0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OPA2743PA

OPA2743PA

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    PDIP8_10.16X6.6MM

  • 描述:

    IC GP OPAMP 2 CIRCUIT 8DIP

  • 数据手册
  • 价格&库存
OPA2743PA 数据手册
OPA743 OPA 743 OPA2743 OPA4743 OPA 743 OPA 743 OPA 743 ® SBOS201 – MAY 2001 12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS FEATURES q HIGH SPEED: 7MHz, 10V/µs q RAIL-TO-RAIL INPUT AND OUTPUT q WIDE SUPPLY RANGE: Single Supply: 3.5V to 12V Dual Supplies: ±1.75V to ±6V q LOW QUIESCENT CURRENT: 1.1mA q FULL-SCALE CMRR: 84dB q MicroSIZE PACKAGES: SOT23-5, MSOP-8, TSSOP-14 q LOW INPUT BIAS CURRENT: 1pA DESCRIPTION The OPA743 series utilizes a state-of-the-art 12V analog CMOS process and offers outstanding AC performance, such as 7MHz GBW, 10V/µs slew rate and 0.0008% THD+N. Optimized for single supply operation up to 12V, the input common-mode range extends beyond the power supply rails and the output swings to within 100mV of the rails. The low quiescent current of 1.1mA makes it well suited for use in battery operated equipment. The OPA743 series’ ability to drive high output currents together with 12V operation makes it particularly useful for use as gamma correction reference buffer in LCD panels. For ease of use the OPA743 op-amp family is fully specified and tested over the supply range of ±1.75V to ±6V. Single, dual and quad versions are available. The single versions (OPA743) are available in the MicroSIZE SOT23-5 and in the standard SO-8 surface-mount, as well as DIP-8 packages. Dual versions (OPA2743) are available versions in the MSOP-8, SO-8, and DIP-8 packages. The quad versions (OPA4743) are available in the TSSOP-14 and SO-14 packages. All are specified for operation from –40°C to +85°C. OPA743 NC 1 2 3 4 SO-8, DIP-8 8 A B 7 6 5 MSOP-8, SO-8, DIP-8 V+ Out B –In B +In B APPLICATIONS q LCD GAMMA CORRECTION q AUTOMOTIVE APPLICATIONS: Audio, Sensor Applications, Security Systems q PORTABLE EQUIPMENT q ACTIVE FILTERS q TRANSDUCER AMPLIFIER q TEST EQUIPMENT q DATA ACQUISITION 8 7 6 5 NC V+ OPA4743 OPA743 Out V– +In 1 2 3 SOT23-5 4 –In OPA2743 1 2 3 4 –In 5 V+ +In V– Out NC Out A –In A +In A V+ +In B –In B Out B 1 2 A 3 4 5 B 6 7 TSSOP-14, SO-14 C 9 8 –In C Out C D 12 11 10 +In D V– +In C 14 13 Out D –In D Out A –In A +In A V– Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2001, Texas Instruments Incorporated www.ti.com ABSOLUTE MAXIMUM RATINGS(1) Supply Voltage, V+ to V– ................................................................. 13.2V Signal Input Terminals, Voltage(2) ............................. (V–) –0.3V to (V+) +0.3V Current(2) .................................................... 10mA Output Short-Circuit(3) ....................................................................................... Continuous Operating Temperature .................................................. –55°C to +125°C Storage Temperature ..................................................... –65°C to +150°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ............................................... +300°C NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package. ELECTROSTATIC