES 19h Port P4 interrupt enable Port P4 interrupt flag P4IE 1Bh P4IFG 1Dh Table 9-31. Port P5, P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 resistor enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 resistor enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Port P5 input Port P6 input Table 9-32. Port P7, P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION Port P7 input Port P7 output 84 Submit Document Feedback REGISTER OFFSET P7IN 00h P7OUT 02h Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-32. Port P7, P8 Registers (Base Address: 0260h) (continued) REGISTER OFFSET Port P7 direction REGISTER DESCRIPTION P7DIR 04h Port P7 resistor enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 resistor enable P8REN 07h Port P8 input Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 9-33. Port P9 Register (Base Address: 0280h) REGISTER DESCRIPTION Port P9 input REGISTER OFFSET P9IN 00h P9OUT 02h Port P9 direction P9DIR 04h Port P9 resistor enable P9REN 06h Port P9 output Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 9-34. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ resistor enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ input Table 9-35. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION TA0 control REGISTER OFFSET TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h Capture/compare control 3 TA0CCTL3 08h Capture/compare control 4 TA0CCTL4 0Ah TA0 counter TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h Capture/compare 3 TA0CCR3 18h Capture/compare 4 TA0CCR4 1Ah TA0EX0 20h TA0IV 2Eh TA0 expansion 0 TA0 interrupt vector Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 85 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-36. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1R 10h TA1 control TA1 counter Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h Capture/compare 2 TA1CCR2 16h TA1 expansion 0 TA1 interrupt vector TA1EX0 20h TA1IV 2Eh Table 9-37. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION TB0 control REGISTER OFFSET TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h Capture/compare control 3 TB0CCTL3 08h Capture/compare control 4 TB0CCTL4 0Ah Capture/compare control 5 TB0CCTL5 0Ch Capture/compare control 6 TB0CCTL6 0Eh TB0 counter TB0R 10h Capture/compare 0 TB0CCR0 12h Capture/compare 1 TB0CCR1 14h Capture/compare 2 TB0CCR2 16h Capture/compare 3 TB0CCR3 18h Capture/compare 4 TB0CCR4 1Ah Capture/compare 5 TB0CCR5 1Ch Capture/compare 6 TB0CCR6 1Eh TB0 expansion 0 TB0 interrupt vector TB0EX0 20h TB0IV 2Eh Table 9-38. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h Capture/compare control 2 TA2CCTL2 06h TA2R 10h TA2 control TA2 counter Capture/compare 0 TA2CCR0 12h Capture/compare 1 TA2CCR1 14h Capture/compare 2 TA2CCR2 16h TA2EX0 20h TA2IV 2Eh TA2 expansion 0 TA2 interrupt vector 86 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-39. Battery Backup Registers (Base Address: 0480h) REGISTER OFFSET Battery backup memory 0 REGISTER DESCRIPTION BAKMEM0 00h Battery backup memory 1 BAKMEM1 02h Battery backup memory 2 BAKMEM2 04h Battery backup memory 3 BAKMEM3 06h Battery backup control BAKCTL 1Ch Battery charger control BAKCHCTL 1Eh Table 9-40. Real-Time Clock Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTCIV 0Eh RTCSEC 10h RTC interrupt vector word RTC seconds RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTCAMIN 18h RTC alarm minutes RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion BIN2BCD 1Ch BCD-to-binary conversion BCD2BIN 1Eh Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION 16-bit operand 1 – multiply 16-bit operand 1 – signed multiply 16-bit operand 1 – multiply accumulate 16-bit operand 1 – signed multiply accumulate 16-bit operand 2 16 × 16 result low word 16 × 16 result high word 16 × 16 sum extension REGISTER OFFSET MPY 00h MPYS 02h MAC 04h MACS 06h OP2 08h RESLO 0Ah RESHI 0Ch SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 87 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued) REGISTER DESCRIPTION 32-bit operand 1 – signed multiply high word REGISTER OFFSET MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word MPY32 control 0 RES3 2Ah MPY32CTL0 2Ch Table 9-42. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) REGISTER DESCRIPTION REGISTER OFFSET DMA general control: DMA module control 0 DMACTL0 00h DMA general control: DMA module control 1 DMACTL1 02h DMA general control: DMA module control 2 DMACTL2 04h DMA general control: DMA module control 3 DMACTL3 06h DMA general control: DMA module control 4 DMACTL4 08h DMAIV 0Ah DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA0SZ 0Ah DMA general control: DMA interrupt vector DMA channel 0 transfer size DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 control DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah DMA3CTL 00h DMA channel 3 source address low DMA3SAL 02h DMA channel 3 source address high DMA3SAH 04h DMA channel 3 control DMA channel 3 destination address low DMA3DAL 06h DMA channel 3 destination address high DMA3DAH 08h 88 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-42. