0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PTH03050WAST

PTH03050WAST

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DIPMODULE6

  • 描述:

    MODULE PIP 3.3VIN 6A ADJ SMD

  • 数据手册
  • 价格&库存
PTH03050WAST 数据手册
PTH03050W —3.3-V Input 6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module SLTS212C – MAY 2003 – REVISED MAY 2004 Features NOMINAL SIZE = • Up to 6-A Output Current • 3.3-V Input Voltage • Wide-Output Voltage Adjust (0.8 V to 2.5 V) • Efficiencies up to 94 % • 103 W/in³ Power Density • On/Off Inhibit • Pre-Bias Startup • Under-Voltage Lockout • Operating Temp: –40 to +85 °C 0.87 in x 0.5 in (22,1 mm x 12,57 mm) • Auto-Track™ Sequencing • Output Over-Current Protection (Non-Latching, Auto-Reset) • IPC Lead Free 2 • Safety Agency Approvals: UL 1950, CSA 22.2 950, EN60950 VDE (Pending) • Point-of-Load Alliance (POLA) Compatible Pin Configuration Description The PTH03050 is one of the smallest non-isolated power modules from Texas Instruments that features Auto-Track™. Auto-Track simplifies supply voltage sequencing in power systems by enabling modules to track each other, or any other external voltage, during power up and power down. Although small in size (0.87 in × 0.5 in), these modules are rated for up to 6 A of output current, and are an ideal choice in applications where space, performance, and a power-up sequencing capability are important attributes. The product provides high-performance step-down conversion from a 3.3-V input bus voltage. The output voltage of the PTH03050W can be set to any voltage over the range, 0.8 V to 2.5 V, using a single resistor. Other operating features include an on/off inhibit, output voltage adjust (trim), and output over-current protection. For high efficiency these parts employ a synchronous rectifier output stage, but a pre-bias hold-off capability ensures that the output will not sink current during startup. Target applications include telecom, industrial, and general purpose circuits, including low-power dual-voltage systems that use a DSP, microprocessor, ASIC, or FPGA. Package options include both throughhole and surface mount configurations. Pin 1 2 3 4 5 6 Function GND Track Vin Inhibit * Vo Adjust Vout * Denotes negative logic: Open = Normal operation Ground = Function active ™ Track o t u A g encin u q e S Standard Application Rset = Required to set the output voltage to a value higher than 0.8 V. (See spec. table for values) Cin = Required 100 µF Co 1 = Optional 100 µF capacitor Co 2 = Optional 10 µF ceramic capacitor for reduced output ripple. Track 1 2 VIN 3 PTH03050W (Top View) 4 CIN 100 µF (Required) VOUT 6 5 RSET 1 %, 0.1 W (Required) Co1 100 µF Electrolytic (Optional) Co2 10 µF Ceramic (Optional) Inhibit GND For technical support and further information, visit http://power.ti.com GND PTH03050W —3.3-V Input 6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module SLTS212C – MAY 2003 – REVISED MAY 2004 Ordering Information Output Voltage (PTH03050Hxx) Package Options (PTH03050xHH) (1) Code W Code AH AS Voltage 0.8 V – 2.5 V (Adjust) Description Horiz. T/H SMD, Standard (3) Pkg Ref. (EUU) (EUV) (2) Notes: (1) Add “T” to end of part number for tape and reel on SMD packages only. (2) Reference the applicable package reference drawing for the dimensions and PC board layout (3) “Standard” option specifies 63/37, Sn/Pb pin solder material. Pin Descriptions Vin: The positive input voltage power node to the module, which is referenced to common GND. Vout: The regulated positive power output with respect to the GND node. GND: This is the common ground connection for the Vin and Vout power connections. It is also the 0 VDC reference for the control inputs. Vo Adjust: A 0.1 W 1 % resistor must be directly connected between this pin and GND to set the output voltage to a value higher than 0.8 V. The temperature stability of the resistor should be 100 ppm/°C (or better). The setpoint range for the output voltage is from 0.8 V to 2.5 V. The resistor value required for a given output voltage may be calculated from the following formula. If this pin is left open circuit, the output voltage will default to its lowest value. For further information