DISCHARGE SENSITIVITY This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION PACKAGE DRAWING NUMBER PACKAGE MARKING ORDERING NUMBER(1) TRANSPORT MEDIA PRODUCT Single OPA743NA PACKAGE SOT23-5 331 D43 " OPA743UA " SO-8 " 182 " OPA743UA " OPA743PA Dual OPA2743EA " DIP-8 MSOP-8 " 006 337 " OPA743PA E43 OPA743NA/250 OPA743NA/3K OPA743UA OPA743UA/2K5 OPA743PA OPA2743EA/250 OPA2743EA/2K5 OPA2743UA OPA2743UA/2K5 OPA2743PA OPA4743EA/250 OPA4743EA/2K5 OPA4743UA OPA4743UA/2K5 Tape and Reel Tape and Reel Rails Tape and Reel Rails Tape and Reel Tape and Reel Rails Tape and Reel Rails Tape and Reel Tape and Reel Rails Tape and Reel " OPA2743UA " SO-8 " 182 " OPA2743UA " OPA2743PA Quad OPA4743EA " DIP-8 TSSOP-14 " 006 357 " OPA2743PA OPA4743EA " OPA4743UA " SO-14 " 235 " OPA4743UA " " " " NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces of “OPA743NA/3K” will get a single 3000-piece Tape and Reel. 2 OPA743 SBOS201 ELECTRICAL CHARACTERISTICS: VS = 3.5V to 12V Boldface limits apply over the specified temperature range, TA = –40°C to +85°C At TA = +25°C, RL = 10kΩ connected to VS / 2 and VOUT = VS / 2, unless otherwise noted. OPA743NA, UA, PA OPA2743EA, UA, PA OPA4743EA, UA PARAMETER OFFSET VOLTAGE Input Offset Voltage Drift vs Power Supply Over Temperature Channel Separation, dc f = 10kHz INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio over Temperature over Temperature INPUT BIAS CURRENT Input Bias Current Input Offset Current INPUT IMPEDANCE Differential Common-Mode NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 10kHz Current Noise Density, f = 1kHz OPEN-LOOP GAIN Open-Loop Voltage Gain over Temperature over Temperature OUTPUT Voltage Output Swing from Rail over Temperature over Temperature Output Current Short-Circuit Current Capacitive Load Drive FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise POWER SUPPLY Specified Voltage Range, Single Supply Specified Voltage Range, Dual Supplies Quiescent Current (per amplifier) over Temperature TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface-Mount MSOP-8 Surface-Mount TSSOP-14 Surface-Mount SO-8 Surface Mount SO-14 Surface Mount DIP-8 VS = ±6V, VCM = 0V VS = ±6V, VCM = 0V VS = ±6V, VCM = 0V RL = 100kΩ, (V–)+0.1V < VO < (V+)–0.1V RL = 100kΩ, (V–)+0.125V < VO < (V+)–0.125V RL = 1k, (V–)+0.325V < VO < (V+)–0.325V RL = 1k, (V–)+0.450 < VO < (V+)–0.450V RL = 100kΩ, AOL > 106dB RL = 100kΩ, AOL > 100dB RL = 1kΩ, AOL > 86dB RL = 1kΩ, AOL > 96dB |VS – VOUT| < 1V 106 100 86 96 CONDITION VS = ±5V, VCM = 0V TA = –40°C to +85°C VS = ±1.75V to ±6V, VCM = –0.25 VS = ±1.75V to ±6V, VCM = –0.25 MIN TYP ±1.5 ±8 10 1 110 VCM CMRR (V–) – 0.1 66 60 70 70 60 (V+) + 0.1 84 90 MAX ±7 100 200 UNITS VOS dVOS / dT PSRR µV/°C µV/V µV/V µV/V dB V dB dB dB dB dB pA pA Ω || pF Ω || pF µVp-p nV/√Hz fA/√Hz dB dB dB dB mV mV mV mV mA mA mV VS = ±5V, (V–) – 0.1V < VCM < (V+) + 0.1V VS = ±5V, (V–) < VCM < (V+) VS = ±5V, (V–) – 0.1V < VCM < (V+) – 2V VS = ±5V, (V–) < VCM < (V+) – 2V VS = ±1.75V, (V–) – 0.1V < VCM < (V+) + 0.1V VS = ±6V, VCM = 0V VS = ±6V, VCM = 0V IB IOS ±1 ±0.5 4 • 109 || 4 5 • 1012 || 4 11 30 2.5 120 100 ±10 ±10 en in AOL IOUT ISC CLOAD GBW SR tS 75 