0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TCAN1051VDRBTQ1

TCAN1051VDRBTQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VDFN8_EP

  • 描述:

    FAULT PROTECTED CAN TRANSCEIVER

  • 数据手册
  • 价格&库存
TCAN1051VDRBTQ1 数据手册
www.ti.com TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1,TCAN1051HGV-Q1 TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051G-Q1, TCAN1051GV-Q1,SLLSET0D TCAN1051HG-Q1, – MARCH 2016TCAN1051HGV-Q1 – REVISED APRIL 2021 SLLSET0D – MARCH 2016 – REVISED APRIL 2021 TCAN1051-Q1 Automotive Fault Protected CAN Transceiver with CAN FD 1 Features 3 Description • This CAN transceiver family meets the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. All devices are designed for use in CAN FD networks up to 2 Mbps (megabits per second). Devices with part numbers that include the "G" suffix are designed for data rates up to 5 Mbps, and versions with the "V" have a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level. This family of devices comes with silent mode which is also commonly referred to as listen-only mode. Additionally, all devices include many protection features to enhance device and network robustness. • • • • • • • • • • • AEC Q100: Qualified for automotive applications – Temperature grade 1: -40°C to 125°C, TA – HBM classification level: ±16 kV – CDM classification level ±1500 V Meets the ISO 11898-2:2016 and ISO 11898-5:2007 physical layer standards Functional Safety-Capable – Documentation available to aid functional safety system design 'Turbo' CAN: – All devices support classic CAN and 2 Mbps CAN FD (flexible data rate) and "G" options support 5 Mbps – Short and symmetrical propagation delay times and fast loop times for enhanced timing margin – Higher data rates in loaded CAN networks EMC performance: supports SAE J2962-2 and IEC 62228-3 (up to 500 kbps) without common mode choke I/O Voltage range supports 3.3 V and 5 V MCUs Ideal passive behavior when unpowered – Bus and logic terminals are high impedance (no load) – Power up/down with glitch free operation on bus and RXD output Protection features – IEC ESD protection up to ±15 kV – Bus Fault protection: ±58 V (non-H variants) and ±70 V (H variants) – Undervoltage protection on VCC and VIO (V variants only) supply terminals – Driver dominant time out (TXD DTO) - Data rates down to 10 kbps – Thermal shutdown protection (TSD) Receiver common mode input voltage: ±30 V Typical loop delay: 110 ns Junction temperatures from –55°C to 150°C Available in SOIC(8) package and leadless VSON(8) Package (3.0 mm x 3.0 mm) with improved automated optical inspection (AOI) capability Device Information PART NUMBER TCAN1051x-Q1 (1) Automotive and Transportation All devices support highly loaded CAN networks Heavy machinery ISOBUS applications – ISO 11783 BODY SIZE SOIC (8) 4.90 mm × 3.91 mm VSON (8) 3.00 mm x 3.00 mm For all available packages, see the orderable addendum at the end of the data sheet. NC or VIO VCC 5 3 VCC or VIO TXD 1 S 8 TSD 7 CANH Dominant time-out 6 CANL Mode Select UVP VCC or VIO RXD 4 Logic Output 2 GND A. 2 Applications • • • PACKAGE(1) B. Copyright © 2016, Texas Instruments Incorporated Terminal 5 function is device dependent; NC on devices without the "V" suffix, and VIO for I/O level shifting for devices with the "V" suffix. RXD logic output is driven to VCC on devices without the "V" suffix, and VIO for devices with the "V" suffix. Functional Block Diagram An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2021 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................5 6 Specifications.................................................................. 6 6.1 Absolute Maximum Ratings ....................................... 6 6.2 ESD Ratings............................................................... 6 6.3 ESD Ratings, Specifications....................................... 7 6.4 Recommended Operating Conditions.........................8 6.5 Thermal Information....................................................8 6.6 Power Rating.............................................................. 8 6.7 Electrical Characteristics.............................................9 6.8 Switching Characteristics..........................................12 6.9 Typical Characteristics.............................................. 13 7 Parameter Measurement Information.......................... 14 8 Detailed Description......................................................18 8.1 Overview................................................................... 18 8.2 Functional Block Diagram......................................... 18 8.3 Feature Description...................................................19 8.4 Device Functional Modes..........................................22 9 Application Information Disclaimer............................. 24 9.1 Application Information............................................. 24 9.2 Typical Applications.................................................. 24 10 Power Supply Recommendations..............................28 11 Device and Documentation Support..........................31 11.1 Documentation Support.......................................... 31 11.2 Receiving Notification of Documentation Updates.. 31 11.3 Support Resources................................................. 31 11.4 Trademarks............................................................. 31 11.5 Electrostatic Discharge Caution.............................. 31 11.6 Glossary.................................................................. 31 12 Mechanical, Packaging, and Orderable Information.................................................................... 31 4 Revision History Changes from Revision C (May 2017) to Revision D (April 2021) Page • Added Feature: EMC performance:.. .................................................................................................................1 • Updated the numbering format for tables, figures and cross-references throughout the document...................1 • Added Feature "Functional Safety-Capable"...................................................................................................... 