on output voltage adjustment consult the related application note. Rset = 10 kΩ · 0.8 V Vout – 0.8 V – 2.49 kΩ The specification table gives the preferred resistor values for a number of standard output voltages. Inhibit: The Inhibit pin is an open-collector/drain negative logic input that is referenced to GND. Applying a lowlevel ground signal to this input disables the module’s output and turns off the output voltage. When the Inhibit control is active, the input current drawn by the regulator is significantly reduced. If the Inhibit pin is left open-circuit, the module will produce an output whenever a valid input source is applied. Track: This is an analog control input that enables the output voltage to follow an external voltage. This pin becomes active typically 20 ms after the input voltage has been applied, and allows direct control of the output voltage from 0 V up to the nominal set-point voltage. Within this range the output will follow the voltage at the Track pin on a volt-for-volt basis. When the control voltage is raised above this range, the module regulates at its set-point voltage. The feature allows the output voltage to rise simultaneously with other modules powered from the same input bus. If unused, the input should be connected to Vin. Note: Due to the under-voltage lockout feature, the output of the module cannot follow its own input voltage during power up. For more information, consult the related application note. For technical support and further information, visit http://power.ti.com PTH03050W —3.3-V Input 6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module SLTS212C – MAY 2003 – REVISED MAY 2004 Environmental & Absolute Maximum Ratings Characteristics Symbols Track Input Voltage Operating Temperature Range Solder Reflow Temperature Storage Temperature Mechanical Shock Vtrack Ta Treflow Ts Mechanical Vibration Weight Flammability — — (Voltages are with respect to GND) Conditions Over Vin Range Surface temperature of module body or pins — Per Mil-STD-883D, Method 2002.3 1 msec, ½ Sine, mounted Mil-STD-883D, Method 2007.2 20-2000 Hz Min Typ –0.3 –40 (i) — — Max Units Vin + 0.3 85 235 (ii) 125 V °C °C °C –40 — — 500 — — 20 — G’s — 2.9 — grams G’s Meets UL 94V-O Notes: (i) For operation below 0 °C the external capacitors m ust bave stable characteristics. use either a low ESR tantalum, Os-Con, or ceramic capacitor. (ii) During reflow of SMD package version do not elevate peak temperature of the module, pins or internal components above the stated maximum. Specifications (Unless otherwise stated, T a =25 °C, V in =3.3 V, Vo =2.5 V, C in =100 µF, Co1 =0 µF, Co2 =0 µF, and Io =Iomax) Characteristics Symbols Conditions Output Current Input Voltage Range Set-Point Voltage Tolerance Temperature Variation Line Regulation Load Regulation Total Output Variation Io Vin Vo tol ∆Regtemp ∆Regline ∆Regload ∆Regtot 0.8 V ≤ Vo ≤ 2.5 V, Over Io range Efficiency η Vo Ripple (pk-pk) Over-Current Threshold Transient Response Vr Io trip Track Input Current (pin 2) Track Slew Rate Capability Under-Voltage Lockout ttr ∆Vtr IIL track dVtrack/dt UVLO Inhibit Control (pin4) Input High Voltage Input Low Voltage Input Low Current VIH VIL IIL inhibit Input Standby Current Switching Frequency External Input Capacitance External Output Capacitance Iin inh ƒs Cin Co1, Co2 Reliability MTBF Min 85 °C, natural convection –40 °C 2800 mA >2400mA 7×8 6.3×9.8 7.3×5.7 1 1 1 ≤5 ≤4 ≤4 10SVP120M 16SPS100M 10TPE220ML 10 V 10 V 100 µF 220 µF 0.100 Ω 0.100 Ω >1090 mA >1414 mA 7.3L ×4.3W ×4.1H 1 1 ≤5 ≤5 TPSD107M010R0100 TPSV227M010R0100 Kemet T520, Poly-Alum (SMD) T495,Tantalum (SMD) A700-Poly-Alum. (SMD) 10 V 10 V 6.3 V 100 µF 100 µF 100 µF 0.080 Ω 0.100 Ω 0.018 Ω 1200 mA >1100 mA 2900 mA 7.3L ×5.7W ×4.0H 1 1 1 1 1 ≤3 T520D107M010AS T495X107M010AS A700D107M006AT Vishay-Sprague 594D, Tantalum (SMD) 595D, Tantalum (SMD) 94SA, Os-con (Radial) 10 V 10 V 10 V 150 µF 120 µF 100 µF 0.090 Ω 0.140 Ω 0.030 Ω 1100 mA >1000 mA 2670 mA 7.3L ×6.0W ×4.1H 8×10.5 1 1 1 1 1 ≤4 594D157X0010C2T 595D127X0010D2T 94SA107X0010EBP Kemet, Ceramic X5R (SMD) 16 V 6.3 V 10 47 0.002 Ω 0.002 Ω — 1210 case 3225 mm 1 2 [1] ≤5 ≤5 C1210C106M4PAC C1210C476K9PAC