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued) REGISTER DESCRIPTION DMA channel 3 transfer size REGISTER OFFSET DMA3SZ 0Ah DMA channel 4 control DMA4CTL 00h DMA channel 4 source address low DMA4SAL 02h DMA channel 4 source address high DMA4SAH 04h DMA channel 4 destination address low DMA4DAL 06h DMA channel 4 destination address high DMA4DAH 08h DMA4SZ 0Ah DMA5CTL 00h DMA channel 5 source address low DMA5SAL 02h DMA channel 5 source address high DMA5SAH 04h DMA channel 5 destination address low DMA5DAL 06h DMA channel 5 destination address high DMA5DAH 08h DMA5SZ 0Ah DMA channel 4 transfer size DMA channel 5 control DMA channel 5 transfer size Table 9-43. USCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA0CTL0 00h USCI control 1 UCA0CTL1 01h USCI baud rate 0 UCA0BR0 06h UCA0BR1 07h UCA0MCTL 08h USCI baud rate 1 USCI modulation control USCI status UCA0STAT 0Ah USCI receive buffer UCA0RXBUF 0Ch USCI transmit buffer UCA0TXBUF 0Eh USCI LIN control UCA0ABCTL 10h USCI IrDA transmit control UCA0IRTCTL 12h USCI IrDA receive control UCA0IRRCTL 13h USCI interrupt enable USCI interrupt flags USCI interrupt vector word UCA0IE 1Ch UCA0IFG 1Dh UCA0IV 1Eh Table 9-44. USCI_B0 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB0CTL0 00h USCI synchronous control 1 UCB0CTL1 01h USCI synchronous bit rate 0 UCB0BR0 06h USCI synchronous bit rate 1 UCB0BR1 07h UCB0STAT 0Ah USCI synchronous receive buffer USCI synchronous status UCB0RXBUF 0Ch USCI synchronous transmit buffer UCB0TXBUF 0Eh USCI I2C own address UCB0I2COA 10h USCI I2C slave address UCB0I2CSA 12h UCB0IE 1Ch UCB0IFG 1Dh USCI interrupt enable USCI interrupt flags Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 89 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-44. USCI_B0 Registers (Base Address: 05E0h) (continued) REGISTER DESCRIPTION USCI interrupt vector word REGISTER OFFSET UCB0IV 1Eh Table 9-45. USCI_A1 Registers (Base Address: 0600h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA1CTL0 00h USCI control 1 UCA1CTL1 01h USCI baud rate 0 UCA1BR0 06h USCI baud rate 1 USCI modulation control USCI status UCA1BR1 07h UCA1MCTL 08h UCA1STAT 0Ah USCI receive buffer UCA1RXBUF 0Ch USCI transmit buffer UCA1TXBUF 0Eh USCI LIN control UCA1ABCTL 10h USCI IrDA transmit control UCA1IRTCTL 12h USCI IrDA receive control UCA1IRRCTL 13h USCI interrupt enable USCI interrupt flags USCI interrupt vector word UCA1IE 1Ch UCA1IFG 1Dh UCA1IV 1Eh Table 9-46. USCI_B1 Registers (Base Address: 0620h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB1CTL0 00h USCI synchronous control 1 UCB1CTL1 01h USCI synchronous bit rate 0 UCB1BR0 06h USCI synchronous bit rate 1 UCB1BR1 07h UCB1STAT 0Ah USCI synchronous receive buffer USCI synchronous status UCB1RXBUF 0Ch USCI synchronous transmit buffer UCB1TXBUF 0Eh USCI I2C own address UCB1I2COA 10h USCI I2C slave address UCB1I2CSA 12h UCB1IE 1Ch UCB1IFG 1Dh UCB1IV 1Eh USCI interrupt enable USCI interrupt flags USCI interrupt vector word Table 9-47. USCI_A2 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA2CTL0 00h USCI control 1 UCA2CTL1 01h USCI baud rate 0 UCA2BR0 06h USCI baud rate 1 UCA2BR1 07h USCI modulation control UCA2MCTL 08h USCI status UCA2STAT 0Ah USCI receive buffer UCA2RXBUF 0Ch USCI transmit buffer UCA2TXBUF 0Eh USCI LIN control UCA2ABCTL 10h USCI IrDA transmit control UCA2IRTCTL 12h USCI IrDA receive control UCA2IRRCTL 13h 90 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-47. USCI_A2 Registers (Base Address: 0640h) (continued) REGISTER DESCRIPTION USCI interrupt enable USCI interrupt flags USCI interrupt vector word REGISTER OFFSET UCA2IE 1Ch UCA2IFG 1Dh UCA2IV 1Eh Table 9-48. USCI_B2 Registers (Base Address: 0660h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB2CTL0 00h USCI synchronous control 1 UCB2CTL1 01h USCI synchronous bit rate 0 UCB2BR0 06h USCI synchronous bit rate 1 UCB2BR1 07h USCI synchronous status UCB2STAT 0Ah USCI synchronous receive buffer UCB2RXBUF 0Ch USCI synchronous transmit buffer UCB2TXBUF 0Eh USCI I2C own address UCB2I2COA 10h USCI I2C slave address UCB2I2CSA 12h USCI interrupt enable USCI interrupt flags USCI interrupt vector word UCB2IE 1Ch UCB2IFG 1Dh UCB2IV 1Eh Table 9-49. ADC12_A Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET ADC12 control 0 ADC12CTL0 00h ADC12 control 1 ADC12CTL1 02h ADC12 control 2 ADC12CTL2 04h ADC12IFG 0Ah Interrupt enable ADC12IE 0Ch Interrupt vector word ADC12IV 0Eh ADC memory control 0 ADC12MCTL0 10h ADC memory control 1 ADC12MCTL1 11h ADC memory control 2 ADC12MCTL2 12h ADC memory control 3 ADC12MCTL3 13h ADC memory control 4 ADC12MCTL4 14h ADC memory control 5 ADC12MCTL5 15h ADC memory control 6 ADC12MCTL6 16h ADC memory control 7 ADC12MCTL7 17h ADC memory control 8 ADC12MCTL8 18h ADC memory control 9 ADC12MCTL9 19h ADC memory control 10 ADC12MCTL10 1Ah ADC memory control 11 ADC12MCTL11 1Bh ADC memory control 12 ADC12MCTL12 1Ch ADC memory control 13 ADC12MCTL13 1Dh ADC memory control 14 ADC12MCTL14 1Eh ADC memory control 15 ADC12MCTL15 1Fh Conversion memory 0 ADC12MEM0 20h Conversion memory 1 ADC12MEM1 22h Conversion memory 2 ADC12MEM2 24h Interrupt flag Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 91 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-49. ADC12_A Registers (Base Address: 0700h) (continued) REGISTER OFFSET Conversion memory 3 REGISTER DESCRIPTION ADC12MEM3 26h Conversion memory 4 ADC12MEM4 28h Conversion memory 5 ADC12MEM5 2Ah Conversion memory 6 ADC12MEM6 2Ch Conversion memory 7 ADC12MEM7 2Eh Conversion memory 8 ADC12MEM8 30h Conversion memory 9 ADC12MEM9 32h Conversion memory 10 ADC12MEM10 34h Conversion memory 11 ADC12MEM11 36h Conversion memory 12 ADC12MEM12 38h Conversion memory 13 ADC12MEM13 3Ah Conversion memory 14 ADC12MEM14 3Ch Conversion memory 15 ADC12MEM15 3Eh Table 9-50. DAC12_A Registers (Base Address: 0780h) REGISTER DESCRIPTION REGISTER OFFSET DAC12_A channel 0 control 0 DAC12_0CTL0 00h DAC12_A channel 0 control 1 DAC12_0CTL1 02h DAC12_A channel 0 data DAC12_0DAT 04h DAC12_A channel 0 calibration control DAC12_0CALCTL 