0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74HCS4075QPWRQ1

SN74HCS4075QPWRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    IC GATE OR 3CH 3IN 14TSSOP

  • 数据手册
  • 价格&库存
SN74HCS4075QPWRQ1 数据手册
Product Folder Order Now Tools & Software Technical Documents 参考資料 Support & Community SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 SN74HCS4075-Q1 車載用、 シュミット・トリガ入力を搭載したトリプル 3 入力 OR ゲート 1 特長 • 1 • • • • 2 アプリケーション 車載アプリケーション用に AEC-Q100 認定済み – デバイス温度グレード 1: -40°C~+125°C、TA – デバイス HBM ESD 分類レベル 2 – デバイス CDM ESD 分類レベル C6 広い動作電圧範囲: 2V~6V シュミット・トリガ入力により低速またはノイズ の多い入力信号に対応 低消費電力 – ICC:100nA (標準値) – 入力リーク電流:±100nA (標準値) 5V で ±7.8mA の出力駆動能力 • • 少ない入力によりエラー信号を監視 アクティブ LOW のイネーブル信号の結合 3 概要 このデバイスには、3 つの独立した 3 入力 OR ゲートと、 シュミット・トリガ入力が内蔵されています。各ゲートはブー ル関数 Y = A + B + C を正論理で実行します。 製品情報(1) 型番 パッケージ 本体サイズ(公称) SN74HCS4075QDRQ 1 SOIC (14) 8.70mm×3.90mm SN74HCS4075QPWR Q1 TSSOP (14) 5.00mm×4.40mm (1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。 シュミットトリガ入力の利点 Voltage Output Current Voltage Current Output Input Voltage Voltage Output Voltage Time Current Response Waveforms Time Time Input Voltage Output Schmitt-trigger CMOS Input Time Time Current Response Waveforms Supply Current Standard CMOS Input Supply Current Input Voltage Supports Slow Inputs Input Voltage Noise Rejection Input Voltage Input Voltage Waveforms Input Voltage Low Power Time 1 英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内 容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。 English Data Sheet: SCLS768 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.ti.com 目次 1 2 3 4 5 6 7 8 特長 .......................................................................... アプリケーション ......................................................... 概要 .......................................................................... 改訂履歴................................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 4 4 4 4 5 5 6 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Switching Characteristics .......................................... Typical Characteristics .............................................. Parameter Measurement Information .................. 6 Detailed Description .............................................. 8 8.1 Overview ................................................................... 8 8.2 Functional Block Diagram ......................................... 8 8.3 Feature Description................................................... 8 8.4 Device Functional Modes.......................................... 9 9 Application and Implementation ........................ 10 9.1 Application Information............................................ 10 9.2 Typical Application .................................................. 10 10 Power Supply Recommendations ..................... 13 11 Layout................................................................... 13 11.1 Layout Guidelines ................................................. 13 11.2 Layout Example .................................................... 13 12 デバイスおよびドキュメントのサポート ....................... 14 12.1 12.2 12.3 12.4 12.5 12.6 ドキュメントのサポート .............................................. 関連リンク ............................................................... コミュニティ・リソース ................................................ 商標 ....................................................................... 静電気放電に関する注意事項 ................................ Glossary ................................................................ 14 14 14 14 14 14 13 メカニカル、パッケージ、および注文情報 ................. 14 4 改訂履歴 2019年 年8月 月発行のものから更新 Page • データシートに D パッケージを 追加 ......................................................................................................................................... 1 • Deleted "ICC" and "output" from "Continuous current through VCC or GND" row for clarity .................................................... 