0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TL062MJGB

TL062MJGB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    IC OPAMP JFET 2 CIRCUIT 8CDIP

  • 数据手册
  • 价格&库存
TL062MJGB 数据手册
TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 TL06xx Low-Power JFET-Input Operational Amplifiers 1 Features 3 Description • • • The TL06x (TL061, TL062, and TL064) family of industry-standard operational amplifiers (op amps) mirror the TL07x and TL08x family of op amps with lower power consumption. These devices provide outstanding value for cost-sensitive applications, featuring high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. High ESD (1.5 kV, HBM), integrated EMI and RF filters, and wide temperature operation enable the TL06x devices to be used in rugged and environmentally-demanding applications. • • • • • • • • Very low power consumption Typical supply current: 200 μA (per amplifier) Wide common-mode and differential voltage ranges Low input bias and offset currents Common-mode input voltage range includes VCC+ Output short-circuit protection High input impedance: JFET-input stage Internal frequency compensation Latch-up-free operation High slew rate: 3.5 V/μs typical On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. Device Information PART NUMBER CHANNEL COUNT PACKAGE(1) PACKAGE SIZE(2) D (SOIC, 8) 4.90 mm × 6.00 mm P (PDIP, 8) 9.59 mm × 7.94 mm 2 Applications PS (SO, 8) 6.20 mm × 7.80 mm D (SOIC, 8) 4.90 mm × 6.00 mm • • • • P (PDIP, 8) 9.59 mm × 7.94 mm PS (SO, 8) 6.20 mm × 7.80 mm JG (CDIP, 8) 9.58 mm × 7.62 mm PW (TSSOP, 8) 3.00 mm × 6.40 mm FK (LCCC, 20) 8.89 mm × 8.80 mm D (SOIC, 14) 8.65 mm × 6.00 mm J (CDIP, 14) 19.4 mm × 7.90 mm N (PDIP, 14) 19.31 mm × 7.94 mm NS (SO, 14) 10.20 mm × 7.80 mm PW (TSSOP, 14) 5.00 mm × 6.40 mm W (CFP, 14) 21.78 mm × 9.21 mm FK (LCCC, 20) 8.89 mm × 8.80 mm TL061x Tablets White goods Personal electronics Computers Single TL062x Dual TL064x (1) (2) RG Quad For all available packages, see the orderable addendum at the end of the data sheet. The package size (length × width) is a nominal value and includes pins, where applicable. RF R1 VOUT VIN C1 f-3 dB = ( RF VOUT = 1+ RG VIN (( 1 1 + sR1C1 1 2pR1C1 ( Single-Pole, Low-Pass Filter An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................4 6 Specifications.................................................................. 6 6.1 Absolute Maximum Ratings........................................ 6 6.2 ESD Ratings............................................................... 6 6.3 Recommended Operating Conditions.........................6 6.4 Thermal Information (TL061)...................................... 7 6.5 Thermal Information (TL062)...................................... 7 6.6 Thermal Information (TL064)...................................... 7 6.7 Electrical Characteristics for TL06xC and TL06xxC........................................................................ 8 6.8 Electrical Characteristics for TL06xxC and TL06xI..... 9 6.9 Electrical Characteristics for TL06xM....................... 10 6.10 Operating Characteristics....................................... 10 Typical Characteristics.................................................... 11 7 Parameter Measurement Information.......................... 14 8 Detailed Description......................................................15 8.1 Overview................................................................... 15 8.2 Functional Block Diagram......................................... 15 8.3 Feature Description...................................................15 8.4 Device Functional Modes..........................................15 9 Applications and Implementation................................ 16 9.1 Application Information............................................. 16 9.2 Typical Applications.................................................. 16 9.3 System Examples..................................................... 17 9.4 Power Supply Recommendations.............................19 9.5 Layout....................................................................... 