06h DAC12_A channel 0 calibration data DAC12_0CALDAT 08h DAC12_A channel 1 control 0 DAC12_1CTL0 10h DAC12_A channel 1 control 1 DAC12_1CTL1 12h DAC12_A channel 1 data DAC12_1DAT 14h DAC12_A channel 1 calibration control DAC12_1CALCTL 16h DAC12_A channel 1 calibration data DAC12_1CALDAT 18h DAC12IV 1Eh DAC12_A interrupt vector word Table 9-51. Comparator_B Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comp_B control 0 CBCTL0 00h Comp_B control 1 CBCTL1 02h Comp_B control 2 CBCTL2 04h Comp_B control 3 CBCTL3 06h Comp_B interrupt CBINT 0Ch CBIV 0Eh Comp_B interrupt vector word Table 9-52. USB Configuration Registers (Base Address: 0900h) REGISTER DESCRIPTION USB key/ID USB module configuration REGISTER OFFSET USBKEYID 00h USBCNF 02h USB PHY control USBPHYCTL 04h USB power control USBPWRCTL 08h USB power voltage setting USBPWRVSR 0Ah USB PLL control USBPLLCTL 10h USB PLL divider USBPLLDIV 12h 92 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-52. USB Configuration Registers (Base Address: 0900h) (continued) REGISTER DESCRIPTION USB PLL interrupts Copyright © 2020 Texas Instruments Incorporated REGISTER OFFSET USBPLLIR 14h Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 93 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-53. USB Control Registers (Base Address: 0920h) REGISTER DESCRIPTION Input endpoint_0 configuration Input endpoint_0 byte count Output endpoint_0 configuration Output endpoint _0 byte count REGISTER OFFSET USBIEPCNF_0 00h USBIEPCNT_0 01h USBOEPCNFG_0 02h USBOEPCNT_0 03h USBIEPIE 0Eh Output endpoint interrupt enables USBOEPIE 0Fh Input endpoint interrupt flags USBIEPIFG 10h Output endpoint interrupt flags USBOEPIFG 11h Input endpoint interrupt enables USB interrupt vector USBIV 12h USB maintenance USBMAINT 16h Timestamp USBTSREG 18h USB frame number USBFN 1Ah USB control USBCTL 1Ch USBIE 1Dh USBIFG 1Eh USBFUNADR 1Fh USB interrupt enables USB interrupt flags Function address Table 9-54. LDO and Port U Configuration Registers (Base Address: 0900h) REGISTER DESCRIPTION LDO key/ID PU port control LDO power control REGISTER OFFSET LDOKEYID 00h PUCTL 04h LDOPWRCTL 08h Table 9-55. LCD_B Registers (Base Address: 0A00h) REGISTER DESCRIPTION REGISTER OFFSET LCD_B control 0 LCDBCTL0 000h LCD_B control 1 LCDBCTL1 002h LCD_B blinking control LCDBBLKCTL 004h LCD_B memory control LCDBMEMCTL 006h LCD_B voltage control LCDBVCTL 008h LCD_B port control 0 LCDBPCTL0 00Ah LCD_B port control 1 LCDBPCTL1 00Ch LCD_B port control 2 LCDBPCTL2 00Eh LCD_B charge pump control LCDBCTL0 012h LCD_B interrupt vector word LCDBIV 01Eh LCD_B memory 1 LCDM1 020h LCD_B memory 2 LCDM2 021h ⋮ ⋮ LCD_B memory 22 ⋮ LCDM22 035h LCD_B blinking memory 1 LCDBM1 040h LCD_B blinking memory 2 LCDBM2 041h ⋮ LCD_B blinking memory 22 94 Submit Document Feedback ⋮ ⋮ LCDBM22 055h Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13 Input/Output Diagrams 9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger Figure 9-2 shows the port diagram. Table 9-56 summarizes selection of the pin functions. Pad Logic S32...S39 LCDS32...LCDS39 P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN Module X IN 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 D P1IE.x EN P1IRQ.x Q P1IFG.x Set P1SEL.x Interrupt Edge Select P1IES.x Figure 9-2. Port P1 (P1.0 to P1.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 95 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-56. Port P1 (P1.0 to P1.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P1.x) x FUNCTION P1.0 (I/O) P1.0/TA0CLK/ACLK/ S39 0 Timer TA0.TA0CLK 1 2 3 4 5 6 0 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI0A capture input Timer TA0.0 output 1 1 0 S38 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI1A capture input Timer TA0.1 output 1 1 0 S37 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI2A capture input Timer TA0.2 output 1 1 0 S36 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI3A capture input Timer TA0.3 output 1 1 0 S35 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI4A capture input Timer TA0.4 output 1 1 0 S34 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA0.CCI1B capture input Timer TA0.1 output 1 1 0 S33 X X 1 I: 0; O: 1 0 0 0 1 0 P1.7 (I/O) P1.7/TA0.2/S32 (1) 96 7 0 1 P1.6 (I/O) P1.6/TA0.1/S33 0 1 X P1.5 (I/O) P1.5/TA0.4/S34 0 0 1 P1.4 (I/O) P1.4/TA0.3/S35 I: 0; O: 1 X P1.3 (I/O) P1.3/TA0.2/S36 LCDS32... LCDS39 S39 P1.2 (I/O) P1.2/TA0.1/S37 P1SEL.x ACLK P1.1 (I/O) P1.1/TA0.0/S38 P1DIR.x Timer TA0.CCI2B capture input Timer TA0.2 output 1 1 0 S32 X X 1 X = Don't care Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger Figure 9-3 shows the port diagram. Table 9-57 summarizes selection of the pin functions. Pad Logic To LCD_B From LCD_B P2REN.x P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x From Port Mapping P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6/R03 P2.7/P2MAP7/LCDREF/R13 EN To Port Mapping D P2IE.x EN P2IRQ.x Q P2IFG.x Set P2SEL.x Interrupt Edge Select P2IES.x Figure 9-3. Port P2 (P2.0 to P2.