1 • Deleted "Base" from the D and DRB pin images in the Pin Configurations and Functions ............................... 5 • Deleted "Product Preview" from the DRB pin images in the Pin Configurations and Functions ........................5 • Added footnote to the GND pin in the Pin Functions table ................................................................................ 5 • Changed ICC Normal Mode Max value From: 180 To 110 in the Electrical Characteristics table....................... 9 • Added SR, Differential output slew rate to the Switching Characteristics table ...............................................12 Changes from Revision B (May 2016) to Revision C (May 2017) Page • Added items to the Automotive Applications Feature ........................................................................................ 1 • Deleted Feature "Meets the December 17th, 2015 Draft of ISO 11898-2 Physical Layer Update".................... 1 • Changed Feature From: "Meets the Released ISO 11898-2:2007 and ISO 11898-2:2003 Physical Layer Standards" To: "Meets the ISO 11898-2:2016 and ISO 11898-5:2007 Physical Layer Standards".................... 1 • Changed Feature From: "All devices support 2 Mbps CAN FD.." To: "All Devices Support Classic CAN and 2 Mbps CAN FD.."................................................................................................................................................. 1 • Added Feature "Available in SOIC(8) package and leadless VSON(8) package..."........................................... 1 • Changed Applications From: Heavy Machinery ISO11783 To: Heavy Machinery ISOBUS Applications – ISO 11783.................................................................................................................................................................. 1 • Changed the Functional Block Diagram, removed the Dominant time-out box.................................................. 1 • Changed "D Package for (HV) and (HGV)" To: "DRB Package for (HV) and (HGV)" ........................................5 • Added Storage temperature range to the Absolute Maximum Ratings table......................................................6 • Changed the ESD Ratings table to show the D(SOIC) and DRB (VSON) values ............................................. 6 • Changed Human Body Model (HBM) From: ±10000 To: ±16000 in the ESD Ratings table...............................6 • Changed Charged Device Model (CDM) From: ±750 To: ±1500 in the ESD Ratings table................................6 • Changed TBD to values for the DRB (VSON) Package in the ESD Ratings table............................................. 6 • Added the Power Rating table ........................................................................................................................... 8 • Changed VSYM in the DRIVER ELECTRICAL CHARACTERISTICS table.........................................................9 • Changed VSYM_DC in the DRIVER ELECTRICAL CHARACTERISTICS table................................................... 9 • Deleted "VI = 0.4 sin (4E6 π t) + 2.5 V" from the Test Condition of CI in the RECEIVER ELECTRICAL CHARACTERISTICS table................................................................................................................................. 9 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com • • • • SLLSET0D – MARCH 2016 – REVISED APRIL 2021 Deleted "VI = 0.4 sin (4E6 π t)" from the Test Condition of CID in the RECEIVER ELECTRICAL CHARACTERISTICS table................................................................................................................................. 9 Added "-30 V ≤ VCM ≤ +30" to the Test Condition of RID and RIN in the RECEIVER ELECTRICAL CHARACTERISTICS table table........................................................................................................................ 9 Changed the Functional Block Diagram, removed the Dominant time-out box................................................ 18 Changed Table 8-2, BUS OUTPUT colum........................................................................................................20 Changes from Revision A (April 2016) to Revision B (May 2016) Page • Added Feature "Meets the Released ISO 11898-2:2007 and ISO 11898-2:2003 Physical Layer Standards" .. 1 • Changed Feature From: Meets the Requirements of ISO11898-2 (2016) To: Meets the December 17th, 2015 Draft of ISO 11898-2 Physical Layer Update .....................................................................................................1 • Changed the Applications list............................................................................................................................. 1 • Added the VSON (8) pin package to the Device Information table.....................................................................1 • Added the VSON (8) pin package to the Pin Configuration and Functions ....................................................... 5 • Added V(Diff) to the Section 6.1 table ................................................................................................................. 6 • Added the DRB package to the Thermal Information table ............................................................................... 8 Changes from Revision * (March 2016) to Revision A (April 2016) Page • Changed the device status From: Product Preview To: Production ...................................................................1 • Added the VSON (8) pin package to the Pin Configuration and Functions ....................................................... 