20 10 Device and Documentation Support..........................21 10.1 Documentation Support.......................................... 21 10.2 Support Resources................................................. 21 10.3 Trademarks............................................................. 21 10.4 Electrostatic Discharge Caution..............................21 10.5 Glossary..................................................................21 11 Mechanical, Packaging, and Orderable Information.................................................................... 21 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision M (June 2023) to Revision N (August 2023) Page • Added typical specification for Unity-Gain Bandwidth in Electrical Characteristics for TL06xM ...................... 10 • Changed Equivalent Input Noise Voltage vs Frequency curve in Typical Characteristics section.................... 11 Changes from Revision L (May 2015) to Revision M (June 2023) Page • Updated the numbering format for tables, figures, and cross-references throughout the document................. 1 • Updated Device Information with package size and channel count, and reordered packages based on channel count..................................................................................................................................................... 1 • Updated TL061 pinout diagram in Pin Configuration and Functions ................................................................. 4 • Changed Charged Device Model (CDM) ESD from 2 kV to 1.5 kV in ESD Ratings ..........................................6 • Added table note for input bias current and input offset current on Electrical Characteristics for TL06xC and TL06xxC ............................................................................................................................................................ 8 • Added table note for input bias current and input offset current on Electrical Characteristics for TL06xxC and TL06xI ................................................................................................................................................................9 • Changed name of Electrical Characteristics for TL06xM and TL064M to Electrical Characteristics for TL06xM ..........................................................................................................................................................................10 • Added table note for input bias current and input offset current on Electrical Characteristics for TL06xM ..... 10 • Changed typical input voltage noise density at 1 kHz from 42 nV/√Hz to 30 nV/√Hz ......................................10 • Updated description in Overview ..................................................................................................................... 15 • Updated image in Functional Block Diagram ...................................................................................................15 Changes from Revision K (January 2014) to Revision L (May 2015) Page • Added Applications ............................................................................................................................................1 • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ............................................................................................................................................................... 1 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Changes from Revision J (September 2004) to Revision K (January 2014) Page • Updated document to new TI data sheet format - no specification changes......................................................1 • Deleted Ordering Information table.................................................................................................................... 1 • Updated Features with Military Disclaimer......................................................................................................... 