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 97 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-57. Port P2 (P2.0 to P2.7) Pin Functions PIN NAME (P2.x) x P2.0/P2MAP0 0 P2.1/P2MAP1 1 P2.2/P2MAP2 2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 3 4 5 FUNCTION P2.0 (I/O) Mapped secondary digital function P2.1 (I/O) Mapped secondary digital function P2.2 (I/O) Mapped secondary digital function P2.3 (I/O) Mapped secondary digital function P2.4 (I/O) Mapped secondary digital function P2.5 (I/O Mapped secondary digital function P2.6 (I/O) P2.6/P2MAP6/R03 6 Mapped secondary digital function R03 P2.7 (I/O) P2.7/P2MAP7/ LCDREF/R13 7 Mapped secondary digital function LCDREF/R13 (1) 98 CONTROL BITS OR SIGNALS(1) P2DIR.x P2SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 P2MAPx ≤ 19 ≤ 19 ≤ 19 ≤ 19 ≤ 19 X 1 I: 0; O: 1 0 ≤ 19 X 1 ≤ 19 X 1 = 31 I: 0; O: 1 0 X 1 ≤ 19 X 1 = 31 X = Don't care Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger Figure 9-4 shows the port diagram. Table 9-58 summarizes selection of the pin functions. Pad Logic S24...S31 LCDS24...LCDS31 P3REN.x P3DIR.x 0 0 Module X OUT 1 0 DVCC 1 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN Module X IN 1 Direction 0: Input 1: Output 1 P3OUT.x DVSS P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 D P3IE.x EN P3IRQ.x Q P3IFG.x Set P3SEL.x Interrupt Edge Select P3IES.x Figure 9-4. Port P3 (P3.0 to P3.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 99 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-58. Port P3 (P3.0 to P3.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P3.x) x FUNCTION P3.0 (I/O) P3.0/TA1CLK/ CBOUT/S31 0 Timer TA1.TA1CLK 1 2 3 4 5 6 0 1 I: 0; O: 1 0 0 0 1 0 Timer TA1.CCI0A capture input Timer TA1.0 output 1 1 0 S30 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA1.CCI1A capture input Timer TA1.1 output 1 1 0 S29 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA1.CCI2A capture input Timer TA1.2 output 1 1 0 S28 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA2.TA2CLK SMCLK 1 1 0 S27 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA2.CCI0A capture input Timer TA2.0 output 1 1 0 S26 X X 1 I: 0; O: 1 0 0 0 1 0 Timer TA2.CCI1A capture input Timer TA2.1 output 1 1 1 S25 X X 1 I: 0; O: 1 0 0 0 1 0 P3.7 (I/O) P3.7/TA2.2/S24 (1) 100 7 0 1 P3.6 (I/O) P3.6/TA2.1/S25 0 1 X P3.5 (I/O) P3.5/TA2.0/S26 0 0 1 P3.4 (I/O) P3.4/TA2CLK/ SMCLK/S27 I: 0; O: 1 X P3.3 (I/O) P3.3/TA1.2/S28 LCDS24... LCDS31 CBOUT P3.2 (I/O) P3.2/TA1.1/S29 P3SEL.x S31 P3.1 (I/O) P3.1/TA1.0/S30 P3DIR.x Timer TA2.CCI2A capture input Timer TA2.2 output 1 1 0 S24 X X 1 X = Don't care Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger Figure 9-5 shows the port diagram. Table 9-59 summarizes selection of the pin functions. Pad Logic S16...S23 LCDS16...LCDS23 P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 P4DS.x 0: Low drive 1: High drive P4SEL.x P4IN.x Bus Keeper EN Module X IN 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0.0/S23 P4.1/TB0.1/S22 P4.2/TB0.2/S21 P4.3/TB0.3/S20 P4.4/TB0.4/S19 P4.5/TB0.5/S18 P4.6/TB0.6/S17 P4.7/TB0OUTH/SVMOUT/S16 D P4IE.x EN P4IRQ.x Q P4IFG.x Set P4SEL.x Interrupt Edge Select P4IES.x Figure 9-5. Port P4 (P4.0 to P4.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 101 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-59. Port P4 (P4.0 to P4.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/TB0.0/S23 0 Timer TB0.CCI0A capture input Timer TB0.0 output(2) S23 P4.1 (I/O) P4.1/TB0.1/S22 1 Timer TB0.CCI1A capture input Timer TB0.1 output(2) S22 P4.2 (I/O) P4.2/TB0.2/S21 2 Timer TB0.CCI2A capture input Timer TB0.2 output(2) S21 P4.3 (I/O) P4.3/TB0.3/S20 3 Timer TB0.CCI3A capture input Timer TB0.3 output(2) S20 P4.4 (I/O) P4.4/TB0.4/S19 4 Timer TB0.CCI4A capture input Timer TB0.4 output(2) S19 P4.5 (I/O) P4.5/TB0.5/S18 5 Timer TB0.CCI5A capture input Timer TB0.5 output(2) S18 P4.6 (I/O) P4.6/TB0.6/S17 6 Timer TB0.CCI6A capture input Timer TB0.6 output(2) S17 P4.7 (I/O) P4.7/TB0OUTH/ SVMOUT/S16 (1) (2) 102 7 Timer TB0.TB0OUTH P4DIR.x P4SEL.x LCDS16... LCDS23 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 SVMOUT 1 1 0 S16 X X 1 X = Don't care Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger Figure 9-6 shows the port diagram. Table 9-60 summarizes selection of the pin functions. Pad Logic To/From Reference P5REN.x P5DIR.x DVSS 0 DVCC 1 1 0 1 P5OUT.x 0 Module X OUT 1 P5.0/VREF+/VeREF+ P5.1/VREF–/VeREF– P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper EN Module X IN D Figure 9-6. Port P5 (P5.0 and P5.1) Diagram Table 9-60. Port P5 (P5.0 and P5.1) Pin Functions PIN NAME (P5.x) x FUNCTION P5.0 P5.0/VREF+/VeREF+ (I/O)(2) 0 VeREF+(3) VREF+(4) P5.1 (I/O)(2) P5.1/VREF–/VeREF– 1 VeREF–(5) VREF–(6) (1) (2) (3) (4) (5) (6) CONTROL BITS OR SIGNALS(1) P5DIR.x P5SEL.x REFOUT I: 0; O: 1 0 X X 1 0 X 1 1 I: 0; O: 1 0 X X 1 0 X 1 1 X = Don't care Default condition Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A. Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin. Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A. Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF– reference is available at the pin. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 103 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.6 Port P5 (P5.2 to P5.7) Input/Output With Schmitt Trigger Figure 9-7 shows the port diagram. Table 9-61 summarizes selection of the pin functions. Pad Logic S40...S42 LCDS40...LCDS42 P5REN.x P5DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5OUT.x DVSS P5.2/R23 P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P5.6/ADC12CLK/DMAE0 P5.7/RTCCLK P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper EN D Module X IN Figure 9-7. Port P5 (P5.2 to P5.7) Diagram Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P5.x) P5.2/R23 x 2 FUNCTION P5.2 (I/O) R23 P5.3 (I/O) P5.3/COM1/S42 LCDS40... LCDS42 I: 0; O: 1 0 N/A X 1 N/A I: 0; O: 1 0 0 X 1 X S42 X 0 1 I: 0; O: 1 0 0 X 1 X P5.4 (I/O) S41 X 0 1 I: 0; O: 1 0 0 5 COM3 X 1 X S40 X 0 1 I: 0; O: 1 0 N/A 1 1 N/A P5.5 (I/O) P5.5/COM3/S40 P5SEL.x 3 COM1 4 COM2 P5.4/COM2/S41 P5DIR.x P5.6 (I/O) P5.6/ADC12CLK/DMAE0 6 ADC12CLK DMAE0 0 1 