100 100 125 300 325 425 450 ±20 ±30 See Typical Characteristics 7 10 9 15 200 0.0008 3.5 ±1.75 12 ±6 1.5 1.7 85 125 150 200 150 100 150 100 100 THD+N VS VS IQ CL = 15pF G = +1 VS = ±6V, G = +1 VS = ±6V, 5V Step, G = +1 VS = ±6V, 5V Step, G = +1 VIN • Gain = VS VS = ±6V, VO = 1Vrms, G = +1, f = 6kHz MHz V/µs µs µs ns % V V mA mA °C °C °C °C/W °C/W °C/W °C/W °C/W °C/W IO = 0 1.1 –40 –55 –65 θJA OPA743 SBOS201 3 TYPICAL CHARACTERISTICS At TA = +25°C, VS = ±6V, and RL = 10kΩ, unless otherwise noted. GAIN AND PHASE vs FREQUENCY 140 120 100 Gain (dB) CMRR vs FREQUENCY 140 120 100 Phase (º) 120 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency (Hz) 80 60 40 20 0 –20 10 100 1k 10k 100k 1M 10M Frequency (Hz) 80 60 40 20 0 –20 100M CMRR (dB) ((V–) – 100mV) ≤ VCM ≤ (V+) – 2V PSRR vs FREQUENCY 120 V+ 100 V– MAXIMUM AMPLITUDE vs FREQUENCY 7 6 5 Amplitude (V) PSRR (dB) 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency (Hz) 4 VS = ± 6V 3 2 1 0 10 100 1k 10k 100k 1M 10M Frequency (Hz) CHANNEL SEPARATION vs FREQUENCY 140 120 INPUT CURRENT AND VOLTAGE SPECTRAL NOISE vs FREQUENCY 10k 10k Channel Separation (dB) Voltage Noise (nV/√Hz) 100 80 60 40 20 0 10 100 1k 10k 100k Frequency (Hz) 1M 10M 100 100 10 10 1 1 0.1 0.1 1 10 100 1k 10k 100k 1M Frequency (Hz) 0.1 4 OPA743 SBOS201 Current Noise (fA/√Hz) 1k 1k TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±6V, and RL = 10kΩ, unless otherwise noted. INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = 25ºC 15 10 VS = ±5V 5 IB (pA) IB (pA) INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = 85°C 500 400 300 200 100 0 –100 –200 –300 –400 VS = ±5V 0 –5 –10 –15 –6 –5 –4 –3 –2 –1 0 VCM (V) 1 2 3 4 5 6 –500 –6 –5 –4 –3 –2 –1 0 1 VCM (V) 2 3 4 5 6 INPUT BIAS (IB) AND OFFSET (IOS) CURRENT vs TEMPERATURE 100k 10k IB Bias Current (pA) OPEN-LOOP GAIN vs TEMPERATURE 140 130 RL = 100kΩ 120 AOL (dB) 110 100 1k 100 10 1.0 0.1 IOS 0.01 –50 –25 0 25 50 75 100 125 150 175 RL = 1kΩ 90 80 –100 –75 –50 –25 Temperature (°C) 0 25 50 75 Temperature (°C) 100 125 150 175 PSRR vs TEMPERATURE 120 110 100 90 80 70 60 –100 –75 –50 –25 120 CMRR vs TEMPERATURE (V–) ≤ VCM ((V+) – 2V) 100 80 60 40 20 0 –100 –75 –50 –25 CMRR (dB) PSRR (dB) (V–) ≤ VCM ≤ V+ 0 25 50 75 Temperature (°C) 100 125 150 175 0 25 50 75 Temperature (°C) 100 125 150 175 OPA743 SBOS201 5 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±6V, and RL = 10kΩ, unless otherwise noted. QUIESCENT CURRENT vs TEMPERATURE 2.0 QUIESCENT CURRENT vs SUPPLY VOLTAGE 2.0 IQ per Amplitude (mA) IQ per Amplifier (mA) 1.5 1.5 1.0 1.0 0.5 0.5 0.0 –100 –75 –50 –25 0.0 0 25 50 75 Temperature (°C) 100 125 150 175 2 3 4 5 6 7 8 9 10 Supply Voltage (V) 11 12 13 14 SHORT-CIRCUIT CURRENT vs TEMPERATURE 50 50 SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE Short-Circuit Current (mA) Short-Circuit Current (mA) 40 Sourcing 40 Sourcing 30 30 Sinking 20 20 Sinking 10 10 0 –100 –75 –50 –25 0 0 25 50 75 Temperature (°C) 100 125 150 175 2 3 4 5 6 7 8 9 10 Supply Voltage 11 12 13 14 OUTPUT VOLTAGE SWING vs OUTPUT CURRENT 6 4 –55°C 25°C THD Plus Noise (%) TOTAL HARMONIC DISTORTION PLUS NOISE (Gain = ±1 V/V, VOUT = 1.0Vrms, BW = 80kHz) 0.1 Output