1 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 3 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 5 Pin Configuration and Functions 1OUT 1 8 VCC+ VCC+ 1IN± 2 7 2OUT 6 OUT 1IN+ 3 6 2IN± 5 NC VCC± 4 5 2IN+ NC 1 8 NC IN– 2 7 IN+ 3 VCC– 4 Not to scale Not to scale Figure 5-1. TL061x D, P, and PS Package, 8-Pin SOIC, PDIP, and SO (Top View) 12 4IN+ VCC+ 4 11 VCC± 2IN+ 5 10 2IN± 6 2OUT 7 NC 3 19 1IN+ VCC+ 4IN± 20 13 NC 2 1 1IN± 1OUT 4OUT 2 14 NC 1 3 1OUT Figure 5-2. TL062x D, JG, P, PS, and PW Package, 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP (Top View) 5 17 2OUT 3IN+ NC 6 16 NC 9 3IN± 1IN+ 7 15 2IN± 8 3OUT NC 8 14 NC 13 1IN± 12 NC 11 18 10 4 9 NC 17 NC VCC+ 6 16 VCC± NC 7 15 NC 2IN+ 8 14 3IN+ 3IN± 3OUT NC NC 2IN+ 13 5 12 NC 11 4IN+ 10 18 2OUT NC NC 4IN± 19 NC 1 4OUT 1OUT 2 20 1IN± 3 4 9 Not to scale Figure 5-4. TL062 FK Package, 20-Pin LCCC (Top View) 1IN+ 2IN± VCC± Not to scale Figure 5-3. TL064x D, J, N, NS, PW, and W Package, 14-Pin SOIC, CDIP, PDIP, SO, TSSOP and CFP (Top View) Not to scale Figure 5-5. TL064 FK Package, 20-Pin LCCC (Top View) 4 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Table 5-1. Pin Functions PIN TL061 NAME TL062 D, P, PS D, JG, P, PS, PW 1IN– — 1IN+ — 1OUT — 2IN– — 2IN+ 2OUT TL064 TYPE(1) DESCRIPTION FK D, J, N, NS, PW, W FK 2 5 2 3 I Negative input 3 7 3 4 I Positive input 1 2 1 2 O Output 6 15 6 9 I Negative input — 5 12 5 8 I Positive input — 7 17 7 10 O Output 3IN– — — — 9 13 I Negative input 3IN+ — — — 10 14 I Positive input 3OUT — — — 8 12 O Output 4IN– — — — 13 19 I Negative input 4IN+ — — — 12 18 I Positive input 4OUT — — — 14 20 O Output IN– 2 — — — — I Negative input IN+ 3 — — — — I Positive input 1 1 3 4 5 6 8 NC 8 — 9 11 7 — — Do not connect 11 13 14 15 16 18 17 19 OFFSET N1 1 — — — — — Input offset adjustment OFFSET N2 5 — — — — — Input offset adjustment OUT 6 — — — — O Output VCC– 4 4 10 11 16 — Power supply VCC+ 7 8 20 4 6 — Power supply (1) I = input, O = output Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 5 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN VCC+ VI Input voltage(2) (4) Duration of output short circuit(5) TJ (2) (3) (4) (5) ±30 V ±15 V Unlimited Operating virtual junction temperature Tstg V –18 Differential input voltage(3) VID UNIT 18 Supply voltage(2) VCC– (1) MAX 150 °C Case temperature for 60 seconds FK package 260 °C Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J, JG, U, or W package 300 °C Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds D, N, NS, P, PS, or PW package 260 °C 150 °C Storage temperature –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−. Differential voltages are at IN+, with respect to IN−. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature or supply voltages must be limited so that the dissipation rating is not exceeded. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 Charged-device model (CDM), per JEDEC specification JESD22C101(2) 1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN UNIT VCC+ Supply voltage 5 15 V VCC– Supply voltage –5 –15 V VCM Common-mode voltage V TA Ambient temperature VCC– + 4 VCC+ – 4 TL06xM –55 125 TL06xQ –40 125 TL06xI –40 85 0 70 TL06xC 6 MAX Submit Document Feedback °C Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 6.4 Thermal Information (TL061) TL061 THERMAL METRIC(1) D (SOIC) P (PDIP) 8 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance(2) (3) 97 85 °C/W RθJC(top) Junction-to-case (top) thermal resistance(4) (5) — — °C/W (1) (2) (3) (4) (5) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. 6.5 Thermal Information (TL062) TL062 THERMAL METRIC(1) RθJA Rθ JC(top) D (SOIC) P (PDIP) PS (SO) PW (TSSOP) FK (LCCC) JG (CDIP) UNIT 8 PINS 8 PINS 8 PINS 8 PINS 20 PINS 8 PINS Junction-to-ambient thermal resistance(2) (3) 97 85 95 149 — — °C/W Junction-to-case (top) thermal resistance(4) (5) — — — — 5.61 14.5 °C/W UNIT 6.6 Thermal Information (TL064) TL064 THERMAL METRIC(1) RθJA Rθ JC(top) (1) (2) (3) D (SOIC) N (PDIP) NS (SO) PS (SO) PW (TSSOP) FK (LCCC) J (CDIP) W (CFP) 14 PINS 14 PINS 14 PINS 8 PINS 14 PINS 20 PINS 14 PINS 14 PINS Junction-to-ambient thermal resistance(2) (3) 86 80 76 95 113 — — — °C/W Junction-to-case (top) thermal resistance(2) (3) — — — — — 5.61 15.05 14.65 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 7 