4 2 Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.ti.com JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 5 Pin Configuration and Functions D or PW Package 14-Pin SOIC or TSSOP Top View 2A 1 14 2B 2 13 1A 3 12 1B 4 11 1C 5 10 1Y 6 9 GND 7 8 VCC 3C 3B 3A 3Y 2Y 2C Pin Functions PIN NAME NO. I/O DESCRIPTION 2A 1 Input Channel 2, Input A 2B 2 Input Channel 2, Input B 1A 3 Input Channel 1, Input A 1B 4 Input Channel 1, Input B 1C 5 Input Channel 1, Input C 1Y 6 Output GND 7 — 2C 8 Input 2Y 9 Output Channel 2, Output Y 3Y 10 Output Channel 3, Output Y 3A 11 Input Channel 3, Input A 3B 12 Input Channel 3, Input B 3C 13 Input Channel 3, Input C VCC 14 — Copyright © 2019, Texas Instruments Incorporated Channel 1, Output Y Ground Channel 2, Input C Positive Supply 3 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX –0.5 7 UNIT VCC Supply voltage V IIK Input clamp current (2) VI < –0.5 or VI > VCC + 0.5 ±20 mA IOK Output clamp current (2) VO < –0.5 or VO > VCC + 0.5 ±20 mA IO Continuous output current VO = 0 to VCC ±35 mA Continuous current through VCC or GND ±50 mA TJ Junction temperature (3) 150 °C Tstg Storage temperature 150 °C (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. Do not exceed the absolute maximum voltage supply rating. Guaranteed by design. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 UNIT (1) Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6 ±4000 V ±1500 AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT VCC Supply voltage 2 6 V VI Input voltage 0 VCC V VO Output voltage 0 Δt/Δv Input transition rise and fall rate TA Ambient temperature VCC Unlimited –40 125 V ns/V °C 6.4 Thermal Information SN74HCS4075-Q1 THERMAL METRIC PW (TSSOP) D (SOIC) UNIT 14 PINS 14 PINS RθJA Junction-to-ambient thermal resistance 151.7 133.6 °C/W RθJC(top) Junction-to-case (top) thermal resistance 79.4 89.0 °C/W RθJB Junction-to-board thermal resistance 94.7 89.5 °C/W ΨJT Junction-to-top characterization parameter 25.2 45.5 °C/W ΨJB Junction-to-board characterization parameter 94.1 89.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W 4 Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.tij.co.jp JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 6.5 Electrical Characteristics over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted). PARAMETER VT+ VT- ΔVT VOH TEST CONDITIONS VCC Positive switching threshold Negative switching threshold Hysteresis (VT+ - VT-) High-level output voltage VI = VIH or VIL MIN TYP MAX UNIT 2V 0.7 1.5 4.5 V 1.7 3.15 6V 2.1 4.2 2V 0.3 1.0 4.5 V 0.9 2.2 6V 1.2 3.0 2V 0.2 1.0 4.5 V 0.4 1.4 6V 0.6 1.6 IOH = -20 µA 2 V to 6 V IOH = -6 mA 4.5 V IOH = -7.8 mA 6V IOL = 20 µA 2 V to 6 V IOL = 6 mA 4.5 V IOL = 7.8 mA VCC – 0.1 V V V VCC – 0.002 4 4.3 5.4 5.75 V 0.002 0.1 0.18 0.30 VOL Low-level output voltage VI = VIH or VIL 6V 0.22 0.33 II Input leakage current VI = VCC or 0 6V ±100 ±1000 nA ICC Supply current VI = VCC or 0, IO = 0 6V 0.1 2 µA Ci Input capacitance 5 pF Cpd Power dissipation capacitance per gate 2 V to 6 V No load 2 V to 6 V 10 V pF 6.6 Switching Characteristics over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted). See the Parameter Measurement Information. PARAMETER FROM (INPUT) TO (OUTPUT) VCC 2V tpd tt Propagation delay Transition-time Copyright © 2019, Texas Instruments Incorporated A or B or C Y Y MIN TYP MAX 13 32 4.5 V 6 15 6V 5 12 2V 9 17 4.5 V 5 8 6V 4 7 UNIT ns ns 5 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.tij.co.jp 6.7 Typical Characteristics TA = 25°C 70 46 VCC = 2 V VCC = 3.3 V VCC = 4.5 V VCC = 6 V Output Resistance (:) 42 VCC = 2 V VCC = 3.3 V VCC = 4.5 V VCC = 6 V 65 Output Resistance (:) 44 40 38 36 34 32 60 55 50 45 40 30 35 28 26 30 0 2.5 5 7.5 10 12.5 15 17.5 Output Sink Current (mA) 20 22.5 25 0 図 1. Output driver resistance in Low state ICC ± Supply Current (mA) VCC = 2.5 V 0.14 VCC = 3.3 V ICC ± Supply Current (mA) VCC = 2 V 0.16 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.5 1 1.5 2 2.5 VI ± Input Voltage (V) 3 5 7.5 10 12.5 15 17.5 Output Source Current (mA) 20 22.5 25 図 2. Output driver resistance in High state 0.2 0.18 2.5 3.5 図 3. Typical supply current versus input voltage across common supply values (2 V to 3.3 V) 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 VCC = 4.5 V VCC = 5 V VCC = 6 V 0 0.5 1 1.5 2 2.5 3 3.5 4 VI ± Input Voltage (V) 4.5 5 5.5 6 図 4. Typical supply current versus input voltage across common supply values (4.5 V to 6 V) 7 Parameter Measurement Information • • Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tt < 2.5 ns. The outputs are measured one at a time, with one input transition per measurement. Test Point 90% VCC 90% Input 10% 10% tr(1) From Output Under Test CL(1) 0V tf(1) 90% VOH 90% Output 10% CL= 50 pF and includes probe and jig capacitance. 