Voltage (V) 2 125°C 0 –2 –4 –6 0 10 20 30 Output Current (±mA) 40 50 125°C 25°C –55°C 0.01 RL = 1kΩ 0.001 RL = 10kΩ 0.0001 1 10 100 1k Frequency (Hz) 10k 100k 6 OPA743 SBOS201 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±6V, and RL = 10kΩ, unless otherwise noted. SETTLING TIME vs GAIN 25 VOUT = 5Vp-p 20 Settling Time (µs) Overshoot (%) OVERSHOOT (%) vs CAPACITANCE 100 90 80 G = –1 0.01% 15 70 60 50 40 30 20 G = +5 G = +1 10 5 0.1% 10 0 10 100 1k 10k 0 1 10 Noninverting Gain (V/V) 100 Load Capacitance Value (pF) VOS PRODUCTION DISTRIBUTION 15 30 25 Frequency (%) Frequency (%) VOS DRIFT PRODUCTION DISTRIBUTION 10 20 15 10 5 5 0 –7.0 –6.0 –5.0 –4.0 –3.0 –2.0 –1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 Voltage Offset (mV) Voltage Offset Drift (µV/°C) SMALL SIGNAL STEP RESPONSE (G = +1V/V, RL = 10kΩ, CL = 15pF) SMALL SIGNAL STEP RESPONSE (G = –1V/V, RF = 100kΩ, CF = 1pF, RL = 10kΩ, CL = 15pF) 10mV/div 10mV/div 100ns/div 1µs/div NOTE: CF is used to optimize settling time. OPA743 SBOS201 7 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±6V, and RL = 10kΩ, unless otherwise noted. LARGE SIGNAL STEP RESPONSE (G = +1V/V, RL = 10kΩ, CL = 15pF) LARGE SIGNAL STEP RESPONSE (G = –1V/V, RL = 10kΩ, CL = 15pF) 2V/div 2V/div 1µs/div 1µs/div 8 OPA743 SBOS201 APPLICATIONS INFORMATION OPA743 series op amps can operate on 1.1mA quiescent current from a single (or split) supply in the range of 3.5V to 12V (±1.75V to ±6V), making them highly versatile and easy to use. The OPA743 is unity-gain stable and offers 7MHz bandwidth and 10V/µs slew rate. Rail-to-rail input and output swing helps maintain dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA743 in unitygain configuration. On a ±6V supply with a 100kΩ load connected to VS /2. The output is tested to swing within 100mV to the rail. Power-supply pins should be bypassed with 1000pF ceramic capacitors in parallel with 1µF tantalum capacitors. +V IOVERLOAD 10mA max VIN R V– OPA743 VOUT FIGURE 2. Input Current Protection for Voltages Exceeding the Supply Voltage. INPUT VOLTAGE Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than approximately 300mV. Momentary voltages greater than 300mV beyond the power supply can be tolerated if the current is limited to 10mA. This is easily accomplished with an input resistor, in series with the op amp input as shown in Figure 2. Many input signals are inherently current-limited to less than 10mA; therefore, a limiting resistor is not always required. The OPA743 features no phase inversion when the inputs extend beyond supplies if the input current is limited, as seen in Figure 3. 8 Input 6 4 2 2V/div G = +1, VS ± 6V 0 –2 –4 –6 Output (Inverted on osciloscope) –8 20µs/div FIGURE 1. Rail-to-Rail Input and Output. OPERATING VOLTAGE OPA743 series op amps are fully specified and guaranteed from 3.5V to 12V over a temperature range of –40ºC to +85ºC. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics. RAIL-TO-RAIL INPUT The input common-mode voltage range of the OPA743 series extends 100mV beyond the supply rails at room temperature. This is achieved with a complementary input stage—an Nchannel input differential pair in parallel with a P-channel differential pair. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 2.0V to 100mV above the positive supply, while the P-channel pair is on for inputs from 100mV below the negative supply to approximately (V+) – 1.5V. There is a small transition region, typically (V+) – 2.0V to (V+) – 1.5V, in which both pairs are on. This 500mV transition region can vary ±100mV with process variation. Thus, the transition region (both stages on) can range from (V+) – 2.1V to (V+) – 1.4V on the low end, up to (V+) – 1.9V to (V+) – 1.6V on the high end. Most railto-rail op amps on the market use this two input stage approach, and exhibit a transition region where CMRR, offset voltage, and THD may vary compared to operation outside this region. VS = ±6V, VIN = 13Vp-p, G = +1 2V/div 20µs/div FIGURE 3. OPA743—No Phase Inversion with Inputs Greater than the Power-Supply Voltage. RAIL-TO-RAIL OUTPUT A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving 1kΩ loads connected to any point between V+ and V–. For light resistive loads (> 100kΩ), the output voltage can swing to 100mV from the supply rail. With 1kΩ resistive loads, the output can swing to within 325mV from the supply rails while maintaining high openloop gain (see the typical performance curve “Output Voltage Swing vs Output Current”). OPA743 SBOS201 9 CAPACITIVE LOAD AND STABILITY The OPA743 series op amps can drive up to 1000pF pure capacitive load. Increasing the gain enhances the amplifier’s ability to drive greater capacitive loads (see the typical performance curve “Small Signal Overshoot vs Capacitive Load”). One method of improving capacitive load drive in the unitygain configuration is to insert a 10Ω to 20Ω resistor inside the feedback loop, as shown in Figure 4. This reduces ringing with large capacitive loads while maintaining DC accuracy. Figure 5 shows the OPA743 in a dual supply buffered reference configuration for the DAC7644. REFERENCE BUFFER FOR LCD SOURCE DRIVERS In modern high resolution TFT LCD displays, gamma correction must be performed to correct for nonlinearities in the glass transmission characteristics of the LCD panel. The typical LCD source driver for 64 Bits of Grayscale uses internal DAC to convert the 6-Bit data into analog voltages applied to the LCD. These DAC typically require external voltage references for proper operation. Normally these external reference voltages are generated using a simple resistive ladder, like the one shown in Figure 6. Typical laptop or desktop LCD panels require 6 to 8 of the source driver circuits in parallel to drive all columns of the panel. Although the resistive load of one internal string DAC is only around 10kΩ, 6 to 8 in parallel represent a very substantial load. The power supply used for the LCD source drivers for laptops is typically in the order of 10V. To maximize the dynamic range of the DAC, rail-to-rail output performance is required for the upper and lower buffer. The OPA4743’s ability to operate on 12V supplies, to drive heavy resistive loads (as low as 1kΩ), and to swing to within 325mV of the supply rails, makes it very well suited as a buffer for the reference voltage inputs of LCD source drivers. During conversion, the DAC’s internal switches create current glitches on the output of the reference buffer. The capacitor CL (typically 100nF) functions as a charge reservoir that provides/absorbs most of the glitch energy. The series resistor RS isolates the outputs of the OPA4743 from the heavy capacitive load and helps to improve settling time. RS 20Ω OPA743 VIN CL RL VOUT FIGURE 4. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive. APPLICATION CIRCUITS The OPA743 series op amps are optimized for driving medium-speed sampling data converters. The OPA743 op amps buffer the converter’s input capacitance and resulting charge injection while providing signal gain. NC NC 48 47 46 45 44 43 42 41 40 39 38 37 VOUT 500pF 1/2 OPA2743 +2.5V 500pF V+ Positive Reference 1/2 OPA2743 VOUT –2.5V V– Negative Reference +V DAC7644 NC NC VOUTA Sense VOUTA VREFL AB Sense VREFL AB VREFH AB Ref VREFH AB Sense VOUTB Sense VOUTB Ref –V FIGURE 5. OPA743 as Dual Supply Configuration-Buffered References for the DAC7644. 10 OPA743 SBOS201 VCC RS 20Ω CL 100nF GMA1 1/4 OPA4743 GMA2 GMA3 GMA4 1/4 OPA4743 RS 20Ω GMA5 CL 100nF GMA6 RS 20Ω CL 100nF GMA8 1/4 OPA4743 GMA7 GMA9 1/4 OPA4743 RS 20Ω CL 100nF GMA10 LCD Source Driver NOTE: The actual values of RS and CL are application specific and may not be needed. FIGURE 6. OPA743 Configured as a Reference Buffer for an LCD Display. OPA743 SBOS201 11 PACKAGE OPTION ADDENDUM www.ti.com 11-Mar-2005 PACKAGING INFORMATION Orderable Device OPA2743EA/250 OPA2743EA/2K5 OPA2743PA OPA2743UA OPA2743UA/2K5 OPA4743EA/250 OPA4743EA/250G4 OPA4743EA/2K5 OPA4743UA OPA4743UA/2K5 OPA743NA/250 OPA743NA/3K OPA743NA/3KG4 OPA743PA OPA743UA OPA743UA/2K5 (1) Status (1) ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE PREVIEW ACTIVE ACTIVE ACTIVE Package Type MSOP MSOP PDIP SOIC SOIC TSSOP TSSOP TSSOP SOIC SOIC SOT-23 SOT-23 SOT-23 PDIP SOIC SOIC Package Drawing DGK DGK P D D PW PW PW D D DBV DBV DBV P D D Pins Package Eco Plan (2) Qty 8 8 8 8 8 14 14 14 14 14 5 5 5 8 8 8 250 2500 50 100 2500 250 250 2500 58 2500 250 3000 3000 50 100 2500 None None Pb-Free (RoHS) None None None Green (RoHS & no Sb/Br) None None None None None None Pb-Free (RoHS) None None Lead/Ball Finish CU NIPDAU CU NIPDAU CU SNPB CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU CU SNPB CU SNPB CU NIPDAU CU NIPDAU Call TI CU SNPB CU NIPDAU CU MSL Peak Temp (3) Level-3-220C-168 HR Level-3-220C-168 HR Level-NC-NC-NC Level-3-220C-168 HR Level-3-220C-168 HR Level-3-220C-168 HR Level-2-260C-1 YEAR Level-3-220C-168 HR Level-3-220C-168 HR Level-3-220C-168 HR Level-3-220C-168 HR Level-3-220C-168 HR Call TI Level-NC-NC-NC Level-1-235C-UNLIM Level-1-235C-UNLIM The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Interface Logic Power Mgmt Microcontrollers amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com Applications Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging Wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2005, Texas Instruments Incorporated www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless
OPA2743PA 价格&库存

很抱歉,暂时无法提供与“OPA2743PA”相匹配的价格&库存,您可以联系我们找货

免费人工找货