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 6.7 Electrical Characteristics for TL06xC and TL06xxC VCC± = ±15 V, RL = 10 kΩ to (VCC+ + VCC–) / 2 (unless otherwise noted) TEST CONDITIONS(1) PARAMETER MIN Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = Full range IIO (3) Input offset current VO = 0 IIB (3) Input bias current(2) VO = 0 TYP MAX 3 15 TA = Full range MIN MAX 3 6 20 7.5 10 TA = 25°C 5 TA = Full range 10 200 5 5 TA = 25°C 30 TA = Full range UNIT TYP 400 30 10 nA 200 pA 7 nA RL = 10 kΩ, TA = 25°C ±10 ±13.5 RL ≥ 10 kΩ, TA = Full range ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 70 86 kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 70 95 PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 (2) (3) TA = 25°C 3 TA = Full range 3 ±13.5 pA 3 Maximum peak output voltage swing VOM ±10 100 ±11 Common-mode input voltage range ±11 μV/°C TA = 25°C VICR –12 to 15 mV –12 to 15 (1) 8 TA = 25°C VIO TL061AC, TL062AC, TL064AC TL061C, TL062C, TL064C V V ±10 6 4 6 V/mV 4 1 1 1012 1012 Ω 80 86 dB 80 95 dB 120 MHz dB All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 6-12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Specified by design and characterization; not production tested. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 6.8 Electrical Characteristics for TL06xxC and TL06xI VCC± = ±15 V, RL = 10 kΩ to (VCC+ + VCC–) / 2 (unless otherwise noted) TEST CONDITIONS(1) PARAMETER TL061BC, TL062BC, TL064BC MIN TA = 25°C VIO Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = Full range IIO (3) Input offset current VO = 0 IIB (3) Input bias current(2) VO = 0 TL061I, TL062I, TL064I TYP MAX 2 3 TA = Full range MIN MAX 3 6 5 9 10 TA = 25°C 5 TA = Full range 10 100 5 3 TA = 25°C 30 TA = Full range UNIT TYP 200 30 7 nA 200 pA 20 nA Maximum peak output voltage swing RL = 10 kΩ, TA = 25°C ±10 ±13.5 RL ≥ 10 kΩ, TA = Full range ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 80 86 kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 80 95 PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 (1) (2) (3) TA = 25°C 4 TA = Full range 4 ±13.5 pA 10 ±11 VOM ±10 100 TA = 25°C Common-mode input voltage range ±11 μV/°C –12 to 15 VICR –12 to 15 mV V V ±10 6 4 6 V/mV 4 1 1 1012 1012 Ω 80 86 dB 80 95 dB 120 MHz dB All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 6-12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Assured by design and characterization; not production tested. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 9 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 6.9 Electrical Characteristics for TL06xM VCC± = ±15 V, RL = 10 kΩ to (VCC+ + VCC–) / 2 (unless otherwise noted) TEST CONDITIONS(2) PARAMETER TL061M, TL062M MIN MAX 3 6 TA = 25°C VIO Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = –55°C to 125°C IIO (4) Input offset current VO = 0 TA = –55°C to 125°C VO = 0 TYP MAX 3 9 15 10 5 10 100 5 20(1) TA = 125°C 20 20 200 30 50(1) 50(1) TA = 125°C 50 50 ±11 –12 to 15 ±11 –12 to 15 Maximum peak output voltage swing RL = 10 kΩ, TA = 25°C ±10 ±13.5 ±10 ±13.5 RL ≥ 10 kΩ, TA = –55°C to 125°C ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C Common-mode input voltage range VOM 200 TA = –55°C TA = 25°C VICR 100 20(1) 30 TA = 25°C 4 TA = –55°C to 125°C 4 4 mV pA nA pA nA V V ±10 6 UNIT μV/°C TA = –55°C TA = 25°C Input bias current(3) MIN 9 TA = 25°C IIB (4) TL064M TYP 6 V/mV 4 1 1 1012 1012 MHz Ω ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 80 86 80 86 dB kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 80 95 80 95 dB PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 (1) (2) (3) (4) 120 dB This parameter is not production tested. All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 6-12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Specified by design and characterization; not production tested. 6.10 Operating Characteristics VCC± = ±15 V, TA= 25°C, RL = 10 kΩ to (VCC+ + VCC–) / 2 PARAMETER TEST CONDITIONS SR Slew rate at unity gain(1) VI = 10 V, RL = 10 kΩ, CL = 100 pF, see Figure 7-1 tr Rise-time Overshoot factor VI = 20 V, RL = 10 kΩ, CL = 100 pF, see Figure 7-1 Equivalent input noise voltage RS = 20 Ω f = 1 kHz Vn (1) 10 MIN TYP MAX UNIT 1.5 3.5 V/μs 0.2 μs 10% 30 nV/√ Hz Slew rate at –55°C to 125°C is 0.7 V/μs min. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Typical Characteristics Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices. ±15 VOM − Maximum Peak Output Voltage − V RL = 10 kΩ TA = 25°C See Figure 2 ±12.5 ±12.5 ±10 ±7.5 ±5 ±2.5 ±10 ±7.5 ±5 ±2.5 0 2 0 4 6 8 10 12 14 0 −75 16 VCC± = ±15 V RL = 10 kΩ See Figure 2 −50 |VCC±| − Supply Voltage − V Figure 6-1. Maximum Peak Output Voltage vs Supply Voltage VOM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V VCC± = ±15 V TA = 25°C See Figure 2 ±10 ±7.5 ±5 ±2.5 25 50 75 100 125 VCC± = ±15 V RL = 10 kΩ TA = 25°C See Figure 2 ±12.5 VCC± = ±12 V ±10 ±7.5 ±5 VCC± = ±5 V ±2.5 0 0 100 200 400 700 1 k 2k 4k 1k 7 k 10 k 10 k 100 k Figure 6-3. Maximum Peak Output Voltage vs Load Resistance 100 AVD − Large-Signal Differential Voltage Amplification − V/mV VCC± = ±15 V RL = 10 kΩ 4 2 1 −75 10 M Figure 6-4. Maximum Peak Output Voltage vs Frequency 10 7 1M f − Frequency − Hz RL − Load Resistance − Ω AVD − Differential Voltage Amplification − V/mV 0 Figure 6-2. Maximum Peak Output Voltage vs Free-Air Temperature ±15 ±12.5 −25 TA − Free-Air Temperature − °C VCC± = ±15 V Rext = 0 RL = 10 kΩ TA = 25°C 10 Phase Shift (right scale) 1 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 6-5. Differential Voltage Amplification vs Free-Air Temperature Copyright © 2023 Texas Instruments Incorporated 45° 90° 0.1 AVD (left scale) 0.01 135° 0.001 −50 0° 1 10 100 1k Phase Shift VOM − Maximum Peak Output Voltage − V ±15 10 k 100 k 1M 180° 10 M f − Frequency − Hz Figure 6-6. Large-Signal Differential Voltage Amplification and Phase Shift vs Frequency Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 11 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Typical Characteristics (continued) Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices. 250 TA = 25°C No Signal No Load 200 I CC± ICC − Supply Current − µA I CC± ICC − Supply Current − µA 250 150 100 50 200 150 100 50 0 −75 0 0 2 4 6 8 10 12 14 VCC± = ±15 V No Signal No Load 16 TA − Free-Air Temperature − °C |VCC±| − Supply Voltage − V Figure 6-8. Supply Current vs Free-Air Temperature Figure 6-7. Supply Current vs Supply Voltage 87 CMRR − Common-Mode Rejection Ratio − dB P PD D − Total Power Dissipation − mW 30 25 TL064 VCC± = ±15 V No Signal No Load 20 15 TL062 10 TL061 5 0 −75 −50 −25 0 25 50 75 100 VCC± = ±15 V RL = 10 kΩ 86 85 84 83 82 81 −75 125 1.01 1.1 Slew Rate (left scale) 1 0.7 −75 1 0.99 0.9 0.8 VCC± = ±15 V RL = 10 kΩ f = B1 for Phase Shift −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0.98 0.97 125 Figure 6-11. Normalized Unity-Gain Bandwidth, Slew Rate, and Phase Shift vs Free-Air Temperature 12 Submit Document Feedback 25 50 75 100 125 VCC± = ±15 V 1.02 Phase Shift (right scale) IIB IIB − Input Bias Current − nA Unity-Gain Bandwidth (left scale) 0 100 40 1.2 −25 Figure 6-10. All Except TL06_C Common-Mode Rejection Ratio vs Free-Air Temperature 1.03 Normalized Phase Shift Normalized Unity-Gain Bandwidth and Slew Rate Figure 6-9. Total Power Dissipation vs Free-Air Temperature 1.3 −50 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C 10 4 1 0.4 0.1 0.04 0.01 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 6-12. Input Bias Current vs Free-Air Temperature Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 Typical Characteristics (continued) Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices. 28 6 Input 24 Overshoot VO − Output Voltage − mV Input and Output Voltages − V 4 2 0 Output −2 VCC± = ±15 V RL = 10 kΩ CL = 100 pF TA = 25°C −4 −6 20 16 12 8 4 10% VCC± = ±15 V RL = 10 kΩ TA = 25°C 0 tr −4 0 2 4 6 t − Time − µs 8 0 10 Input Voltage Noise Spectral Density (nV/rHz) Figure 6-13. Voltage-Follower Large-Signal Pulse Response vs Time 0.2 0.4 0.6 0.8 1 t − Elapsed Time − µs 1.2 1.4 Figure 6-14. Output Voltage vs Elapsed Time 120 110 100 90 80 70 60 50 40 30 20 10 0 10 100 1k Frequency (Hz) 10k 100k C017 Figure 6-15. Equivalent Input Noise Voltage vs Frequency Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 