N/A P5.7/RTCCLK 7 P5.7 (I/O) I: 0; O: 1 0 N/A 104 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions (continued) CONTROL BITS OR SIGNALS(1) PIN NAME (P5.x) x FUNCTION RTCCLK (1) P5DIR.x P5SEL.x LCDS40... LCDS42 1 1 N/A X = Don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 105 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.7 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger Figure 9-8 shows the port diagram. Table 9-62 summarizes selection of the pin functions. Pad Logic To ADC12 INCHx = y 0 Dvss 1 From DAC12_A 2 0 if DAC12AMPx=0 1 if DAC12AMPx=1 2 if DAC12AMPx>1 To Comparator_B From Comparator_B CBPD.x DAC12AMPx>0 DAC12OPS P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper P6.0/CB0/A0 P6.1/CB1/A1 P6.2/CB2/A2 P6.3/CB3/A3 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 Figure 9-8. Port P6 (P6.0 to P6.7) Diagram 106 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-62. Port P6 (P6.0 to P6.7) Pin Functions PIN NAME (P6.x) x FUNCTION P6.0 (I/O) P6.0/CB0/A0 0 CB0 A0(2) (3) 1 2 3 5 (1) (2) (3) N/A N/A N/A N/A CB1 X X 1 N/A N/A A1(2) (3) X 1 X N/A N/A I: 0; O: 1 0 0 N/A N/A CB2 X X 1 N/A N/A A2(2) (3) X 1 X N/A N/A I: 0; O: 1 0 0 N/A N/A X X 1 N/A N/A CB3 X 1 X N/A N/A I: 0; O: 1 0 0 N/A N/A CB4 X X 1 N/A N/A A4(2) (3) X 1 X N/A N/A I: 0; O: 1 0 0 N/A N/A X X 1 N/A N/A CB5 X 1 X N/A N/A I: 0; O: 1 0 0 X 0 CB6 X X 1 X 0 A6(2) (3) X 1 X X 0 DAC0 7 N/A 1 N/A X X X 0 >1 I: 0; O: 1 0 0 X 0 CB7 X X 1 X 0 A7(2) (3) X 1 X X 0 DAC1 X X X 0 >1 P6.7 (I/O) P6.7/CB7/A7/DAC1 0 X N/A P6.6 (I/O) 6 0 X N/A A5(2) (3) P6.6/CB6/A6/DAC0 I: 0; O: 1 0 P6.5 (I/O) P6.5/CB5/A5 DAC12AMPx X P6.4 (I/O) 4 DAC12OPS 0 A3(2) (3) P6.4/CB4/A4 CBPD.x 1 P6.3 (I/O) P6.3/CB3/A3 P6SEL.x X P6.2 (I/O) P6.2/CB2/A2 P6DIR.x I: 0; O: 1 P6.1 (I/O) P6.1/CB1/A1 CONTROL BITS OR SIGNALS(1) X = Don't care Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 107 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.8 Port P7 (P7.2) Input/Output With Schmitt Trigger Figure 9-9 shows the port diagram. Table 9-63 summarizes selection of the pin functions. Pad Logic To XT2 P7REN.2 P7DIR.2 DVSS 0 DVCC 1 1 0 1 P7OUT.2 P7DS.2 0: Low drive 1: High drive P7SEL.2 P7.2/XT2IN P7IN.2 Bus Keeper Figure 9-9. Port P7 (P7.2) Diagram 108 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.9 Port P7 (P7.3) Input/Output With Schmitt Trigger Figure 9-10 shows the port diagram. Table 9-63 summarizes selection of the pin functions. Pad Logic To XT2 P7REN.3 P7DIR.3 DVSS 0 DVCC 1 1 0 1 P7OUT.3 P7SEL.2 P7.3/XT2OUT P7DS.3 0: Low drive 1: High drive XT2BYPASS P7SEL.3 P7IN.3 Bus Keeper Figure 9-10. Port P7 (P7.3) Diagram Table 9-63. Port P7 (P7.2 and P7.3) Pin Functions PIN NAME (P7.x) x FUNCTION P7DIR.x P7SEL.2 P7SEL.3 XT2BYPASS I: 0; O: 1 0 X X mode(2) X 1 X 0 XT2IN bypass mode(2) X 1 X 1 I: 0; O: 1 0 0 X X 1 X 0 X 1 0 1 P7.2 (I/O) P7.2/XT2IN 2 XT2IN crystal P7.3 (I/O) P7.3/XT2OUT 3 XT2OUT crystal mode(3) P7.3 (1) (2) (3) CONTROL BITS OR SIGNALS(1) (I/O)(3) X = Don't care Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode. Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 109 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.10 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger Figure 9-11 shows the port diagram. Table 9-64 summarizes selection of the pin functions. 0 DVSS 1 From DAC12_A 2 Pad Logic 0 if DAC12AMPx = 0 1 if DAC12AMPx = 1 2 if DAC12AMPx > 1 To ADC12 INCHx = y To Comparator_B From Comparator_B CBPD.x DAC12AMPx>0 DAC12OPS P7REN.x P7SEL.x DVSS 0 DVCC 1 1 P7DIR.x P7OUT.x P7DS.x 0: Low drive 1: High drive P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P7IN.x Bus Keeper Figure 9-11. Port P7 (P7.4 to P7.7) Diagram 110 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-64. Port P7 (P7.4 to P7.7) Pin Functions PIN NAME (P7.x) x FUNCTION P7.4 (I/O) P7.4/CB8/A12 4 P7.5/CB9/A13 5 P7.6/CB10/A14/DAC0 6 (1) (2) (3) 7 P7DIR.x P7SEL.x CBPD.x DAC12OPS DAC12AMPx I: 0; O: 1 0 0 N/A N/A X X 1 N/A N/A A12(2) (3) X 1 X N/A N/A P7.5 (I/O) I: 0; O: 1 0 0 N/A N/A Comparator_B input CB8 Comparator_B input CB9 X X 1 N/A N/A A13(2) (3) X 1 X N/A N/A P7.6 (I/O) I: 0; O: 1 0 0 X 0 Comparator_B input CB10 X X 1 X 0 A14(2) (3) X 1 X X 0 DAC12_A output DAC0 P7.7/CB11/A15/DAC1 CONTROL BITS OR SIGNALS(1) X X X 1 >1 P7.7 (I/O) I: 0; O: 1 0 0 X 0 A15(2) (3) X 1 X X 0 DAC12_A output DAC1 X X X 1 >1 X = Don't care Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 111 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.11 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger Figure 9-12 shows the port diagram. Table 9-65 summarizes selection of the pin functions. Pad Logic S8...S15 LCDS8...LCDS15 P8REN.x P8DIR.x 0 From module 1 P8OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN Module X IN 1 Bus Keeper P8.0/TB0CLK/S15 P8.1/UCB1STE/UCA1CLK/S14 P8.2/UCA1TXD/UCA1SIMO/S13 P8.3/UCA1RXD/UCA1SOMI/S12 P8.4/UCB1CLK/UCA1STE/S11 P8.5/UCB1SIMO//UCB1SDA/S10 P8.6/UCB1SOMI/UCB1SCL/S9 P8.7/S8 D Figure 9-12. Port P8 (P8.0 to P8.7) Diagram 112 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-65. Port P8 (P8.0 to P8.