Murata, Ceramic X5R (SMD) 6.3 V 6.3 V 16 V 16 V 100 47 22 10 0.002 Ω — 1210 case 3225 mm 1 2 [1] 5 1 [2] ≤3 ≤5 ≤5 ≤5 GRM32ER60J107M GRM32ER60J476M GRM32ER61C226K GRM32DR61C106K TDK, Ceramic X5R (SMD) 6.3 V 6.3 V 16 V 16 V 100 47 22 10 0.002 Ω — 1210 case 3225 mm 1 2 [1] 5 1 [2] ≤3 ≤5 ≤5 ≤5 C3225X5R0J107MT C3225X5R0J476MT C3225X5R1C226MT C3225X5R1C106MT AVX, Tantalum TPS (SMD) [1] [2] Vendor Number 10FS100M PXA10VC121MH80TP MVZ25VC221MH10TP 10PS270MH11 UWG1V101MNR1GS UPM1E151MPH F551A107MN Total capacitance of 94 µF is acceptable based on the combined ripple current rating. Small ceramic capacitors may be used to complement electrolytic types at the input to reduce high-frequency ripple current. For technical support and further information, visit http://power.ti.com Application Notes PTH03050W & PTH05050W Adjusting the Output Voltage of the PTH03050W & PTH05050W Wide-Output Adjust Power Modules The Vo Adjust control (pin 5) sets the output voltage to a value higher than 0.8 V. The adjustment range of the PT03050W (3.3-V input) is from 0.8 V to 2.5 V 1, and the PTH05050W (5-V input) from 0.8 V to 3.6 V. The adjustment method requires the addition of a single external resistor, R set, that must be connected directly between the Vo Adjust and GND pins 2. Table 2-1 gives the preferred value of the external resistor for a number of standard voltages, along with the actual output voltage that this resistance value provides. For other output voltages the value of the required resistor can either be calculated using the following formula, or simply selected from the range of values given in Table 2-2. Figure 2-1 shows the placement of the required resistor. Rset 0.8 V Vout – 0.8 V = 10 kΩ · – 2.49 kΩ Table 2-1; Preferred Values of Rset for Standard Output Voltages Vout (Standard) Rset (Pref’d Value) 3.3 V 1 2.5 V 2V 1.8 V 1.5 V 1.2 V 1V 0.8 V 698 Ω 2.21 kΩ 4.12 kΩ 5.49 kΩ 8.87 kΩ 17.4 kΩ 36.5 kΩ Open Vout (Actual) 3.309V 2.502 V 2.010 V 1.803 V 1.504 V 1.202 V 1.005 V 0.8 V Figure 2-1; Vo Adjust Resistor Placement 2 Table 2-2; Output Voltage Set-Point Resistor Values Va Req’d 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400 1.425 1.450 1.475 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 Rset Open 318 kΩ 158 kΩ 104 kΩ 77.5 kΩ 61.5 kΩ 50.8 kΩ 43.2 kΩ 37.5 kΩ 33.1 kΩ 29.5 kΩ 26.6 kΩ 24.2 kΩ 22.1 kΩ 20.4 kΩ 18.8 kΩ 17.5 kΩ 16.3 kΩ 15.3 kΩ 14.4 kΩ 13.5 kΩ 12.7 kΩ 12.1 kΩ 11.4 kΩ 10.8 kΩ 10.3 kΩ 9.82 kΩ 9.36 kΩ 8.94 kΩ 8.18 kΩ 7.51 kΩ 6.92 kΩ 6.4 kΩ 5.93 kΩ 5.51 kΩ 5.13 kΩ 4.78 kΩ 4.47 kΩ Va Req’d 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 Rset 4.18 kΩ 3.91 kΩ 3.66 kΩ 3.44 kΩ 3.22 kΩ 3.03 kΩ 2.84 kΩ 2.67 kΩ 2.51 kΩ 2.36 kΩ 2.22 kΩ 2.08 kΩ 1.95 kΩ 1.83 kΩ 1.72 kΩ 1.61 kΩ 1.51 kΩ 1.41 kΩ 1.32 kΩ 1.23 kΩ 1.15 kΩ 1.07 kΩ 988 Ω 914 Ω 843 Ω 775 Ω 710 Ω 647 Ω 587 Ω 529 Ω 473 Ω 419 Ω 367 Ω Track 3 VIN PTH03050W Inhibit VO VOUT 6 GND 4 CIN 100 µF (Required) 1 5 RSET 1% 0.1 W + GND For technical support and further information, visit http://power.ti.com + VIN COUT 100 µF (Optional) Notes: 1. Modules that operate from a 3.3-V input bus should not be adjusted higher than 2.5 V. 2. A 0.05-W resistor may be used. The tolerance should be 1%, with temperature stability of 100 ppm/°C (or better). Place the resistor as close to the regulator as possible. Connect the resistor directly between pins 5 and 1 using dedicated PCB traces. 3. Never connect capacitors from Vo Adjust to either GND or Vout. Any capacitance added to the Vo Adjust pin will affect the stability of the regulator. Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Features of the PTH Family of Non-Isolated Wide Output Adjust Power Modules The PTVxx010 and PTVxx020 are similar parts offered in a vertical, single in-line pin (SIP) profile, at slightly lower current ratings. POLA™ All of the products referenced in Table 3-1 include AutoTrack™. This feature was specifically designed to simplify the task of sequencing the supply voltages in a power system. This and other features are described in the following sections. From the basic, “Just Plug it In” functionality of the 6-A modules, to the 30-A rated feature-rich PTHxx030, these products were designed to be