13 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 7 Parameter Measurement Information 10 kΩ − − OUT OUT + + VI 1 kΩ VI RL RL = 2 kΩ CL = 100 pF CL = 100 pF Figure 7-2. Gain-of-10 Inverting Amplifier Figure 7-1. Unity-Gain Amplifier − IN− TL061 N2 + IN+ OUT N1 100 kΩ 1.5 kΩ VCC− Figure 7-3. Input Offset-Voltage Null Circuit 14 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 8 Detailed Description 8.1 Overview The TL06x (TL061, TL062, and TL064) family of industry-standard operational amplifiers (op amps) mirror the TL07x and TL08x family of op amps with lower power consumption. These devices provide outstanding value for cost-sensitive applications, featuring high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. High ESD (1.5 kV, HBM), integrated EMI and RF filters, and wide temperature operation enable the TL06x devices to be used in rugged and environmentally-demanding applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from −40°C to 85°C, and the M-suffix devices are characterized for operation over the full military temperature range of −55°C to 125°C. 8.2 Functional Block Diagram V+ V V IN– IN+ V BIAS1 Class AB Control Circuitry V O V BIAS2 Reference Current V– (Ground) 8.3 Feature Description 8.3.1 Common-Mode Rejection Ratio The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to the change in the input voltage and converting to decibels. Ideally the CMRR is infinite, but in practice, amplifiers are designed to have it as high as possible. The CMRR of this device is 86 dB. 8.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 3.5-V/μs slew rate. 8.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 15 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 9 Applications and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information The TL06x series of operational amplifiers can be used in countless applications. The few applications in this section show principles used in all applications of these parts. 9.2 Typical Applications 9.2.1 Inverting Amplifier Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- Figure 9-1. Schematic for Inverting Amplifier Application 9.2.1.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 9.2.1.2 Detailed Design Procedure Determine the gain required by the inverting amplifier: AV  =   VOUT VIN (1) 1.8 AV  =   −0.5   =   − 3.6 (2) AV  =   − RF RI   (3) Once the desired gain is determined, choose a value for RI or RF. Choose a value in the kΩ range to limit currents in the amplifier circuit to the mA range. This example will choose 10 kΩ for RI which means 36 kΩ will be used for RF. This was determined by Equation 3. 16 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 9.2.1.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 9-2. Input and Output Voltages of the Inverting Amplifier 9.3 System Examples 9.3.1 General Applications RF = 100 kΩ VCC+ 10 kΩ 0.1% − 15 V 3.3 kΩ + VCC+ VCC− Output TL061 − Output TL064 100 kΩ + VCC+ VCC+ + 100 kΩ Input A − 10 kΩ 0.1% TL064 CF = 3.3 µF 1 kΩ −15 V 1 MΩ VCC− Input B + − TL064 10 kΩ 0.1% − TL064 10 kΩ 0.1% 3.3 kΩ 100 kΩ 1 f= 2π ´ RF ´ CF + 100 kΩ VCC− VCC− Figure 9-4. 0.5-Hz Square-Wave Oscillator Figure 9-3. Instrumentation Amplifier VCC+ − 1 MΩ − Output + R2 1 µF TL064 + VCC− Input Copyright © 2023 Texas Instruments Incorporated 100 µF VCC+ 100 kΩ VCC+ TL064 Output C + Figure 9-5. High-Q Notch Filter 100 kΩ − C3 C1 = C2 = = 110 pF 2 1 fO = = 1 kHz 2π ´ R1´ C1 Output B + C1 R1 = R2 = 2 ´ R3 = 1.5 MΩ VCC+ TL064 100 kΩ R3 C2 Output A − C3 − R1 TL064 VCC+ TL061 VCC+ + Input 9.1 kΩ Figure 9-6. Audio-Distribution Amplifier Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 17 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 VCC+ 15 V 10 kΩ 10 kΩ 0.1 µF 10 kΩ 10 kΩ + 100 pF Output TL061 10 kΩ 1 MΩ − TIL601 10 kΩ Output TL061 50 Ω − + 10 kΩ N2 10 kΩ 5 kΩ 0.1 µF 10 kΩ N1 250 kΩ −15 V Figure 9-7. Low-Level Light Detector Preamplifier Figure 9-8. AC Amplifier 10 kΩ 100 kΩ 1 kΩ IN+ 0.1 µF 0.06 µF + TL061 − 1.2 MΩ 47 kΩ + TL062 − 0.06 µF 1 µF 10 kΩ 0.002 µF 100 kΩ 50 kΩ 1 kΩ 1 kΩ 2.7 kΩ 100 kΩ 270 Ω 0.003 µF + 0.001 µF 10 kΩ 100 kΩ 100 kΩ 50 kΩ 20 µF 0.02 