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P9.x) x FUNCTION P8.0 (I/O) P8.0/TB0CLK/S15 0 Timer TB0.TB0CLK clock input S15 P8.1 (I/O) P8.1/UCB1STE/UCA1CLK/S14 1 UCB1STE/UCA1CLK S14 P8.2 (I/O) P8.2/UCA1TXD/UCA1SIMO/S13 2 UCA1TXD/UCA1SIMO S13 P8.3 (I/O) P8.3/UCA1RXD/UCA1SOMI/S12 3 UCA1RXD/UCA1SOMI S12 P8.4 (I/O) P8.4/UCB1CLK/UCA1STE/S11 4 UCB1CLK/UCA1STE S11 P8.5 (I/O) P8.5/UCB1SIMO/UCB1SDA/S10 5 UCB1SIMO/UCB1SDA S10 P8.6 (I/O) P8.6/UCB1SOMI/UCB1SCL/S9 6 UCB1SOMI/UCB1SCL S9 P8.7/S8 (1) 7 P8.7 (I/O) S8 P8DIR.x P8SEL.x LCDS8... LCDS15 I: 0; O: 1 0 0 0 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X X 1 X = Don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 113 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.12 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger Figure 9-13 shows the port diagram. Table 9-66 summarizes selection of the pin functions. Pad Logic S0...S7 LCDS0...LCDS7 P9REN.x P9DIR.x 0 From module 1 P9OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x EN Module X IN 1 Bus Keeper P9.0/S7 P9.1/UCB2STE/UCA2CLK/S6 P9.2/UCA2TXD/UCA2SIMO/S5 P9.3/UCA2RXD/UCA2SOMI/S4 P9.4/UCB2CLK/UCA2STE/S3 P9.5/UCB2SIMO//UCB2SDA/S2 P9.6/UCB2SOMI/UCB2SCL/S1 P9.7/S0 D Figure 9-13. Port P9 (P9.0 to P9.7) Diagram 114 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-66. Port P9 (P9.0 to P9.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P9.x) x FUNCTION P9.0 (I/O) P9.0/S7 0 P9.1/UCB2STE/UCA2CLK/S6 1 UCB2STE/UCA2CLK S7 P9.1 (I/O) S6 P9.2 (I/O) P9.2/UCA2TXD/UCA2SIMO/S5 2 UCA2TXD/UCA2SIMO S5 P9.3 (I/O) P9.3/UCA2RXD/UCA2SOMI/S4 3 UCA2RXD/UCA2SOMI S4 P9.4 (I/O) P9.4/UCB2CLK/UCA2STE/S3 4 UCB2CLK/UCA2STE S3 P9.5 (I/O) P9.5/UCB2SIMO/UCB2SDA/S2 5 UCB2SIMO/UCB2SDA S2 P9.6 (I/O) P9.6/UCB2SOMI/UCB2SCLK/S1 6 UCB2SOMI/UCB2SCLK S1 P9.7/S0 (1) 7 P9.7 (I/O) S0 P9SEL.x LCDS0... LCDS7 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 P9DIR.x X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 X X 1 X = Don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 115 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.13 Port PU (PU.0/DP, PU.1/DM, PUR) USB Ports (F665x, F565x) Figure 9-14 shows the port diagram. Table 9-67 and Table 9-68 summarize selection of the pin functions. PUSEL PUOPE 0 USB output enable 1 PUOUT0 0 USB DP output 1 VUSB VSSU Pad Logic PU.0/DP PUIN0 USB DP input PUIPE PUIN1 USB DM input PUOUT1 0 USB DM output 1 PU.1/DM VUSB VSSU Pad Logic PUREN “1 ” PUR PUSEL PURIN Figure 9-14. Port PU (PU.0 and PU.1) Diagram (F665x, F565x) 116 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 Table 9-67. Port PU (PU.0, PU.1) Functions (F665x, F565x) PUSEL PUIPE PUOPE PUOUT1 PUOUT0 PU.1/DM PU.0/DP PORT U FUNCTION 0 0 1 0 0 Output low Output low Outputs enabled 0 0 1 0 1 Output low Output high Outputs enabled 0 0 1 1 0 Output high Output low Outputs enabled 0 0 1 1 1 Output high Output high Outputs enabled 0 1 0 X X Input enabled Input enabled Inputs enabled 0 0 0 X X Hi-Z Hi-Z Outputs and inputs disabled 1 X X X X DM DP Direction set by USB module Table 9-68. Port PU (PUR) Input Functions (F665x, F565x) CONTROL BITS FUNCTION PUSEL PUREN 0 0 Input disabled Pullup disabled 0 1 Input disabled Pullup enabled 1 0 Input enabled Pullup disabled 1 1 Input enabled Pullup enabled Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 117 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.14 Port PU (PU.0 and PU.1) Ports (F645x, F535x) Figure 9-15 shows the port diagram. Table 9-69 summarizes selection of the pin functions. LDOO VSSU Pad Logic PUOPE PU.0 PUOUT0 PUIN0 PUIPE PUIN1 PU.1 PUOUT1 Figure 9-15. Port PU (PU.0 and PU.1) Diagram (F645x, F535x) Table 9-69. Port PU (PU.0 and PU.1) Functions (F645x, F535x) (1) 118 PUIPE(1) PUOPE PUOUT1 PUOUT0 PU.1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 X X 0 0 X X Hi-Z PU.0 PORT U FUNCTION Output low Output low Outputs enabled Output low Output high Outputs enabled Output high Output low Outputs enabled Output high Output high Outputs enabled Input enabled Input enabled Inputs enabled Hi-Z Outputs and inputs disabled PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.15 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output Figure 9-16 shows the port diagram. Table 9-70 summarizes selection of the pin functions. Pad Logic PJREN.0 PJDIR.0 0 DVCC 1 PJOUT.0 0 From JTAG 1 DVSS 0 DVCC 1 1 PJ.0/TDO PJDS.0 0: Low drive 1: High drive From JTAG PJIN.0 EN D Figure 9-16. Port PJ (PJ.0) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 119 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.13.16 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Figure 9-17 shows the port diagram. Table 9-70 summarizes selection of the pin functions. Pad Logic PJREN.x PJDIR.x 0 DVSS 1 PJOUT.x 0 From JTAG 1 DVSS 0 DVCC 1 1 PJDS.x 0: Low drive 1: High drive From JTAG PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK PJIN.x EN D To JTAG Figure 9-17. Port PJ (PJ.1 to PJ.3) Diagram Table 9-70. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) x CONTROL BITS OR SIGNALS(1) FUNCTION PJDIR.x PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK (1) (2) (3) (4) 120 0 1 2 3 PJ.0 (I/O)(2) I: 0; O: 1 TDO(3) PJ.1 X (I/O)(2) I: 0; O: 1 TDI/TCLK(3) (4) PJ.2 X (I/O)(2) I: 0; O: 1 TMS(3) (4) PJ.3 X (I/O)(2) I: 0; O: 1 TCK(3) (4) X X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 9.14 Device Descriptors Table 9-71 lists the contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 9-71. Device Descriptor Table Info Block Die Record ADC12 Calibration REF Calibration (1) VALUE ADDRESS SIZE (bytes) F6659 F6658 F6459 F6458 F5659 F5658 F5359 F5358 Info length 01A00h 1 06h 06h 06h 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Device ID 01A04h 2 812Bh 812Ch 812Dh 812Eh 8130h 8131h 8132h 8133h Hardware revision 01A06h 1 10h 10h 10h 10h 10h 10h 10h 10h Firmware revision 01A07h 1 10h 10h 10h 10h 10h 10h 10h 10h Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah DESCRIPTION(1) Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC12 calibration tag 01A14h 1 11h 11h 11h 11h 11h 11h 11h 11h ADC12 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC offset 01A18h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference temperature sensor 30°C 01A1Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference temperature sensor 85°C 01A1Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference temperature sensor 30°C 01A22h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference temperature sensor 85°C 01A24h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit 12h REF calibration tag 01A26h 1 12h 12h 12h 12h 12h 12h 12h REF calibration length 01A27h 1 06h 06h 06h 06h 06h 06h 06h 06h REF 1.5-V reference factor 01A28h 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit REF 2.0-V reference factor 01A2Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit REF 2.5-V reference factor 01A2Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit N/A = Not applicable Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 121 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 10 Device and Documentation Support 10.1 Getting Started and Next Steps For more information on the MSP430™ family of devices and the tools and libraries that are available to help with your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview. 10.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP). XMS – Experimental device that is not necessarily representative of the final device's electrical specifications MSP – Fully qualified production device XMS devices are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device name. 122 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 MSP 430 F 5 438 A I PM T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family MCU Platform Optional: Temperature Range Optional: Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash L = No nonvolatile memory Specialized Application AFE = Analog front end BQ = Contactless power CG = ROM medical FE = Flash energy meter FG = Flash medical FW = Flash electronic flow meter Series 1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD driver 5 = Up to 25 MHz 6 = Up to 25 MHz with LCD driver 0 = Low-voltage series Feature Set Various levels of integration within a series Optional: Revision Updated version of the base part number Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small reel R = Large reel No markings = Tube or tray Optional: Additional Features -EP = Enhanced product (–40°C to 105°C) -HT = Extreme temperature parts (–55°C to 150°C) -Q1 = Automotive Q100 qualified Figure 10-1. Device Nomenclature Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 123 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 10.3 Tools and Software All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Design & development. Table 10-1 lists the debug features of the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x MCUs. See the Code Composer Studio IDE for MSP430 MCUs User's Guide for details on the available features. Table 10-1. Hardware Debug Features MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS (N) RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMx.5 DEBUGGING SUPPORT MSP430Xv2 Yes Yes 8 Yes Yes Yes Yes Yes Design Kits and Evaluation Modules MSP-TS430PZ100USB - 100-pin Target Development Board for MSP430F5x and MSP430F6x MCUs The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. 100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x and MSP430F6x MCUs The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The MSP-FET is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. MSP430F5529 USB LaunchPad Evaluation Kit Develop low power, PC-connected applications with integrated Full-speed USB 2.0 (HID/MSC/CDC). The MSPEXP430F5529LP LaunchPad is an inexpensive, simple microcontroller development kit for the MSP430F5529 USB microcontroller. It’s an easy way to start developing on the MSP430 MCU, with an on-board emulation for programming and debugging, as well as buttons and LEDs for simple user interface. Software MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package. MSP430F665x, MSP430F565x Code Examples C code examples that configure each of the integrated peripherals for various application needs. MSP Driver Library Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easyto-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead. 124 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the application's energy profile and helps to optimize it for ultra-low-power consumption. ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to highlight areas of your code that can be further optimized for lower power. IEC 60730 Software Package The IEC 60730 MSP430 software package was developed to be useful in assisting customers in complying with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC 60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer’s certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B. Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math. Floating Point Math Library for MSP430 Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and relevant benchmarks. Development Tools Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar utilities and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and embedded software utilities are made available to fully leverage the MSP microcontroller. Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) files directly to the MSP microcontroller without an IDE. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 125 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and a terminal running on the computer. It also supports loading programs (often called firmware) to the MSP target using the BSL (bootloader) through the UART and I2C communication protocols. MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side graphical user interface is also available and is DLL-based. 10.4 Documentation Support The following documents describe the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x MCUs. Copies of these documents are available on the Internet at www.ti.com. Receiving Notification of Document Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folders, see Section 10.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. Errata MSP430F6659 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F6658 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F6459 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F6458 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F5659 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F5658 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F5359 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. MSP430F5358 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device. 126 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 User's Guides MSP430F5xx and MSP430F6xx Family User's Guide Detailed information on the modules and peripherals available in this device family. MSP430 Flash Devices Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP. MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW). MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. Application Reports MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production. MSP430 System-Level ESD Considerations System-level ESD has become increasingly demanding as silicon technology scales to lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses ESD topics to help board designers and OEMs understand and design robust system-level designs. A few real-world system-level ESD protection design examples and their results are discussed. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 127 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 10.5 Related Links Table 10-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 10-2. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430F6659 Click here Click here Click here Click here Click here MSP430F6658 Click here Click here Click here Click here Click here MSP430F6459 Click here Click here Click here Click here Click here MSP430F6458 Click here Click here Click here Click here Click here MSP430F5659 Click here Click here Click here Click here Click here MSP430F5658 Click here Click here Click here Click here Click here MSP430F5359 Click here Click here Click here Click here Click here MSP430F5358 Click here Click here Click here Click here Click here 10.6 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 10.7 Trademarks MicroStar Junior™, MSP430™, MSP430Ware™, EnergyTrace™, ULP Advisor™, Code Composer Studio™, and E2E™ are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 10.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 10.10 Glossary TI Glossary 128 This glossary lists and explains terms, acronyms, and definitions. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458 MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358 www.ti.com SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358 129 PACKAGE OPTION ADDENDUM www.ti.com 23-Jun-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MSP430F5358IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5358 Samples MSP430F5358IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5358 Samples MSP430F5358IZCAR ACTIVE NFBGA ZCA 113 2500 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5358 Samples MSP430F5358IZCAT ACTIVE NFBGA ZCA 113 250 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5358 Samples MSP430F5359IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5359 Samples MSP430F5359IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5359 Samples MSP430F5359IZCAR ACTIVE NFBGA ZCA 113 2500 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5359 Samples MSP430F5359IZCAT ACTIVE NFBGA ZCA 113 250 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5359 Samples MSP430F5658IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5658 Samples MSP430F5658IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5658 Samples MSP430F5659IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5659 Samples MSP430F5659IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F5659 Samples MSP430F5659IZCAR ACTIVE NFBGA ZCA 113 2500 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5659 Samples MSP430F5659IZCAT ACTIVE NFBGA ZCA 113 250 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F5659 Samples MSP430F6458IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6458 Samples MSP430F6459IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6459 Samples MSP430F6459IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6459 Samples MSP430F6658IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6658 Samples MSP430F6659IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6659 Samples MSP430F6659IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6659 Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Jun-2023 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MSP430F6659IZCAR ACTIVE NFBGA ZCA 113 2500 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F6659 Samples MSP430F6659IZCAT ACTIVE NFBGA ZCA 113 250 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 F6659 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F5359IZCAR 价格&库存

很抱歉,暂时无法提供与“MSP430F5359IZCAR”相匹配的价格&库存,您可以联系我们找货

免费人工找货