very flexible, yet simple to use. The features vary with each product. Table 3-1 provides a quick reference to the features by product series and input bus voltage. Soft-Start Power Up The Auto-Track feature allows the power-up of multiple modules to be directly controlled from their Track pin. However in a stand-alone configuration, or when the Auto-Track feature is not being used, the Track pin should be directly connected to the input voltage, Vin (see Figure 3-1). Figure 3–1 10 Up Table 3-1; Operating Features by Series and Input Bus Voltage PTHxx020 PTVxx020 PTHxx030 12 V 6A 3.3 V / 5 V 10 A 12 V 8A 3.3 V / 5 V 15 A 12 V 12 A 5V 8A 12 V 8A 3.3 V / 5 V 22 A 12 V 18 A 5V 18 A 12 V 16 A 3.3 V / 5 V 30 A 12 V 26 A • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Thermal Shutdown • • • • • • • • • • • • • • • Output Sense • • • • • • • • • • • • • • • Margin Up/Down 6A Auto-Track™ PTVxx010 5V Pre-Bias Startup PTHxx010 6A Over-Current PTHxx060 I OUT On/Off Inhibit PTHxx050 Input Bus 3.3 V 2 3 CIN 1,000 µF 5 Sense PTH05020W V IN Inhibit + Series Adjust (Trim) 5V 8 Track 9 Dn 3.3 V 6 Adjust GND 1 VO 7 4 R SET, 698 Ω 0.1 W, 1 % + Compatibility The PTH/PTV family of non-isolated, wide-output adjust power modules from Texas Instruments are optimized for applications that require a flexible, high performance module that is small in size. Each of these products are POLA™ compatible. POLA-compatible products are produced by a number of manufacturers, and offer customers advanced, non-isolated modules with the same footprint and form factor. POLA parts are also asssured to be interoperable, thereby providing customers with true second- source availability. C OUT 330 µF GND • • • • • • • • • • • • • • • • • • • • GND When the Track pin is connected to the input voltage the Auto-Track function is permanently disengaged. This allows the module to power up entirely under the control of its internal soft-start circuitry. When power up is under soft-start control, the output voltage rises to the set-point at a quicker and more linear rate. • • • • • • Figure 3–2 Vin (1 V/Div) Vout (1 V/Div) For simple point-of-use applications, the PTHxx050 provides operating features such as an on/off inhibit, output voltage trim, pre-bias startup, and over-current protection. The PTHxx060 (10 A), and PTHxx010 (15/12 A) include an output voltage sense, and margin up/down controls. Then the higher output current, PTHxx020 and PTHxx030 products incorporate over-temperature shutdown protection. For technical support and further information visit http://power.ti.com Iin (5 A/Div) HORIZ SCALE: 5 ms/Div Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) The power modules function normally when the Inhibit pin is left open-circuit, providing a regulated output whenever a valid source voltage is connected to Vin with respect to GND. Figure 3-3 shows the typical application of the inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pull-up to Vin potential. The input is not compatible with TTL logic devices. An opencollector (or open-drain) discrete transistor is recommended for control. Figure 3–3 V o Sense Over-Current Protection Over-Temperature Protection The PTHxx020 and PTHxx030 series of products have over-temperature protection. These products have an on-board temperature sensor that protects the module’s internal circuitry against excessively high temperatures. A rise in the internal temperature may be the result of a drop in airflow, or a high ambient temperature. If the internal temperature exceeds the OTP threshold, the module’s Inhibit control is automatically pulled low. This turns the output off. The output voltage will drop as the external output capacitors are discharged by the load circuit. The recovery is automatic, and begins with a soft-start power up. It occurs when the the sensed temperature decreases by about 10 °C below the trip point. 