5 Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 3 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 Device Comparison Table 4 DEVICE NUMBER BUS FAULT PROTECTION TCAN1051-Q1 (Base) ±58 V 5-Mbps FLEXIBLE DATA RATE TCAN1051G-Q1 ±58 V X TCAN1051GV-Q1 ±58 V X TCAN1051V-Q1 ±58 V TCAN1051H-Q1 ±70 V TCAN1051HG-Q1 ±70 V X ±70 V X TCAN1051HV-Q1 ±70 V PIN 8 MODE SELECTION X X TCAN1051HGV-Q1 Submit Document Feedback 3-V LEVEL SHIFTER INTEGRATED Silent Mode X X Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 5 Pin Configuration and Functions TXD 1 8 S GND 2 7 CANH VCC 3 6 CANL RXD 4 5 NC Figure 5-1. D Package for (H), (G) and (HG) Devices 8 PIN (SOIC) Top View TXD 1 8 S GND 2 7 CANH VCC 3 6 CANL RXD 4 5 VIO Figure 5-3. D Package for (V), (GV), (HV), and (HGV) Devices 8 PIN (SOIC) Top View TXD 1 8 S GND 2 7 CANH VCC 3 6 CANL RXD 4 5 NC Figure 5-2. DRB Package for (H), (G), and (HG) Devices 8 PIN (VSON) Top View TXD 1 8 S GND 2 7 CANH VCC 3 6 CANL RXD 4 5 VIO Figure 5-4. DRB Package for (V), (GV), (HV) and (HGV) Devices 8 PIN (VSON) Top View Table 5-1. Pin Functions PINS (H), (G), (HG) (V), (GV), (HV), (HGV) TYPE TXD 1 1 DIGITAL INPUT GND(1) 2 2 GND VCC 3 3 POWER RXD 4 4 DIGITAL OUTPUT NC 5 — — VIO — 5 POWER Transceiver I/O level shifting supply voltage (Devices with "V" suffix only) CANL 6 6 BUS I/O Low level CAN bus input/output line CANH 7 7 BUS I/O High level CAN bus lnput/output line S 8 8 DIGITAL INPUT NAME (1) DESCRIPTION CAN transmit data input (LOW for dominant and HIGH for recessive bus states) Ground connection Transceiver 5-V supply voltage CAN receive data output (LOW for dominant and HIGH for recessive bus states) No Connect Silent Mode control input (active high) For DRB (VSON) package options, the thermal pad may be connected to GND in order to optimize the thermal characteristics of the package. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 5 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT VCC 5-V Bus Supply Voltage Range All Devices –0.3 7 V VIO I/O Level-Shifting Voltage Range Devices with the "V" Suffix –0.3 7 V VBUS CAN Bus I/O voltage range (CANH, CANL) Devices without the "H" Suffix –58 58 V V(Diff) Max differential voltage between CANH and CANL Devices without the “H” suffix –58 58 V VBUS CAN Bus I/O voltage range (CANH, CANL) Devices with the "H" Suffix -70 70 V V(Diff) Max differential voltage between CANH and CANL Devices with the “H” suffix –70 70 V V(Logic_Input) Logic input terminal voltage range (TXD, S) –0.3 +7 and VI ≤ VIO + 0.3 V –0.3 +7 and VI ≤ VIO + 0.3 V All Devices V(Logic_Output) Logic output terminal voltage range (RXD) IO(RXD) RXD (Receiver) output current –8 8 mA TJ Virtual junction temperature range (see Section 6.5) –55 150 °C TSTG Storage temperature range (see Section 6.5) –65 150 °C (1) (2) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated condition for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to ground terminal. 6.2 ESD Ratings VALUE TEST CONDITIONS UNIT D (SOIC) Package Human Body Model (HBM) ESD stress voltage Charged Device Model (CDM) ESD stress voltage Machine Model All terminals(1) ±6000 CAN bus terminals (CANH, CANL) to GND(2) ±16000 All terminals(3) ±1500 V terminals(4) ±200 V All V DRB (VSON) Package Human Body Model (HBM) ESD stress voltage Charged Device Model (CDM) ESD stress voltage Machine Model (1) (2) (3) (4) 6 All terminals(1) ±6000 CAN bus terminals (CANH, CANL) to GND(2) ±16000 All terminals(3) ±1500 V terminals(4) ±200 V All V Tested in accordance to JEDEC Standard 22, Test Method A114. Test method based upon JEDEC Standard 22 Test Method A114, CAN bus is stressed with respect to GND. Tested in accordance to JEDEC Standard 22, Test Method C101. Tested in accordance to JEDEC Standard 22, Test Method A115. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.3 ESD Ratings, Specifications TEST CONDITIONS VALUE UNIT D (SOIC) Package System Level Electro-Static Discharge (ESD) System Level Electro-Static Discharge (ESD) System Level Electrical fast transient (EFT) ISO7637 Transients according to GIFT - ICT CAN EMC test spec(1) ISO7637-3 Transients CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND SAE J2962-2 per ISO 10605: Powered Air Discharge ±15000 SAE J2962-2 per ISO 10605: Powered Contact Discharge ±8000 IEC 61000-4-2: Unpowered Contact Discharge ±15000 IEC 61000-4-2: Powered Contact Discharge ±8000 IEC 61000-4-4: Criteria A ±4000 Pulse 1 –100 V V Pulse 2 +75 Pulse 3a –150 Pulse 3b +100 Direct Coupling Capacitor "Slow Transient Pulse" with100 nF coupling capacitor - Powered ±85 V V V DRB (VSON) Package System Level Electro-Static Discharge (ESD) System Level Electro-Static Discharge (ESD) CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND System Level Electrical fast transient (EFT) CAN bus terminals (CANH, CANL) to GND ISO7637 Transients according to GIFT - ICT CAN EMC test spec(1) CAN bus terminals (CANH, CANL) to GND ISO7637-3 Transients (1) CAN bus terminals (CANH, CANL) to GND SAE J2962-2 per ISO 10605: Powered Air Discharge ±15000 SAE J2962-2 per ISO 10605: Powered Contact Discharge ±8000 IEC 61000-4-2: Unpowered Contact Discharge ±14000 IEC 61000-4-2: Powered Contact Discharge ±8000 IEC 61000-4 Criteria A ±4000 Pulse 1 –100 V V Pulse 2 +75 Pulse 3a –150 Pulse 3b +100 Direct Coupling Capacitor "Slow Transient Pulse" with100 nF coupling capacitor - Powered ±85 V V V ISO7637 is a system level transient test. Results given here are specific to the GIFT-ICT CAN EMC Test specification conditions. Different system level configurations may lead to different results. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 7 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.4 Recommended Operating Conditions MIN MAX VCC 5-V Bus Supply Voltage Range 4.5 5.5 VIO I/O Level-Shifting Voltage Range 2.8 5.5 IOH(RXD) RXD terminal HIGH level output current –2 IOL(RXD) RXD terminal LOW level output current UNIT V mA 2 6.5 Thermal Information TCAN1051-Q1 Thermal Metric(1) TEST CONDITIONS DRB (VSON) 8 Pins 8 Pins Unit RθJA Junction-to-air thermal resistance 105.8 40.2 RθJB Junction-to-board thermal resistance 46.8 49.7 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance 48.3 15.7 °C/W ΨJT Junction-to-top characterization parameter 8.7 0.6 °C/W ΨJB Junction-to-board characterization parameter 46.2 15.9 °C/W TTSD Thermal shutdown temperature 170 170 °C TTSD_HYS Thermal shutdown hysteresis 5 5 °C (1) High-K thermal resistance D (SOIC) °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.6 Power Rating PARAMETER PD 8 Average power dissipation Submit Document Feedback POWER DISSIPATION UNIT VCC = 5 V, VIO = 5 V (if applicable), TJ = 27°C, RL = 60 Ω, S at 0 V, Input to TXD at 250 kHz, CL_RXD = 15 pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate. TEST CONDITIONS 52 mW VCC = 5.5 V, VIO = 5.5 V (if applicable), TJ = 150°C, RL = 50 Ω, S at 0 V, Input to TXD at 500 kHz, CL_RXD = 15 pF. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network. 124 mW Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.7 Electrical Characteristics Over recommended operating conditions, TA = –55°C to 125°C (unless otherwise noted). PARAMETER TYP(1) MAX See Figure 7-1, TXD = 0 V, RL = 60 Ω, CL = open, RCM = open, S = 0V 40 70 See Figure 7-1, TXD = 0 V, RL = 50 Ω, CL = open, RCM = open, S = 0V 45 80 TEST CONDITIONS MIN UNIT Supply Characteristics Normal mode (dominant) ICC IIO UVVCC 5-V Supply current I/O supply current Normal mode (dominant See Figure 7-1, TXD = 0 V, S = 0V, CANH = – bus fault) -12V, RL = open, CL = open, RCM = open 110 mA Normal mode (recessive) See Figure 7-1, TXD = VCC, RL = 50 Ω, CL = open, RCM = open, S = 0V 1.5 2.5 Silent mode See Figure 7-1, TXD = VCC, RL = 50 Ω,CL = open, RCM = open, S = VCC 1.5 2.5 Normal and Silent modes RXD Floating, TXD = S = 0 or 5.5 V 90 300 4.2 4.4 4.0 4.25 Rising undervoltage detection on VCC for protected mode Falling undervoltage detection on VCC for protected mode VHYS(UVVCC) Hysteresis voltage on UVVCC UVVIO Undervoltage detection on VIO for protected mode VHYS(UVVIO) Hysteresis voltage on UVVIO for protected mode All devices V 3.8 200 Devices with the "V" Suffix (I/O level-shifting) µA 1.3 mV 2.75 80 V mV S Terminal (Mode Select Input) VIH High-level input voltage Devices with the "V" suffix (I/O level-shifting) Devices without the "V" suffix (5-V only) 0.7 x VIO 2 Devices with the "V" suffix (I/O level-shifting) 0.3 x VIO VIL Low-level input voltage Devices without the "V" suffix (5-V only) 0.8 IIH High-level input leakage current S = VCC or VIO = 5.5 V 30 IIL Low-level input leakage current S = 0 V, VCC = VIO = 5.5 V –2 Ilkg(OFF) Unpowered leakage current S = 5.5 V, VCC = VIO = 0 V -1 0 2 V µA 1 TXD Terminal (CAN Transmit Data Input) VIH High-level input voltage Devices with the "V" suffix (I/O level-shifting) Devices without the "V" suffix (5-V only) 0.7 x VIO 2 Devices with the "V" suffix (I/O level-shifting) 0.3 x VIO VIL Low-level input voltage IIH High-level input leakage current TXD = VCC = VIO = 5.5 V –2.5 0 1 IIL Low-level input leakage current TXD = 0 V, VCC = VIO = 5.5 V –100 -25 –7 Ilkg(OFF) Unpowered leakage current TXD = 5.5 V, VCC = VIO = 0 V –1 0 1 CI Input capacitance VIN = 0.4 * sin(4E6 * π * t) + 2.5 V Copyright © 2021 Texas Instruments Incorporated Devices without the "V" suffix (5-V only) V 0.8 5 µA pF Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 9 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.7 Electrical Characteristics (continued) Over recommended operating conditions, TA = –55°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT RXD Terminal (CAN Receive Data Output) VOH Devices with the "V" suffix (I/O levelshifting), See Figure 7-2, IO = –2 mA High-level output voltage VOL Devices without the "V" suffix (5-V only), See Figure 7-2, IO = –2 mA 4 4.6 V Devices with the "V" suffix (I/O levelshifting), See Figure 7-2, IO = +2 mA Low-level output voltage Ilkg(OFF) 0.8 × VIO 0.2 x VIO Devices without the "V" suffix (5-V only), See Figure 7-2, IO = +2 mA Unpowered leakage current RXD = 5.5 V, VCC = 0 V, VIO = 0 V –1 0.2 0.4 0 1 µA Driver Electrical Characteristics VO(DOM) Bus output voltage (dominant VO(REC) Bus output voltage (recessive) VOD(DOM) VOD(REC) Differential output voltage (dominant) Differential output voltage (recessive) CANH CANL CANH and CANL CANH - CANL CANH - CANL See Figure 8-2 and Figure 7-1, TXD = 0 V, S = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open See Figure 8-2 and Figure 7-1, TXD = VCC, VIO = VCC, S = VCC or 0 V (2), RL = open (no load), RCM = open 2.75 4.5 0.5 2.25 2 0.5 × VCC 3 See Figure 8-2 and Figure 7-1, TXD = 0 V, S = 0 V, 45 Ω ≤ RL < 50 Ω, CL = open, RCM = open 1.4 3 See Figure 8-2 and Figure 7-1, TXD = 0 V, S = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open 1.5 3 See Figure 8-2 and Figure 7-1, TXD = 0 V, S = 0 V, RL = 2240 Ω, CL = open, RCM = open 1.5 5 See Figure 8-2 and Figure 7-1, TXD = VCC, S = 0 V, RL = 60 Ω, CL = open, RCM = open –120 12 See Figure 8-2 and Figure 7-1, TXD = VCC, S = 0 V, RL = open (no load), CL = open, RCM = open –50 50 V mV VSYM Transient symmetry (dominant or recessive) ( VO(CANH) + VO(CANL)) / VCC See Figure 7-1 and Figure 9-2, S at 0 V, Rterm = 60 Ω, Csplit = 4.7 nF, CL = open, RCM = open, TXD = 250 kHz, 1 MHz 0.9 1.1 V/V VSYM_DC DC Output symmetry (dominant or recessive) (VCC – VO(CANH) – VO(CANL)) See Figure 7-1 and Figure 8-2, S = 0 V, RL = 60 Ω, CL = open, RCM = open –0.4 0.4 V See Figure 8-2 and Figure 7-7, Figure 7-7, S at 0 V, VCANH = -5 V to 40 V, CANH = open, TXD = 0 V –100 IOS(SS_DOM) IOS(SS_REC) 10 Short-circuit steady-state output current, dominant Short-circuit steady-state output current, recessive Submit Document Feedback mA See Figure 8-2 and Figure 7-7, S at 0 V, VCANL = -5 V to 40 V, CANH = open, TXD = 0 V See Figure 8-2 and Figure 7-7, –27 V ≤ VBUS ≤ 32 V, Where VBUS = CANH = CANL, TXD = VCC, all modes 100 –5 5 mA Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.7 Electrical Characteristics (continued) Over recommended operating conditions, TA = –55°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT +30 V Receiver Electrical Characteristics VCM Common