0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65LVP17DRFR

SN65LVP17DRFR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WFDFN8_EP

  • 描述:

    IC REDRIVER 1CH 4GBPS 8WSON

  • 数据手册
  • 价格&库存
SN65LVP17DRFR 数据手册
SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 2.5-V/3.3-V OSCILLATOR GAIN STAGE/BUFFERS • FEATURES • • • Low-Voltage PECL Input and Low-Voltage PECL or LVDS Outputs Clock Rates to 2 GHz – 140-ps Output Transition Times – 0.11 ps Typical Intrinsic Phase Jitter – Less than 630 ps Propagation Delay Times 2.5-V or 3.3-V Supply Operation 2-mm × 2-mm Small-Outline No-Lead Package APPLICATIONS • • PECL-to-LVDS Translation Clock Signal Amplification DESCRIPTION These four devices are high-frequency oscillator gain stages supporting both LVPECL or LVDS on the high gain outputs in 3.3-V or 2.5-V systems. Additionally, provides the option of both single-ended input (PECL levels on the SN65LVx16) and fully differential inputs on the SN65LVx17. The SN65LVx16 provides the user a Gain Control (GC) for controlling the Q output from 300 mV to 860 mV either by leaving it open (NC), grounded, or tied to VCC. (When left open, the Q output defaults to 575 mV.) The Q on the SN65LVx17 defaults to 575 mV as well. Both devices provide a voltage reference (VBB) of typically 1.35 V below VCC for use in receiving single-ended PECL input signals. When not used, VBB should be unconnected or open. All devices are characterized for operation from –40°C to 85°C. SN65LVDS17, SN65LVP17 SN65LVDS16, SN65LVP16 Q Q 4 mA 4 mA A Y A Y Z B Z VBB VREF VCC VBB EN VREF VCC EN GC Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2005, Texas Instruments Incorporated SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. AVAILABLE OPTIONS (1) (1) INPUT OUTPUT GAIN CONTROL BASE PART NUMBER Single-ended LVDS Yes SN65LVDS16 PART MARKING EL Single-ended LVPECL Yes SN65LVP16 EK Differential LVDS No SN65LVDS17 EN Differential LVPECL No SN65LVP17 EM For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) UNIT voltage (2) VCC Supply VI Input voltage –0.5 V to VCC + 0.5 V VO Output voltage –0.5 V to VCC + 0.5 V IO VBB output current (1) (2) (3) (4) –0.5 V to 4 V ±0.5 mA HBM electrostatic discharge (3) ±3 kV CDM electrostatic discharge (4) ±1500 V Continuous power dissipation See Power Dissipation Ratings Table Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to network ground see Figure 1). Tested in accordance with JEDEC Standard 22, Test Method A114-A-7 Tested in accordance with JEDEC Standard 22, Test Method C101 DISSIPATION RATINGS PACKAGE CIRCUIT BOARD MODEL TA≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C (1) TA = 85°C POWER RATING Low-K (2) 403 mW 4.0 mW/°C 161 mW High-K (3) 834 mW 8.3 mW/°C 333 mW DRF (1) (2) (3) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. In accordance with the Low-K thermal metric definitions of EIA/JESD51-3. In accordance with the High-K thermal metric definitions of EIA/JESD51-7. THERMAL CHARACTERISTICS over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VALUE θJB Junction-to-board thermal resistance 93.3 θJC Junction-to-case thermal resistance 101.7 Typical PD Device power dissipation Maximum 2 VCC = 3.3 V, TA = 25°C, 2 GHz, LVDS VCC = 3.3 V, TA = 25°C, 2 GHz, LVPECL UNIT °C/W 132 83 VCC = 3.6 V, TA = 85°C, 2 GHz, LVDS 173 VCC = 3.6 V, TA = 85°C, 2 GHz, LVPECL 108 mW SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 RECOMMENDED OPERATING CONDITIONS MIN NOM 2.375 2.5 or 3.3 MAX UNIT VCC Supply voltage 3.6 V VIC Common-mode input voltage (VIA + VIB)/2 SN65LVDS17 or SN65LVP17 1.2 VCC – (VID/2) V |VID| Differential input voltage magnitude |VIA - VIB| SN65LVDS17 or SN65LVP17 0.08 1 V VIH High-level input voltage to EN VIL Low-level input voltage to EN IO Output current to VBB RL Differential load resistance, TA Operating free-air temperature (1) EN SN65LVDS16 or SN65LVP16 EN SN65LVDS16 or SN65LVP16 2 VCC VCC– 1.17 VCC– 0.44 0 0.8 VCC– 2.25 VCC– 1.52 –400 (1) 400 90 132 Ω -40 85 °C V V µA The algebraic convention, where the least positive (more negative) value is designated minimum, is used in this data sheet. ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted) TYP (1) MAX RL = 100 Ω, EN at 0 V, Other inputs open 40 48 Outputs unloaded, EN at 0 V, Other inputs open 25 30 VCC– 1.35 VCC– 1.25 PARAMETER ICC Supply current TEST CONDITIONS MIN UNIT mA VBB Reference voltage (2) IBB = –400 µA IIH High-level input current, EN VI = 2 V –20 20 IIAH or IIBH High-level input current, A or B VI = VCC –20 20 IIL Low-level input current, EN VI = 0.8 V –20 20 IIAL or IIBL Low-level input current, A or B VI = GND –20 20 VCC– 1.44 V µA SN65LVDS16/17 Y AND Z OUTPUT CHARACTERISTICS |VOD| Differential output voltage magnitude, |VOY– VOZ| ∆|VOD| Change in differential output voltage magnitude between logic states VOC(SS) Steady-state common-mode output voltage (see Figure 3) ∆VOC(SS) Change in steady-state commonmode output voltage between logic states 247 340 454 mV See Figure 1 and Figure 2 50 1.125 1.375 -50 50 See Figure 3 mV VOC(PP) Peak-to-peak common-mode output voltage IOYZ or IOZZ High-impedance output current EN at VCC, VO = 0 V or VCC –1 1 IOYS or IOZS Short-circuit output current EN at 0 V, VOY or VOZ = 0 V –62 62 IOS(D) Differential short-circuit output current, |IOY– IOZ| EN at 0 V, VOY = VOZ –12 12 (1) (2) V 50 100 µA mA Typical values are at room temperature and with a VCC of 3.3 V. Single-ended input operation is limited to VCC≥ 3.0 V. 3 SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 ELECTRICAL CHARACTERISTICS (continued) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT SN65LVP16/17 Y AND Z OUTPUT CHARACTERISTICS VOYH or VOZH High-level output voltage VOYL or VOZL Low-level output voltage VOYL or VOZL Low-level output voltage |VOD| Differential output voltage magnitude, |VOH– VOL| IOYZ or IOZZ High-impedance output current 3.3 V; 50 Ω from Y and Z to VCC– 2 V 2.5 V; 50 Ω from Y and Z to VCC– 2 V VCC– 1.05 VCC– 0.82 VCC– 1.83 VCC– 1.57 VCC– 1.88 VCC– 1.57 V 0.6 EN at VCC, VO = 0 V or VCC 0.8 1 –1 1 µA Q OUTPUT CHARACTERISTICS (see Figure 1) VOH High-level output voltage VOL Low-level output voltage VO(pp) Peak-to-peak output voltage No load VCC– 0.94 GC Tied to GND, No load VCC– 1.22 GC Open, No load VCC– 1.52 GC Tied to VCC, No load VCC– 1.82 GC Tied to GND 300 GC Open 575 GC Tied to VCC 860 V V mV SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS A to Q tPD Propagation delay time, tPLH or tPHL tSK(P) Pulse skew, |tPLH– tPHL| tSK(PP) Part-to-part skew (2) tr 20%-to-80% differential signal rise time tf 20%-to-80% differential signal fall time tjit(per) RMS period jitter (3) tjit(cc) Peak cycle-to-cycle jitter (4) 2-GHz 50%-duty-cycle square-wave input, See Figure 5 tjit(ph) Intrinsic phase jitter 2 GHz tPHZ Propagation delay time, high-level-to-high-impedance output tPLZ Propagation delay time, low-level-to-high-impedance output tPZH Propagation delay time, high-impedance-to-high-level output tPZL Propagation delay time, high-impedance-to-low-level output (1) (2) (3) (4) 4 D to Y or Z See Figure 4 MIN TYP (1) MAX 340 460 460 630 UNIT ps 20 VCC = 3.3 V 80 VCC = 2.5 V 130 See Figure 4 ps 85 140 ps 85 140 ps 2 3 15 23 0.11 ps ps 30 30 See Figure 6 ns 30 30 Typical values are at room temperature and with a VCC of 3.3 V. Part-to-part skew is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 100,000 cycles. Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles, over a random sample of 1,000 adjacent cycle pairs. SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 PARAMETER MEASUREMENT INFORMATION VCC ICC 8 VCC Q 2 IIA IIGC II VIA VI + _ A VBB 4 GC D.U.T. Z 5 Y EN GND 9 1 3 50  IBB 6 S1 IOZ 7 50  IOY VCC − 2 V CL VI + _ + _ + + + + VOY VOZ VBB VO − − − − + _ (1) CL is the instrumentation and test fixture capacitance. (2) S1 is open for the SN65LVDS16 and closed for the SN65LVP16. + VOC − Figure 1. Output Voltage Test Circuit and Voltage and Current Definitions for LVDS/LVP16 VCC ICC 8 VCC 2 IIA IIB II VIA VIB + _ Q A VBB 3 B D.U.T. Z 5 Y EN GND 9 1 4 50  IBB 6 S1 IOZ 7 50  IOY VCC − 2 V CL VI + _ + _ + + + + VOY VOZ VBB VO − − − − + _ (1) CL is the instrumentation and test fixture capacitance. (2) S1 is open for the SN65LVDS17 and closed for the SN65LVP17. + VOC − Figure 2. Output Voltage Test Circuit and Voltage and Current Definitions for LVDS/LVP17 INPUT dVOC(SS) VOC(PP) VOC Figure 3. VOC Definitions 5 SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 PARAMETER MEASUREMENT INFORMATION (continued) VCC 1.2 V 1.125 V VIA 1.5 V VIB t PHL t PLH VOY − VOZ 80% 50% tf tr 20% Figure 4. Propagation Delay and Transition Time Test Waveforms 50  Cable, X  Y cm, SMA Coax Connectors, 4 Places HP3104 Pattern Generator TDS Oscilloscope with TJIT3 Analysis Pack Device Under Test 50  50  DC Figure 5. Jitter Measurement Setup 6 100% SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 PARAMETER MEASUREMENT INFORMATION (continued) VCC 1.2 V VIA 1.5 V VIB VI to EN 2V 1.4 V t PZH t PZL t PHZ 0.8 V t PLZ 0V VOY − VOZ 80% 100% 50% 20% Figure 6. Enable and Disable Time Test Waveforms 7 SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 DEVICE INFORMATION FUNCTION TABLE SN65LVDS16, (1) A EN H L SN65LVP16 (1) Q Y L L L H SN65LVDS17, SN65LVP17 (1) Z A B EN Q Y H L H H L H L H L ? ? ? L H L H X H ? Z Z H L L L H L Open L ? ? ? L L L ? ? ? X Open ? ? ? X X H ? Z Z Open Open L ? ? ? X X Open ? ? ? H = high, L = low, Z = high impedance, ? = indeterminate DRF PACKAGE TOP VIEW 1 4 9 8 5 BOTTOM VIEW Package Pin Assignments - Numerical Listing SN65LVDS16, SN65LVP16 8 Z SN65LVDS17, SN65LVP17 PIN SIGNAL PIN SIGNAL 1 Q 1 Q 2 A 2 A 3 VBB 3 B 4 GC 4 VBB 5 EN 5 EN 6 Z 6 Z 7 Y 7 Y 8 VCC 8 VCC 9 GND 9 GND SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs FREQUENCY SUPPLY CURRENT vs FREE-AIR TEMPERATURE 65 I CC − Supply Current − mA I CC − Supply Current − mA 65 LVP16/17 = Load 55 45 LVDS16/17 35 25 400 800 1200 1600 f − Frequency − MHz 2000 25 −20 0 20 100 LVP16/17 RISE/FALL TIME vs FREE-AIR TEMPERATURE 105 97 97 89 tr 81 tf 73 −20 0 20 40 60 80 tf 89 tr 81 73 65 −40 100 −20 0 20 500 4 20 428 Cycle−To−Cycle Jitter − ps 25 Period Jitter − ps 5 tPHL 3 2 1 0 −20 0 20 40 60 80 TA − Free−Air Temperature − C Figure 11. 100 80 100 CYCLE-TO-CYCLE JITTER vs FREQUENCY 524 tPLH 60 Figure 10. PERIOD JITTER vs FREQUENCY 476 40 TA − Free−Air Temperature − C LVDS16/17 PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE Propagation Delay Time − ps 80 LVDS16/17 RISE/FALL TIME vs FREE-AIR TEMPERATURE Figure 9. 404 −40 60 Figure 8. TA − Free−Air Temperature − C 452 40 Figure 7. 105 65 −40 LVDS16/17 35 TA − Free−Air Temperature − C tr/tf − Rise/Fall Time − ps tr/tf − Rise/Fall Time − ps 0 45 15 −40 15 LVP16/17 = Load 55 0 400 800 1200 f − Frequency − MHz Figure 12. 1600 2000 15 10 5 0 0 400 800 1200 1600 2000 f − Frequency − MHz Figure 13. 9 SN65LVDS16, SN65LVP16 SN65LVDS17, SN65LVP17 www.ti.com SLLS625B – SEPTEMBER 2004 – REVISED NOVEMBER 2005 EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS OUTPUT LVP16/17 OUTPUT LVDS16/17 VCC R VCC VCC VCC VCC R Y VCC Y 7V Z Z 7V 7V 7V ENABLE VCC 400 Ω 300 kΩ 7V INPUT VCC OUTPUT VBB VCC A VCC VCC B VBB 10 VBB PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) SN65LVDS16DRFT ACTIVE WSON DRF 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 EL Samples SN65LVDS17DRFR ACTIVE WSON DRF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 EN Samples SN65LVDS17DRFT ACTIVE WSON DRF 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 EN Samples SN65LVP16DRFT ACTIVE WSON DRF 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 EK Samples SN65LVP17DRFT ACTIVE WSON DRF 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 EM Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN65LVP17DRFR 价格&库存

很抱歉,暂时无法提供与“SN65LVP17DRFR”相匹配的价格&库存,您可以联系我们找货

免费人工找货