0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65LVCP404RGZT

SN65LVCP404RGZT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN48_EP

  • 描述:

    IC CROSSPOINT SW 1 X 4:4 48VQFN

  • 数据手册
  • 价格&库存
SN65LVCP404RGZT 数据手册
SN65LVCP404 www.ti.com ................................................................................................................................................... SLLS700B – MARCH 2007 – REVISED JANUARY 2009 Gigabit 4x4 CROSSPOINT SWITCH P22 1Z VCC 2DE 3DE 40 38 37 1Y 41 39 P11 GND 43 42 1DE P12 44 VCC 46 45 S11 S10 47 3Z 29 VCC 3A 9 28 4Y 3B 10 27 4Z EQ 11 26 GND VBB 12 25 4DE P32 30 23 7 8 24 2B VCC P31 3Y P42 31 21 GND 6 22 5 2A P41 GND 20 2Z 32 S40 33 S41 4 19 1B VCC 18 2Y 16 1A 17 P21 4A 35 34 4B 2 3 15 Clock Buffering/Clock MUXing Wireless Base Stations High-Speed Network Routing Telecom/Datacom XAUI 802.3ae Protocol Backplane Redundancy 36 S21 GND • • • • • 1 14 APPLICATIONS S20 S31 • • • • The SN65LVCP404 is characterized for operation from -40°C to 85°C. 48 • • • • • • Up to 4.25 Gbps Operation Non-blocking Architecture Allows Each Output to be Connected to Any Input 30 ps of Deterministic Jitter Selectable Transmit Pre-Emphasis Per Lane Selectable Receive Equalization Available Packaging 48 Pin QFN Propagation Delay Times: 500 ps Typical Inputs Electrically Compatible With CML Signal Levels Operates From a Single 3.3-V Supply Ability to 3-STATE ouputs Low Power: 560 mW Integrated Termination Resistors 13 • • S30 FEATURES 1 DESCRIPTION The SN65LVCP404 is a 4x4 non-blocking crosspoint switch in a flow-through pin-out allowing for ease in PCB layout. VML signaling is used to achieve a high-speed data throughput while using low power. Each of the output drivers includes a 4:1 multiplexer to allow any input to be routed to any output. Internal signal paths are fully differential to achieve the high signaling speeds while maintaining low signal skews. The SN65LVCP404 incorporates 100-Ω termination resistors for those applications where board space is a premium. Built-in transmit pre-emphasis and receive equalization for superior signal integrity performance. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007–2009, Texas Instruments Incorporated SN65LVCP404 SLLS700B – MARCH 2007 – REVISED JANUARY 2009 ................................................................................................................................................... www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. LOGIC DIAGRAM TERMINAL FUNCTIONS TERMINAL NAME NO. TYPE DESCRIPTION Differential Inputs (with 50-Ω termination to Vbb) xA=P; xB=N Line Side Differential Inputs CML compatible High Speed I/O xA xB 3, 6, 9, 16 4, 7, 10, 17 xY xZ 41, 34, 31, 28 40, 33, 30, 27 Differential Output xY=P; xZ=N Switch Side Differential Outputs. VML 45, 38, 37, 25 Input Data Enable; Active Low; LVTTL; When not enabled the ouput is in 3-STATE mode for power savings Control Signals xDE S10 - S41 1, 2, 13, 14, 19, 20, 47, 48 Input; S1x = Channel 1 bit one Switching Selection; LVTTL P11-P42 43, 44, 35, 36, 23, 24, 21, 22 Input; P1x- Channel 1 bit one Output Preemphasis Control; LVTTL Input; Selection for receive equalization setting EQ = 1 (default) is for the 5 dB setting, EQ = 0 is for the 12 dB setting Power Power Supply 3.3v ±5% EQ 11 Power Supply VCC 8, 18, 29, 39, 46 GND 5, 15, 26, 32, 42 The ground center pad of the package must be connected to GND plane. Thermal Pad VBB 2 12 Input Receiver input biasing voltage. For ac coupling, VBB should be left floating for optimal bias value. For dc coupling, VBB can driven to change the common mode. VBB should not be tied to ground. Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 SN65LVCP404 www.ti.com ................................................................................................................................................... SLLS700B – MARCH 2007 – REVISED JANUARY 2009 EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS VCC IN+ RT(SE) = 50 W Gain Stage + EQ VCC RBBDC RT(SE) = 50 W IN− VBB ESD LineEndTermination Self−Biasing Network Figure 1. Equivalent Input Circuit Design OUT+ 49.9 W OUT− 49.9 W VOCM 1 pF Figure 2. Common-Mode Output Voltage Test Circuit Table 1. CROSSPOINT LOGIC TABLES OUTPUT CHANNEL 1 CONTROL PINS INPUT SELECTED OUTPUT CHANNEL 2 CONTROL PINS INPUT SELECTED OUTPUT CHANNEL 3 CONTROL PINS OUTPUT CHANNEL 4 INPUT SELECTED CONTROL PINS INPUT SELECTED S10 S11 1Y/1Z S20 S21 2Y/2Z S30 S31 3Y/3Z S40 S41 4Y/4Z 0 0 1A/1B 0 0 1A/1B 0 0 1A/1B 0 0 1A/1B 0 1 2A/2B 0 1 2A/2B 0 1 2A/2B 0 1 2A/2B 1 0 3A/3B 1 0 3A/3B 1 0 3A/3B 1 0 3A/3B 1 1 4A/4B 1 1 4A/4B 1 1 4A/4B 1 1 4A/4B AVAILABLE OPTIONS (1) TA DESCRIPTION -40°C to 85°C Serial multiplexer PACKAGED DEVICE (1) RGZ (48 pin) SN65LVCP404 The package is available taped and reeled. Add an R suffix to device types (e.g., SN65LVCP404RGZR). Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 3 SN65LVCP404 SLLS700B – MARCH 2007 – REVISED JANUARY 2009 ................................................................................................................................................... www.ti.com PACKAGE THERMAL CHARACTERISTICS PACKAGE THERMAL CHARACTERISTICS (1) NOM UNIT θJA (junction-to-ambient) 33 °C/W θJB (junction-to-board) 20 °C/W 23.6 °C/W θJC (junction-to-case) PSI-jt (junction-to-top pseudo) 4-layer JEDEC Board (JESD51-7) using eight GND-vias θ-0.2 on the center pad as shown in the section: Recommended PCB footprint with boundary and environment conditions of JEDEC Board (JESD51-2) PSI-jb (junction-to-board pseudo) 0.6 °C/W 19.4 °C/W 5.4 °C/W θJP (junction-to-pad) (1) See application note SPRA953 for a detailed explanation of thermal parameters (http://www-s.ti.com/sc/psheets/spra953/spra953.pdf). ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) UNIT VCC Supply voltage range (2) –0.5 V to 6 V Control inputs, all outputs Voltage range ESD TJ Receiver inputs Human Body Model (3) Charged-Device Model (4) 3 kV All pins 500 V See Package Thermal Characteristics Table Maximum junction temperature 2 Reflow temperature package soldering, 4 seconds (2) (3) (4) 4 –0.5 V to 4 V All pins Moisture sensitivity level (1) –0.5 V to (VCC + 0.5 V) 260°C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. Tested in accordance with JEDEC Standard 22, Test Method A114-A. Tested in accordance with JEDEC Standard 22, Test Method C101. Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 SN65LVCP404 www.ti.com ................................................................................................................................................... SLLS700B – MARCH 2007 – REVISED JANUARY 2009 RECOMMENDED OPERATING CONDITIONS dR Operating data rate VCC Supply voltage VCC(N) Supply voltage noise amplitude TJ Junction temperature TA Operating free-air temperature (1) MIN NOM MAX UNIT 4.25 Gbps 3.135 3.3 3.465 10 Hz to 2.125 GHz V 20 mV 125 °C -40 85 °C dR(in) ≤ 4.25 Gbps 100 1750 mVPP 1.25 Gbps < dR(in) ≤ 4.25 Gbps 100 1560 mVPP dR(in) > 4.25 Gbps 100 1000 mVPP Note: for best jitter performance ac coupling is recommended. 