mode range, normal mode VIT+ Positive-going input threshold voltage, all modes VIT– Negative-going input threshold voltage, all modes VIT+ Positive-going input threshold voltage, all modes VIT– Negative-going input threshold voltage, all modes VHYS Hysteresis voltage (VIT+ - VIT–) See Figure 7-2, Table 8-5 and Table 7-1, S = 0 or VCC or VIO See Figure 7-2, Table 8-5 and Table 7-1, S = 0 or VCC or VIO, -20 V ≤ VCM ≤ +20 V See Figure 7-2, Table 8-5 and Table 7-1, S = 0 or VCC or VIO, -30 V ≤ VCM ≤ +30 V -30 900 500 1000 mV 400 See Figure 7-2, Table 8-5 and Table 7-1, S = 0 or VCC or VIO 120 mV Ilkg(IOFF) Power-off (unpowered) bus input leakage current CANH = CANL = 5 V, VCC = VIO = 0 V 4.8 µA CI Input capacitance to ground (CANH or CANL) TXD = VCC, VIO = VCC 24 30 pF CID Differential input capacitance TXD = VCC, VIO = VCC 12 15 pF RID Differential input resistance 30 80 kΩ RIN Input resistance (CANH or CANL) 15 40 kΩ RIN(M) Input resistance matching: [1 – RIN(CANH) / RIN(CANL)] × 100% –2% +2% (1) (2) TXD = VCC = VIO = 5 V, S = 0 V, -30 V ≤ VCM ≤ +30 V VCANH = VCANL = 5 V All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V, RL = 60 Ω. For the bus output voltage (recessive) will be the same if the device is in Normal mode with S terminal LOW or if the device is in Silent mode with the S terminal is HIGH. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 11 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 6.8 Switching Characteristics Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Device Switching Characteristics tPROP(LOOP1) Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant tPROP(LOOP2) Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive tMODE Mode change time, from Normal to Silent or from Silent to Normal See Figure 7-4, S = 0 V, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF 100 160 110 175 1 10 ns See Figure 7-3 µs Driver Switching Characteristics tpHR Propagation delay time, high TXD to driver recessive (dominant to recessive) tpLD Propagation delay time, low TXD to driver dominant (recessive to dominant) tsk(p) Pulse skew (|tpHR - tpLD|) 75 See Figure 7-1, S = 0 V, RL = 60 Ω, CL = 100 pF, RCM = open 55 ns 20 tR Differential output signal rise time 45 tF Differential output signal fall time 45 SR Differential output slew rate, dominant-torecessive transition tTXD_DTO Dominant timeout 70 V/µs See Figure 7-6, S = 0 V, RL = 60 Ω, CL = open 1.2 3.8 ms Receiver Switching Characteristics tpRH Propagation delay time, bus recessive input to high output (Dominant to Recessive) tpDL Propagation delay time, bus dominant input to low output (Recessive to Dominant) See Figure 7-2, S = 0 V, CL(RXD) = 15 pF 65 ns 50 ns tR RXD Output signal rise time 10 ns tF RXD Output signal fall time 10 ns FD Timing Parameters tBIT(BUS) tBIT(RXD) ΔtREC (1) 12 Bit time on CAN bus output pins with tBIT(TXD) = 500 ns, all devices 435 530 Bit time on CAN bus output pins with tBIT(TXD) = 200 ns, G device variants only 155 210 400 550 120 220 Receiver timing symmetry with tBIT(TXD) = 500 ns, all devices -65 40 Receiver timing symmetry with tBIT(TXD) = 200 ns, G device variants only -45 15 Bit time on RXD output pins with tBIT(TXD) = 500 ns, all devices Bit time on RXD output pins with tBIT(TXD) = 200 ns, G device variants only See Figure 7-5 , S = 0 V, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF, ΔtREC = tBIT(RXD) - tBIT(BUS) ns All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V (if applicable), RL = 60 Ω Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 3 3 2.5 2.5 2 2 VOD(D) (V) VOD(D) (V) 6.9 Typical Characteristics 1.5 1.5 1 1 0.5 0.5 0 -55 -35 -15 5 25 45 65 Temperature (°C) 85 105 0 4.5 125 4.6 4.8 4.9 5 5.1 VCC (V) 5.2 5.3 5.4 5.5 D002 VCC = 5 V VIO = 3.3 V RL = 60 Ω VIO = 5 V S=0V RL = 60 Ω CL = Open RCM = Open S=0V CL = Open RCM = Open Temp = 25°C Figure 6-2. VOD(D) over VCC Figure 6-1. VOD(D) over Temperature 1.48 150 1.47 125 Total Loop Delay (ns) ICC Recessive (mA) 4.7 D001 1.46 1.45 1.44 1.43 100 75 50 25 1.42 1.41 -55 -35 -15 5 25 45 65 Temperature (°C) 85 105 125 0 -55 -35 -15 D003 5 25 45 65 Temperature (°C) 85 105 125 D004 VCC = 5 V VIO = 3.3 V RL = 60 Ω VCC = 5 V VIO = 3.3 V RL = 60 Ω CL = Open RCM = Open S=0V CL = 100 pF CL_RXD = 15 pF S=0V Figure 6-3. ICC Recessive over Temperature Copyright © 2021 Texas Instruments Incorporated Figure 6-4. Total Loop Delay over Temperature Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 13 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 7 Parameter Measurement Information RCM CANH VCC 50% TXD TXD CL RL VOD 0V VCM VO(CANH) CANL 50% tpHR tpLD 90% RCM VO(CANL) 0.9V VOD 0.5V 10% tR tF Copyright © 2016, Texas Instruments Incorporated Figure 7-1. Driver Test Circuit and Measurement CANH RXD VID IO 1.5V 0.9V 0.5V 0V VID CL_RXD CANL tpDL tpRH VO VOH 90% VO(RXD) 50% 10% VOL tF tR Copyright © 2016, Texas Instruments Incorporated Figure 7-2. Receiver Test Circuit and Measurement Table 7-1. Receiver Differential Input Voltage Threshold Test INPUT (See Receiver Test Circuit and Measurement 14 OUTPUT VCANH VCANL |VID| RXD -29.5 V -30.5 V 1000 mV L 30.5 V 29.5 V 1000 mV L -19.55 V -20.45 V 900 mV L 20.45 V 19.55 V 900 mV L -19.75 V -20.25 V 500 mV H 20.25 V 19.75 V 500 mV H -29.8 V -30.2 V 400 mV H 30.2 V 29.8 V 400 mV H Open Open X H Submit Document Feedback VOL VOH Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 CANH 0V VIH TXD CL RL S 50% CANL VI S 0V tMODE RXD VO VOH CL_RXD RXD 50% VOL Copyright © 2016, Texas Instruments Incorporated Figure 7-3. tMODE Test Circuit and Measurement CANH 0V VIH TXD CL RL S 50% CANL VI S 0V tMODE RXD VO VOH CL_RXD RXD 50% VOL Copyright © 2016, Texas Instruments Incorporated Figure 7-4. TPROP(LOOP) Test Circuit and Measurement Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 15 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 VI 70% TXD CANH 30% 30% 0V TXD VI RL 5 x tBIT CL tBIT(TXD) CANL 0V tBIT(BUS) S 900mV VDIFF RXD VO 500mV CL_RXD VOH 70% RXD 30% tBIT(RXD) VOL Figure 