10 VIN 2 8 5 1 7 Q1 BSS138 VOUT 6 4 RSET COUT 330 µF L O A D 1 =Inhibit GND GND Turning Q1 on applies a low voltage to the Inhibit control and disables the output of the module. If Q1 is then turned off, the module will execute a soft-start power-up. A regulated output voltage is produced within 20 msec. Figure 3-4 shows the typical rise in both the output voltage and input current, following the turn-off of Q1. The turn off of Q1 corresponds to the rise in the waveform, Q1 Vds. The waveforms were measured with a 5-A load. Figure 3–4 Note: The over-temperature protection is a last resort mechanism to prevent thermal stress to the regulator. Operation at or close to the thermal shutdown temperature is not recommended and will reduce the long-term reliability of the module. Always operate the regulator within the specified Safe Operating Area (SOA) limits for the worst-case conditions of ambient temperature and airflow. Vo (2V/Div) Iin (2A/Div) Output On/Off Inhibit For applications requiring output voltage on/off control, each series of the PTH family incorporates an output Inhibit control pin. The inhibit feature can be used wherever there is a requirement for the output voltage from the regulator to be turned off. 9 PTH05020W 3 CIN 1,000 µF + For protection against load faults, all modules incorporate output over-current protection. Applying a load that exceeds the regulator’s over-current threshold will cause the regulated output to shut down. Following shutdown a module will periodically attempt to recover by initiating a soft-start power-up. This is described as a “hiccup” mode of operation, whereby the module continues in a cycle of successive shutdown and power up until the load fault is removed. During this period, the average current flowing into the fault is significantly reduced. Once the fault is removed, the module automatically recovers and returns to normal operation. + From the moment a valid input voltage is applied, the soft-start control introduces a short time delay (typically 5 ms-10 ms) before allowing the output voltage to rise. The output then progressively rises to the module’s setpoint voltage. Figure 3-2 shows the soft-start power-up characteristic of the 22-A output product (PTH05020W), operating from a 5-V input bus and configured for a 3.3-V output. The waveforms were measured with a 5-A resistive load, with Auto-Track disabled. The initial rise in input current when the input voltage first starts to rise is the charge current drawn by the input capacitors. Power-up is complete within 15 ms. Q1Vds (5V/Div) HORIZ SCALE: 10ms/Div For technical support and further information visit http://power.ti.com Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Auto-Track™ Function The Auto-Track function is unique to the PTH/PTV family, and is available with the all POLA-compatible products. Auto-Track was designed to simplify the amount of circuitry required to make the output voltage from each module power up and power down in sequence. The sequencing of two or more supply voltages during power up is a common requirement for complex mixed-signal applications, that use dual-voltage VLSI ICs such as DSPs, micro-processors, and ASICs. How Auto-Track Works Auto-Track works by forcing the module’s output voltage to follow a voltage presented at the Track control pin. This control range is limited to between 0 V and the module’s set-point voltage. Once the track-pin voltage is raised above the set-point voltage, the module’s output remains at its set-point 1. As an example, if the Track pin of a 2.5-V regulator is at 1 V, the regulated output will be 1 V. But if the voltage at the Track pin rises to 3 V, the regulated output will not go higher than 2.5 V. When under track control, the regulated output from the module follows the voltage at its Track pin on a voltfor-volt basis. By connecting the Track pin of a number of these modules together, the output voltages will follow a common signal during power-up and power-down. The control signal can be an externally generated master ramp waveform, or the output voltage from another power supply circuit 3. For convenience the Track control incorporates an internal RC charge circuit. This operates off the module’s input voltage to provide a suitable rising voltage ramp waveform. Typical Application The basic implementation of Auto-Track allows for simultaneous voltage sequencing of a number of AutoTrack compliant modules. Connecting the Track