図 5. Load Circuit 6 10% tr(1) tf(1) VOL 図 6. Voltage Waveforms Transition Times Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.tij.co.jp JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 Parameter Measurement Information (continued) VCC Input 50% 50% 0V tPLH (1) tPHL (1) VOH Output 50% 50% VOL tPLH(1) tPHL(1) VOH Output 50% 50% VOL The maximum between tPLH and TPHL is used for tpd. 図 7. Voltage Waveforms Propagation Delays Copyright © 2019, Texas Instruments Incorporated 7 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.tij.co.jp 8 Detailed Description 8.1 Overview This device contains three independent 3-input OR Gates with Schmitt-trigger inputs. Each gate performs the Boolean function Y = A + B + C in positive logic. 8.2 Functional Block Diagram One of Three Channels xA xB xY xC 8.3 Feature Description 8.3.1 Balanced CMOS Push-Pull Outputs A balanced output allows the device to sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times. 8.3.2 CMOS Schmitt-Trigger Inputs Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the Electrical Characteristics, using ohm's law (R = V ÷ I). The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs slowly will also increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers. 8.3.3 Clamp Diode Structure The inputs and outputs to this device have both positive and negative clamping diodes as depicted in 図 8. 注意 Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 8 Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.tij.co.jp JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 Feature Description (continued) VCC Device +IIK +IOK Logic Input Output -IIK -IOK GND 図 8. Electrical Placement of Clamping Diodes for Each Input and Output 8.4 Device Functional Modes 表 1. Function Table INPUTS Copyright © 2019, Texas Instruments Incorporated OUTPUT A B C Y L L L L H X X H X H X H X X H H 9 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.tij.co.jp 9 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The SN74HCS4075-Q1 includes three 3-input OR gates with Schmitt-trigger inputs. These 3-input OR gates work independently, but can be combined to get up to a 7-input OR gate. It can be used with all three inputs active, or one input can be disabled by directly connecting it to ground to turn the device into a 2-input OR gate. The SN74HCS4075-Q1 is used to directly control the Enable pin of a fan driver. The fan driver requires only one input signal to be HIGH before being enabled, and should be disabled in the event that all signals go LOW. The 3-input OR gate function combines the three individual overheat signals into a single active-high enable signal. Temperature sensors can often be spread throughout a system rather than being in a centralized location. This would mean longer length traces or wires to pass signals through leading to slower edge transitions. This makes the SN74HCS4075-Q1 ideal for the application since it has Schmitt-trigger inputs that do not have input transition rate requirements. 9.2 Typical Application Device 1 Overheat Fan Driver Device 2 Overheat EN Device 3 Overheat 図 9. Typical application block diagram 9.2.1 Design Requirements • All signals in the system operate at 5 V • The fan driver should be enabled if any one or more of these conditions apply: – Device 1 overheats – Device 2 overheats – Device 3 overheats 9.2.1.1 Power Considerations Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics. The supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS4075-Q1 plus the maximum supply current, ICC, listed in the Electrical Characteristics. The logic device can only source or sink as much current as it is provided at the supply and ground pins, respectively. Be sure not to exceed the maximum total current through GND or VCC listed in the Absolute Maximum Ratings. 10 Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.tij.co.jp JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 Typical Application (continued) The SN74HCS4075-Q1 can drive a load with a total capacitance less than or equal to 50 pF connected to a high-impedance CMOS input while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed 70 pF. Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation. Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices. 注意 The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum Ratings. These limits are provided to prevent damage to the device. 9.2.1.2 Input Considerations Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the Absolute Maximum Ratings. Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS4075-Q1, as specified in the Electrical Characteristics, and the desired input transition rate. A 10-kΩ resistor value is often used due to these factors. The SN74HCS4075-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs. Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical Characteristics. This hysteresis value will provide the peak-to-peak limit. Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than VCC or ground is plotted in the Typical Characteristics. Refer to the Feature Description for additional information regarding the inputs for this device. 9.2.1.3 Output Considerations The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. Similarly, the ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the VOL specification in the Electrical Characteristics. The plots in and provide a typical relationship between output voltage and current for this device. Unused outputs can be left floating. Refer to Feature Description for additional information regarding the outputs for this device. 9.2.2 Detailed Design Procedure 1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout. 2. Ensure the capacitive load at the output is ≤ 70 pF. This is not a hard limit, however it will ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS4075-Q1 to the receiving device. 3. Ensure the resistive load at the output is larger than (VCC / 25 mA) Ω. This will ensure that the maximum output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load Copyright © 2019, Texas Instruments Incorporated 11 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.tij.co.jp Typical Application (continued) measured in megaohms; much larger than the minimum calculated above. 4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation 9.2.3 Application Curves Device 1 Device 2 Device 3 EN 図 10. Application timing diagram 12 Copyright © 2019, Texas Instruments Incorporated SN74HCS4075-Q1 www.tij.co.jp JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in 図 11. 11 Layout 11.1 Layout Guidelines When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic function or is more convenient. 11.2 Layout Example GND VCC Recommend GND flood fill for improved signal isolation, noise reduction, and thermal dissipation 0.1 F Avoid 90° corners for signal lines Bypass capacitor placed close to the device 2A 1 14 2B 2 13 VCC Unused inputs tied to VCC 3C 1A 3 12 3B 1B 4 11 3A 1C 5 10 3Y 1Y 6 9 2Y GND 7 8 2C Unused output left floating 図 11. Example layout for the SN74HCS4075-Q1 Copyright © 2019, Texas Instruments Incorporated 13 SN74HCS4075-Q1 JAJSHW0A – AUGUST 2019 – REVISED OCTOBER 2019 www.tij.co.jp 12 デバイスおよびドキュメントのサポート 12.1 ドキュメントのサポート 12.1.1 関連資料 関連資料については、以下を参照してください。 • 『HCMOS Design Considerations』 (英語) • 『CMOS Power Consumption and Cpd Calculation』 (英語) • 『Designing With Logic』 (英語) 12.2 関連リンク 次の表に、クイック・アクセス・リンクを示します。カテゴリには、技術資料、サポートおよびコミュニティ・リソース、ツールとソフ トウェア、およびサンプル注文またはご購入へのクイック・アクセスが含まれます。 12.3 コミュニティ・リソース TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.4 商標 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 静電気放電に関する注意事項 これらのデバイスは、限定的なESD(静電破壊)保護機能を内 蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 止するために、リード線同士をショートさせて おくか、デバイスを導電フォームに入れる必要があります。 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 メカニカル、パッケージ、および注文情報 以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスに ついて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もありま す。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。 14 Copyright © 2019, Texas Instruments Incorporated 重要なお知らせと免責事項 TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種 アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対す る適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選 定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリ ティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される 可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に 許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与さ れている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI および その代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供 する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意 味するものではありません。IMPORTANT NOTICE Copyright © 2020, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) SN74HCS4075QDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 HCS4075Q SN74HCS4075QPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 HC4075Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74HCS4075QPWRQ1 价格&库存

很抱歉,暂时无法提供与“SN74HCS4075QPWRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货