7-5. CAN FD Timing Parameter Measurement CANH VIH TXD TXD RL CL 0V VOD VOD(D) CANL VOD 0.9V 0.5V tTXD_DTO 0V Copyright © 2016, Texas Instruments Incorporated Figure 7-6. TXD Dominant Timeout Test Circuit and Measurement 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 CANH 200 s IOS TXD VBUS IOS CANL VBUS VBUS 0V or 0V VBUS VBUS Copyright © 2016, Texas Instruments Incorporated Figure 7-7. Driver Short Circuit Current Test and Measurement Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 17 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 8 Detailed Description 8.1 Overview These CAN transceivers meet the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. They are designed for data rates in excess of 1 Mbps for CAN FD and enhanced timing margin / higher data rates in long and highly-loaded networks. These devices provide many protection features to enhance device and CAN robustness. 8.2 Functional Block Diagram NC or VIO VCC 5 3 VCC or VIO TXD 1 S 8 TSD 7 CANH Dominant time-out 6 CANL Mode Select UVP VCC or VIO RXD 4 Logic Output 2 GND 18 Submit Document Feedback Copyright © 2016, Texas Instruments Incorporated Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 8.3 Feature Description 8.3.1 TXD Dominant Timeout (DTO) During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period tTXD_DTO. The DTO circuit timer starts on a falling edge on TXD. The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition. The receiver and RXD terminal still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD dominant timeout. TXD fault stuck dominant: example PCB failure or bad software TXD (driver) tTXD_DTO Fault is repaired & transmission capability restored Driver disabled freeing bus for other nodes %XV ZRXOG EH ³VWXFN GRPLQDQW´ EORFNLQJ FRPPXQLFDWLRQ IRU WKH whole network but TXD DTO prevents this and frees the bus for communication after the time tTXD_DTO. Normal CAN communication CAN Bus Signal tTXD_DTO Communication from other bus node(s) Communication from repaired node Communication from other bus node(s) Communication from repaired local node RXD (receiver) Communication from local node Figure 8-1. Example Timing Diagram for TXD DTO Note The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the minimum data rate. Calculate the minimum transmitted data rate by: Minimum Data Rate = 11 / tTXD_DTO. 8.3.2 Thermal Shutdown (TSD) If the junction temperature of the device exceeds the thermal shutdown threshold (TTSD), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature (TTSD_HYS) below the thermal shutdown temperature (TTSD) of the device. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 19 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 8.3.3 Undervoltage Lockout The supply terminals have undervoltage detection that places the device in protected mode. This protects the bus during an undervoltage event on either the VCC or VIO supply terminals. Table 8-1. Undervoltage Lockout 5 V Only Devices (Devices without the "V" Suffix) (1) (2) VCC DEVICE STATE(1) BUS OUTPUT RXD > UVVCC Normal Per TXD Mirrors Bus(2) < UVVCC Protected High Impedance High Impedance See the VIT section of the Electrical Characteristics. Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. Table 8-2. Undervoltage Lockout I/O Level Shifting Devices (Devices with the "V" Suffix) (1) VCC VIO DEVICE STATE BUS OUTPUT RXD > UVVCC > UVVIO Normal Per TXD Mirrors Bus(1) < UVVCC > UVVIO Protected High Impedance High (Recessive) > UVVCC < UVVIO Protected High Impedance High Impedance < UVVCC < UVVIO Protected High Impedance High Impedance Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. Note After an undervoltage condition is cleared and the supplies have returned to valid levels, the device typically resumes normal operation within 50 µs. 8.3.4 Unpowered Device The device is designed to be 'ideal passive' or 'no load' to the CAN bus if it is unpowered. The bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains in operation. The logic terminals also have extremely low leakage currents when the device is unpowered to avoid loading down other circuits that may remain powered. 8.3.5 Floating Terminals These devices have internal pull ups on critical terminals to place the device into known states if the terminals float. The TXD terminal is pulled up to VCC or VIO to force a recessive input level if the terminal floats. The S terminal is also pulled down to force the device into Normal mode if the terminal floats. 8.3.6 CAN Bus Short Circuit Current Limiting The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times: • • • • 20 Control fields with set bits Bit stuffing Interframe space TXD dominant time out (fault case limiting) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated with the following formula: IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC] (1) Where: • IOS(AVG) is the average short circuit current • %Transmit is the percentage the node is transmitting CAN messages • %Receive is the percentage the node is receiving CAN messages • %REC_Bits is the percentage of recessive bits in the transmitted CAN messages • %DOM_Bits is the percentage of dominant bits in the transmitted CAN messages • IOS(SS)_REC is the recessive steady state short circuit current • IOS(SS)_DOM is the dominant steady state short circuit current Note Consider the short circuit current and possible fault cases of the network when sizing the power ratings of the termination resistance and other network components. 8.3.7 Digital Inputs and Outputs 8.3.7.1 5-V VCC Only Devices (Devices without the "V" Suffix): The 5-V VCC only devices are supplied by a single 5-V rail. The digital inputs have TTL input thresholds and are therefore 5 V and 3.3 V compatible. The RXD outputs on these devices are driven to the VCC rail for logic high output. Additionally, the TXD pin is internally pulled up to VCC, and the S pin is pulled low to GND. The internal bias of the mode pins may only place the device into a known state if the terminals float, they may not be adequate for system-level biasing during transients or noisy enviroments. Note TXD pull up strength and CAN bit timing require special consideration when these devices are used with CAN controllers with an open-drain TXD output. An adequate external pull up resistor must be used to ensure that the CAN controller output of the micrcontroller maintains adequate bit timing to the TXD input. 