control pins of two or more modules forces the Track control of all modules to follow the same collective RC ramp waveform, and allows them to be controlled through a single transistor or switch; Q1 in Figure 3-5. To initiate a power-up sequence the Track control must first pulled to ground potential. This should be done at or before input power is applied to the modules, and then held for at least 10 ms thereafter. This brief period gives the modules time to complete their internal soft-start initialization, which enables them to produce an output voltage. Applying a logic-level high signal to the circuit’s On/Off Control turns Q1 on and applies a ground signal to the Track control. After completing their internal soft-start intialization, the output of all modules will remain at zero volts while Q1 is on. 10 ms after a valid input voltage has been applied to all modules, Q1 can be turned off. This allows the track control voltage to automatically rise toward to the modules' input voltage. During this period the output voltage of each module will rise in unison with For technical support and further information visit http://power.ti.com other modules, to its respective set-point voltage. Figure 3-6 shows the output voltage waveforms from the circuit of Figure 3-5 after the On/Off Control is set from a high to a low-level voltage. The waveforms, Vo1 and Vo2 represent the output voltages from the two power modules, U1 (3.3 V) and U2 (1.8 V) respectively. Vo1 and Vo2 are shown rising together to produce the desired simultaneous power-up characteristic. The same circuit also provides a power-down sequence. Power down is the reverse of power up, and is accomplished by lowering the track control voltage back to zero volts. The important constraint is that a valid input voltage must be maintained until the power down is complete. It also requires that Q1 be turned off relatively slowly. This is so that the Track control voltage does not fall faster than Auto-Track's slew rate capability, which is 1 V/ms. The components R1 and C1 in Figure 3-5 limit the rate at which Q1 can pull down the Track control voltage. The values of 100 k-ohm and 0.1 µF correlate to a decay rate of about 0.17 V/ms. The power-down sequence is initiated with a low-to-high transition at the On/Off Control input to the circuit. Figure 3-7 shows the power-down waveforms. As the Track control voltage falls below the nominal set-point voltage of each power module, then its output voltage decays with all the other modules under Auto-Track control. Notes on Use of Auto-Track™ 1. The Track pin voltage must be allowed to rise above the module’s set-point voltage before the module can regulate at its adjusted set-point voltage. 2. The Auto-Track function will track almost any voltage ramp during power up, and is compatible with ramp speeds of up to 1 V/ms. 3. The absolute maximum voltage that may be applied to the Track pin is Vin. 4. The module will not follow a voltage at its Track control input until it has completed its soft-start initialization. This takes about 10 ms from the time that the module has sensed that a valid voltage has been applied its input. During this period, it is recommended that the Track pin be held at ground potential. 5. The module is capable of both sinking and sourcing current when following a voltage at its Track pin. Therefore startup into an output prebias is not supported during Auto-Track control. Note: A pre-bias holdoff is not necessary when all supply voltages rise simultaneously under the control of Auto-Track. 6. The Auto-Track function can be disabled by connecting the Track pin to the input voltage (Vin). With Auto-Track disabled, the output voltage will rise at a quicker and more linear rate after input power is applied. Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Figure 3–5; Sequenced Power Up & Power Down Using Auto-Track U1 10 9 8 5 Track PTH05020W VIN Inhibit Vo1 =3.3 V 6 GND + 3 C IN VO 1 + 2 +5 V 4 7 C OUT R2 698 C1 0.1 µF U2 R1 100 k 9 8 5 Track 2 + C IN 0V Figure 3–6; Simultaneous Power Up with Auto-Track Control HORIZ SCALE: 10 ms/Div 10 Q1 BSS138 PTH05010W VIN Inhibit 3 VO Vo2 =1.8 V 6 GND 1 7 4 R3 5k49 + On/Off Control 1 = Power Down 0 = Power Up C OUT Figure 3–7; Simultaneous Power Down with Auto-Track Control Vo1 (1 V/Div) Vo1 (1 V/Div) Vo2 (1 V/Div) Vo2 (1 V/Div) On/Off Input (5 V/Div) On/Off Input (5 V/Div) HORIZ SCALE: 10 ms/Div For technical support and further information visit http://power.ti.com Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Margin Up/Down Controls Notes: The PTHxx060, PTHxx010, PTHxx020, and PTHxx030 products incorporate Margin Up and Margin Down control inputs. These controls allow the output voltage to be momentarily adjusted 1, either up or down, by a nominal 5%. This provides a convenient method for dynamically testing the operation of the load circuit over its supply margin or range. It can also be used to verify the function of supply voltage supervisors. The ±5% change is applied to the adjusted output voltage, as set by the external resistor, Rset at the Vo Adjust pin. The 5% adjustment is made by pulling the appropriate margin control input directly to the GND terminal 2. A low-leakage open-drain device, such as an n-channel MOSFET or p-channel JFET is recommended for this purpose 3. Adjustments of less than 5% can also be accommodated by adding series resistors to the control inputs. The value of the resistor can be selected from Table 3-2, or calculated using the following formula. Up/Down Adjust Resistance Calculation 1. The Margin Up* and Margin Dn* controls were not intended to be activated simultaneously. If they are their affects on the output voltage may not completely cancel, resulting in the possibility of a slightly higher error in the output voltage set point. 2. The ground reference should be a direct connection to the module GND at pin 7 (pin 1 for the PTHxx050). This will produce a more accurate adjustment at the load circuit terminals. The transistors Q1 and Q2 should be located close to the regulator. 3. The Margin Up and Margin Dn control inputs are not compatible with devices that source voltage. This includes TTL logic. These are analog inputs and should only be controlled with a true open-drain device (preferably a discrete MOSFET transistor). The device selected should have low off-state leakage current. Each input sources 8 µA when grounded, and has an open-circuit voltage of 0.8 V. To reduce the margin adjustment to a value less than 5%, series resistors are required (See RD and RU in Figure 3-8). For the same amount of adjustment, the resistor value calculated for RU and RD will be the same. The formulas is as follows. RU or RD = 499 ∆% – 99.8 Table 3-2; Margin Up/Down Resistor Values % Adjust 5 4 3 2 1 kΩ Where ∆% = The desired amount of margin adjust in percent. RU / RD 0.0 kΩ 24.9 kΩ 66.5 kΩ 150.0 kΩ 397.0 kΩ Figure 3–8; Margin Up/Down Application Schematic 10 9 8 1 7 0V PTH05010W (Top View) VIN 2 RD 4 5 RU RSET 0.1 W, 1 % Cin MargDn +VOUT 6 3 + +Vo + Cout L O A D Q1 MargUp GND For technical support and further information visit http://power.ti.com Q2 GND Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Pre-Bias Startup Capability Notes A pre-bias startup condition occurs as a result of an external voltage being present at the output of a power module prior to its output becoming active. This often occurs in complex digital systems when current from another power source is backfed through a dual-supply logic component, such as an FPGA or ASIC. Another path might be via clamp diodes as part of a dual-supply power-up sequencing arrangement. A prebias can cause problems with power modules that incorporate synchronous rectifiers. This is because under most operating conditions, these types of modules can sink as well as source output current. 1. Startup includes the short delay (approx. 10 ms) prior to the output voltage rising, followed by the rise of the output voltage under the module’s internal soft-start control. Startup is complete when the output voltage has risen to either the set-point voltage or the voltage at the Track pin, whichever is lowest. 