1.5 DIFFERENTIAL INPUTS Receiver peak-to-peak differential input voltage (2) VID VICM Receiver common-mode input voltage |V VCC * 1.6 | ID 2 V CONTROL INPUTS VIH High-level input voltage 2 VCC + 0.3 V VIL Low-level input voltage –0.3 0.8 V 120 Ω DIFFERENTIAL OUTPUTS RL (1) (2) Differential load resistance 80 100 Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded. Differential input voltage VID is defined as | IN+ – IN– |. ELECTRICAL CHARACTERISTICS over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT DIFFERENTIAL INPUTS VIT+ Positive going differential input high threshold VIT– Negative going differential input low threshold A(EQ) Equalizer gain RT(D) Termination resistance, differential VBB Open-circuit Input voltage (input self-bias voltage) R(BBDC) Biasing network dc impedance R(BBAC) Biasing network ac impedance 50 –50 at 1.875 GHz (EQ=0) mV 12 80 AC-coupled inputs mV 100 dB 120 Ω 1.6 V 30 kΩ 375 MHz 42 2.125 GHz 8.4 Ω DIFFERENTIAL OUTPUTS VODH High-level output voltage VODL Low-level output voltage VODB(PP) Output differential voltage without preemphasis (2) VOCM Output common mode voltage ΔVOC(SS) Change in steady-state common-mode output voltage between logic states (1) (2) RL = 100 Ω ±1%, Px_2 = Px_1=0; 4 Gbps alternating 1010-pattern; Figure 3 1000 650 mVPP –650 mVPP 1300 1500 1.65 See Figure 2 1 mVPP V mV All typical values are at TA = 25°C and VCC = 3.3 V supply unless otherwise noted. They are for reference purposes and are not production tested. Differential output voltage V(ODB) is defined as | OUT+ – OUT– |. Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 5 SN65LVCP404 SLLS700B – MARCH 2007 – REVISED JANUARY 2009 ................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Output preemphasis voltage ratio, V(PE) V RL = 100 Ω±1%; x = L or S; See Figure 3 ODB(PP) VODPE(PP) MIN TYP (1) Px_2:Px_1 = 00 0 Px_2:Px_1 = 01 3 Px_2:Px_1 = 10 6 Px_2:Px_1 = 11 9 MAX UNIT dB t(PRE) Preemphasis duration measurement Output preemphasis is set to 9 dB during test Px_x = 1; Measured with a 100-MHz clock signal; RL = 100 Ω ±1%, See Figure 4 175 ps ro Output resistance Differential on-chip termination between OUT+ and OUT– 100 Ω CONTROL INPUTS IIH High-level Input current VIN = VCC IIL Low-level Input current VIN = GND R(PU) Pullup resistance 5 -125 µA -90 µA 35 kΩ POWER CONSUMPTION PD Device power dissipation All outputs terminated 100 Ω PZ Device power dissipation in 3-State All outputs in 3-state ICC Device current consumption All outputs terminated 100 Ω 560 750 mW 600 mW 220 mA TYP (1) MAX UNIT 3 6 ns 0.5 0.7 ns 0.5 0.7 ns PRBS 27-1 pattern at 4.25 Gbps SWITCHING CHARACTERISTICS over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MULTIPLEXER t(SM) Multiplexer switch time Multiplexer to valid output DIFFERENTIAL OUTPUTS tPLH Low-to-high propagation delay tPHL High-to-low propagation delay tr Rise time tf Fall time tsk(p) Pulse skew, | tPHL – tPLH | (2) tsk(o) Output skew (3) tsk(pp) Part-to-part skew (4) tzd 3-State switch time to Disable tze 3-State switch time to Enable RJ Device random jitter, rms (1) (2) (3) (4) 6 Propagation delay input to output See Figure 6 20% to 80% of VO(DB); Test Pattern: 100-MHz clock signal; See Figure 5 and Figure 8 80 ps 80 ps 20 ps 100 ps 300 ps Assumes 50 Ω to Vcm and 150 pF load on each output 20 ns Assumes 50 Ω to Vcm and 150 pF load on each output 10 ns 2 ps-rms All outputs terminated with 100 Ω See Figure 8 for test circuit. BERT setting 10–15 Alternating 10-pattern. 25 0.8 All typical values are at 25°C and with 3.3 V supply unless otherwise noted. tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device. tsk(o) is the magnitude of the time difference between the tPLH and tPHL of any two outputs of a single device. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 SN65LVCP404 www.ti.com ................................................................................................................................................... SLLS700B – MARCH 2007 – REVISED JANUARY 2009 SWITCHING CHARACTERISTICS (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 0 dB preemphasis Intrinsic deterministic device (PREx_x = 0); jitter (5) (6), peak-to-peak See Figure 8 for the test circuit. DJ (5) (6) (7) 0 dB preemphasis Absolute deterministic (PREx_x = 0); output jitter (7), peak-to-peak See Figure 8 for the test circuit. PRBS 27-1 pattern MIN 4.25 Gbps MAX UNIT 30 1.25Gbps; EQ=1 Over 25-inch FR4 trace PRBS 27-1 pattern TYP (1) 4.25 Gbps; EQ=0 Over FR4 trace 2-inch to 43 inches long ps 7 ps 20 Intrinsic deterministic device jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ(OUT) – DJ(IN) ), where DJ(OUT) is the total peak-to-peak deterministic jitter measured at the output of the device in PSPP. DJ(IN) is the peak-to-peak deterministic jitter of the pattern generator driving the device. The SN65LVCP404 built-in passive input equalizer compensates for ISI. For a 25-inch FR4 transmission line with 8-mil trace width, the LVCP404 typically reduces jitter by 60 ps from the device input to the device output. Absolute deterministic output jitter reflects the deterministic jitter measured at the SN65LVCP404 output. The value is a real measured value with a Bit error tester as described in Figure 8. The absolute DJ reflects the sum of all deterministic jitter components accumulated over the link: DJ(absolute) = DJ(Signal generator) + DJ(transmission line) + DJ(intrinsic(LVCP404)). Table 2. Preemphasis Controls PL_2, PL_1, PS_2, and PS_1 (1) Px_2 (1) Px_1 (1) OUTPUT PREEMPHASIS LEVEL IN dB OUTPUT LEVEL IN mVpp DE-EMPHASIZED PRE-EMPHASIZED TYPICAL FR4 TRACE LENGTH 0 0 0 dB 1200 1200 10 inches of FR4 trace 0 1 3 dB 850 1200 20 inches of FR4 trace 1 0 6 dB 600 1200 30 inches of FR4 trace 1 1 9 dB 425 1200 40 inches of FR4 trace x = L or S Table 3. Receive Equalization Settings EQ EQUALIZATION TYPICAL TRACE 1 5 dB 25 inches of FR4 0 12 dB 43 inches of FR4 Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 7 SN65LVCP404 SLLS700B – MARCH 2007 – REVISED JANUARY 2009 ................................................................................................................................................... www.ti.com PARAMETER MEASUREMENT INFORMATION 1−bit 1 to N bit 3−dB Preemphasis VODPE3(pp) 9−dB Preemphasis VOCM VODB(PP) VODPE2(pp) 6−dB Preemphasis VODPE1(pp) 0−dB Preemphasis VOH VOL Figure 3. Preemphasis and Output Voltage Waveforms and Definitions 1−bit VODPE3(pp) 9−dB Preemphasis 1 to N bit VODB(PP) 80% 20% tPRE Figure 4. t(PRE) Preemphasis Duration Measurement 80% 80% VODB 20% 20% tr tf Figure 5. Driver Output Transition Time 8 Submit Documentation Feedback Copyright © 2007–2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP404 SN65LVCP404 www.ti.com ................................................................................................................................................... SLLS700B – MARCH 2007 – REVISED JANUARY 2009 PARAMETER MEASUREMENT INFORMATION (continued) VID = 0 V IN t PHLD t PLHD VOD = 0 V OUT Figure 6. Propagation Delay Input to Output VA 0V VB Clock Input 0V Ideal Output VY − VZ 1/fo 1/fo Period Jitter Cycle-to-Cycle Jitter Actual Output Actual Output 0V 0V VY − VZ VY − VZ tc(n) tc(n) tc(n +1) tjit(cc) = | tc(n) − tc(n + 1) | tjit(pp) = | tc(n) − 1/fo | Peak-to-Peak Jitter VA PRBS Input VY 0V VB 0V VZ PRBS Output tjit(pp) A. All input pulses are supplied by an Agilent 81250 Stimulus System. B. The measurement is made with the AgilentParBert measurement software. Figure 7. Driver Jitter Measurement Waveforms
SN65LVCP404RGZT 价格&库存

很抱歉,暂时无法提供与“SN65LVCP404RGZT”相匹配的价格&库存,您可以联系我们找货

免费人工找货