8.3.7.2 5 V VCC with VIO I/O Level Shifting (Devices with the "V" Suffix): These devices use a 5 V VCC power supply for the CAN driver and high speed receiver blocks. These transceivers have a second power supply for I/O level-shifting (VIO). This supply is used to set the CMOS input thresholds of the TXD and S pins and the RXD high level output voltage. Additionally, the TXD pin is internally pulled up to VIO, and the S pin is pulled low to GND. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 21 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 8.4 Device Functional Modes The device has two main operating modes: Normal mode and Silent mode. Operating mode selection is made via the S input terminal. Table 8-3. Operating Modes (1) S Terminal MODE DRIVER RECEIVER RXD Terminal LOW Normal Mode Enabled (ON) Enabled (ON) Mirrors Bus State(1) HIGH Silent Mode Disabled (OFF) Enabled (ON) Mirrors Bus State(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. 8.4.1 CAN Bus States The CAN bus has two states during powered operation of the device: dominant and recessive. A dominant bus state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD terminal. A recessive bus state is when the bus is biased to VCC / 2 via the high-resistance internal input resistors RIN of the receiver, corresponding to a logic high on the TXD and RXD terminals. Typical Bus Voltage (V) Normal and Silent Mode 4 CANH 3 Vdiff(D) 2 Vdiff(R) CANL 1 Recessive Logic H Dominant Logic L Time, t Recessive Logic H Figure 8-2. Bus States (Physical Bit Representation) 8.4.2 Normal Mode Select the Normal mode of device operation by setting S terminal low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a digital output on RXD. 8.4.3 Silent Mode Activate Silent mode by setting S terminal high. The CAN driver is disabled, preventing communication from the TXD pin to the CAN bus. The high speed receiver remains active so that CAN bus communication continues to be relayed to the RXD output pin. 22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 8.4.4 Driver and Receiver Function Tables Table 8-4. Driver Function Table INPUTS DEVICE S All Devices (1) L or open H (1) (2) OUTPUTS DRIVEN BUS STATE TXD(1) (2) CANH(1) CANL(1) L H L Dominant H or Open Z Z Recessive X Z Z Recessive H = high level, L = low level, X = irrelevant, Z = common mode (recessive) bias to VCC / 2. See CAN Bus States for bus state and common mode bias information. Devices have an internal pull up to VCC or VIO on TXD terminal. If the TXD terminal is open, the terminal is pulled high and the transmitter remain in recessive (non-driven) state. Table 8-5. Receiver Function Table DEVICE MODE Normal or Silent (1) (2) CAN DIFFERENTIAL INPUTS VID = VCANH – VCANL BUS STATE RXD TERMINAL(1) VID ≥ VIT+(MAX) Dominant L(2) VIT-(MIN) < VID < VIT+(MAX) ? ?(2) VID ≤ VIT-(MIN) Recessive H(2) Open (VID ≈ 0 V) Open H H = high level, L = low level, ? = indeterminate. See Receiver Electrical Characteristics section for input thresholds. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 23 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 9 Application Information Disclaimer Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V microprocessor applications. The bus termination is shown for illustrative purposes. 9.2 Typical Applications Node n Node 1 Node 2 Node 3 MCU or DSP MCU or DSP MCU or DSP CAN Controller CAN Controller CAN Controller CAN Transceiver CAN Transceiver CAN Transceiver (with termination) MCU or DSP CAN Controller CAN Transceiver RTERM RTERM Figure 9-1. Typical CAN Bus Application 9.2.1 Design Requirements 9.2.1.1 Bus Loading, Length and Number of Nodes The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the TCAN1051 family of transceivers. Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000. The TCAN1051 family is specified to meet the 1.5 V requirement with a 50Ω load, incorporating the worst case including parallel transceivers. The differential input resistance of the TCAN1051 family is a minimum of 30 kΩ. If 100 TCAN1051 family transceivers are in parallel on a bus, this is equivalent to a 300Ω differential load worst case. That transceiver load of 300 Ω in parallel with the 60Ω gives an equivalent loading of 50 Ω. Therefore, the TCAN1051 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and datarate tradeoffs. For example CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate. 24 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs. 9.2.2 Detailed Design Procedures 9.2.2.1 CAN Termination The ISO 11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120-Ω characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that two terminations always exist on the network. Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used. (See Figure 9-2). Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions. Standard Termination CANH Split Termination CANH RTERM/2 CAN Transceiver CAN Transceiver RTERM CSPLIT RTERM/2 CANL CANL Copyright © 2016, Texas Instruments Incorporated Figure 9-2. CAN Bus Termination Concepts The TCAN1051 family of transceivers have variants for both 5-V only applications and applications where level shifting is needed for a 3.3-V micrcontroller. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 25 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 Figure 9-3. Typical CAN Bus Application Using 5 V CAN Controller Figure 9-4. Typical CAN Bus Application Using 3.3 V CAN Controller 26 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 9.2.3 Application Curves 50 ICC Dominant (mA) 40 30 20 10 0 4.5 4.6 4.7 4.8 4.9 5 5.1 VCC (V) 5.2 5.3 5.4 5.5 D005 VCC = 4.5 V to 5.5 V VIO = 3.3 V RL = 60 Ω CL = Open Temp = 25°C S=0V Figure 9-5. ICC Dominant Current over VCC Supply Voltage Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 27 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 10 Power Supply Recommendations These devices are designed to operate from a VCC input supply voltage range between 4.5 V and 5.5 V. Some devices have an output level shifting supply input, VIO, designed for a range between 3 V and 5.5 V. Both supply inputs must be well regulated. A bulk capacitance, typically 4.7 μF, should be placed near the CAN transceiver's main VCC supply output, and in addition a bypass capacitor, typically 0.1 μF, should be placed as close to the device VCC and VIO supply terminals. This helps to reduce supply voltaeg ripple present on the outputs of the switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces. 28 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 Layout Robust and reliable bus node design often requires the use of external transient protection device in order to protect against EFT and surge transients that may occur in industrial enviroments. Because ESD and transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must be applied during PCB design. The TCAN1051 family comes with high on-chip IEC ESD protection, but if higher levels of system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors should be placed as close to the on-board connectors as possible to prevent noisy transient events from propagating further into the PCB and system. 11.1 Layout Guidelines • • • Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1, has been used for added protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the CANH and CANL lines between the transceiver U1 and connector J1. Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device. Use supply (VCC) and ground planes to provide low inductance. Note High-frequency currents follows the path of least impedance and not the path of least resistance. • • • • • • • Use at least two vias for supply (VCC) and ground connections of bypass capacitors and protection devices to minimize trace and via inductance. Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver, examples are C1, C2 on the VCC supply and C6 and C7 on the VIO supply. Bus termination: this layout example shows split termination. This is where the termination is split into two resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination. See the application section for information on power ratings needed for the termination resistor(s). To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not required. Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is mandatory to ensure the bit timing into the device is met. Terminal 5: For "V" variants of the TCAN1051 family, bypass capacitors should be placed as close to the pin as possible (example C6 and C7). For device options without VIO I/O level shifting, this pin is not internally connected and can be left floating or tied to any existing net, for example a split pin connection. Terminal 8: is shown assuming the mode terminal, S, will be used. If the device will only be used in normal mode, R4 is not needed and R5 could be used for the pull down resistor to GND. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 29 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 11.2 Layout Example VCC or VIO R5 R1 R2 TXD R4 S GND 8 1 GND 2 6 4 5 R7 J1 3 D1 R3 C3 C5 RXD R6 7 U1 U1 C2 C1 VCC C4 GND GND VIO C7 C6 GND Figure 11-1. Layout Example 30 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 TCAN1051-Q1, TCAN1051V-Q1, TCAN1051H-Q1, TCAN1051HV-Q1 TCAN1051G-Q1, TCAN1051GV-Q1, TCAN1051HG-Q1, TCAN1051HGV-Q1 www.ti.com SLLSET0D – MARCH 2016 – REVISED APRIL 2021 11 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. 11.1 Documentation Support 11.1.1 Related Documentation 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 11.3 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.4 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1051-Q1 TCAN1051V-Q1 TCAN1051H-Q1 TCAN1051HV-Q1 TCAN1051G-Q1 TCAN1051GV-Q1 TCAN1051HG-Q1 TCAN1051HGV-Q1 31 PACKAGE OPTION ADDENDUM www.ti.com 14-Feb-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TCAN1051DQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051DRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051DRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051DRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051GDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051GDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051GDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051GDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051GVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051GVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051GVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051GVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HGDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HGDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HGDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051 TCAN1051HGDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 14-Feb-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TCAN1051HGVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HGVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HGVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HGVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051HVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051VDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V TCAN1051VDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051VDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1051V TCAN1051VDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1051V (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TCAN1051VDRBTQ1 价格&库存

很抱歉,暂时无法提供与“TCAN1051VDRBTQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货