2. To ensure that the regulator does not sink current when power is first applied (even with a ground signal applied to the Inhibit control pin), the input voltage must always be greater than the output voltage throughout the power-up and power-down sequence. The PTH/PTV family of power modules incorporate synchronous rectifiers, but will not sink current during startup 1, or whenever the Inhibit pin is held low. However, to ensure satisfactory operation of this function, certain conditions must be maintained. 2 Figure 3-9 shows an application demonstrating the pre-bias startup capability. The start-up waveforms are shown in Figure 3-10. Note that the output current from the PTH03010W (Io) shows negligible current until its output voltage rises above that backfed through diodes D1 and D2. 3. The Auto-Track function can be disabled at power up by immediately applying a voltage to the module’s Track pin that is greater than its set-point voltage. This can be easily accomplished by connecting the Track pin to Vin. Figure 3–10; Pre-Bias Startup Waveforms Note: The pre-bias start-up feature is not compatible with Auto-Track. When the module is under Auto-Track control, it will sink current if the output voltage is below that of a back-feeding source. To ensure a pre-bias hold-off one of two approaches must be followed when input power is applied to the module. The Auto-Track function must either be disabled 3, or the module’s output held off (for at least 50 ms) using the Inhibit pin. Either approach ensures that the Track pin voltage is above the set-point voltage at start up. Vin (1 V/Div) Vo (1 V/Div) Io (5 A/Div) HORIZ SCALE: 5 ms/Div Figure 3–9; Application Circuit Demonstrating Pre-Bias Startup VIN = 3.3 V 10 2 3 CIN 330 µF 8 5 Track Sense PTH03010W V IN Inhibit + 9 GND 1 VO Vo = 2.5 V 6 + Vadj 7 Io 4 R2 2k21 VCCIO VCORE + C OUT 330 µF ASIC For technical support and further information visit http://power.ti.com Application Notes PTH/PTV Series of Wide-Output Adjust Power Modules (3.3/5-V Input) Remote Sense Products with this feature incorporate an output voltage sense pin, V o Sense. A remote sense improves the load regulation performance of the module by allowing it to compensate for any ‘IR’ voltage drop between itself and the load. An IR drop is caused by the high output current flowing through the small amount of pin and trace resistance. To use this feature simply connect the Vo Sense pin to the Vout node, close to the load circuit (see data sheet standard application). If not used, the V o Sense pin can be left open-circuit. An internal low-value resistor (15-Ω or less) is connected between the Vo Sense and Vout. This ensures the output voltage remains in regulation. With the sense pin connected, the difference between the voltage measured directly between the Vout and GND pins, and that measured from V o Sense to GND, is the amount of IR drop being compensated by the regulator. This should be limited to a maximum of 0.3 V. Note: The remote sense feature is not designed to compensate for the forward drop of non-linear or frequency dependent components that may be placed in series with the converter output. Examples include OR-ing diodes, filter inductors, ferrite beads, and fuses. When these components are enclosed by the remote sense connection they are effectively placed inside the regulation control loop, which can adversely affect the stability of the regulator. For technical support and further information visit http://power.ti.com PACKAGE OPTION ADDENDUM www.ti.com 15-Mar-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) PTH03050WAD ACTIVE ThroughHole Module EUU 6 56 RoHS Exempt & Green SN N / A for Pkg Type -40 to 85 PTH03050WAH ACTIVE ThroughHole Module EUU 6 56 RoHS Exempt & Green SN N / A for Pkg Type -40 to 85 PTH03050WAS ACTIVE Surface Mount Module EUV 6 56 Non-RoHS & Green SNPB Level-1-235C-UNLIM/ Level-3-260C-168HRS -40 to 85 PTH03050WAST ACTIVE Surface Mount Module EUV 6 250 Non-RoHS & Green SNPB Level-1-235C-UNLIM/ Level-3-260C-168HRS -40 to 85 PTH03050WAZ ACTIVE Surface Mount Module EUV 6 56 RoHS (In Work) & Green SNAGCU Level-3-260C-168 HR -40 to 85 PTH03050WAZT ACTIVE Surface Mount Module EUV 6 250 RoHS (In Work) & Green SNAGCU Level-3-260C-168 HR -40 to 85 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
PTH03050WAST 价格&库存

很抱歉,暂时无法提供与“PTH03050WAST”相匹配的价格&库存,您可以联系我们找货

免费人工找货