µF IN− Figure 9-9. Microphone Preamplifier With Tone Control 18 Output 100 kΩ Submit Document Feedback − TL062 + Figure 9-10. Instrumentation Amplifier Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 IC PREAMPLIFIER RESPONSE CHARACTERISTICS 25 Max Bass 20 15 Voltage Amplification − dB Max Treble VCC± = ±15 V TA = 25°C 10 5 0 −5 −10 −15 −20 Min Treble Min Bass −25 20 40 100 200 400 1k 2k 4k 10 k 20 k f − Frequency − Hz 220 kΩ 0.00375 µF 0.003 µF 10 kΩ 0.03 µF 0.01 µF 27 kΩ MIN 100 kΩ Bass MAX VCC+ 100 Ω 1 µF Input 100 Ω + TL062 − 10 kΩ 3.3 kΩ MIN 100 kΩ Treble MAX VCC+ + TL062 0.03 µF VCC− VCC− 0.003 µF 10 kΩ Balance 10 pF 75 µF 47 kΩ + 50 pF Output − 10 pF 5 kΩ Gain + 68 kΩ 47 µF Figure 9-11. IC Preamplifier 9.4 Power Supply Recommendations CAUTION Supply voltages larger than 36 V for a single supply, or outside the range of ±18 V for a dual supply can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout section. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 19 TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 9.5 Layout 9.5.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • • • • • • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to Circuit Board Layout Techniques. To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 9.5.2 Layout Examples RIN VIN + VOUT RG RF Figure 9-12. Operational Amplifier Schematic for Noninverting Configuration Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF NC NC IN1í VCC+ IN1+ OUT VCCí NC VS+ Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 9-13. Operational Amplifier Board Layout for Noninverting Configuration 20 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078N – NOVEMBER 1978 – REVISED AUGUST 2023 10 Device and Documentation Support 10.1 Documentation Support 10.1.1 Related Documentation For related documentation, see the following: • Texas Instruments, Circuit Board Layout Techniques chapter extracts 10.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.3 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 10.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 21 PACKAGE OPTION ADDENDUM www.ti.com 2-Dec-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) 81023022A LIFEBUY LCCC FK 20 55 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 81023022A TL062MFKB 8102302PA ACTIVE CDIP JG 8 50 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102302PA TL062M Samples 81023032A ACTIVE LCCC FK 20 55 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 81023032A TL064MFKB Samples 8102303CA ACTIVE CDIP J 14 25 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102303CA TL064MJB Samples 8102303DA ACTIVE CFP W 14 25 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102303DA TL064MWB Samples TL061ACD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 061AC TL061ACDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 061AC Samples TL061ACP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL061ACP Samples TL061BCP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL061BCP Samples TL061BCPE4 ACTIVE PDIP P 8 50 TBD Call TI Call TI 0 to 70 Samples TL061CD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C TL061CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C Samples TL061CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL061CP Samples TL061CPSR LIFEBUY SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T061 TL061ID LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I TL061IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I TL061IDRG4 ACTIVE SOIC D 8 2500 TBD Call TI Call TI -40 to 85 TL061IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 TL061IPE4 ACTIVE PDIP P 8 50 TBD Call TI Call TI -40 to 85 TL062ACD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 Addendum-Page 1 Samples Samples TL061IP Samples Samples 062AC PACKAGE OPTION ADDENDUM www.ti.com 2-Dec-2023 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TL062ACDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 062AC Samples TL062ACDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 062AC Samples TL062ACP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL062ACP Samples TL062ACPSR LIFEBUY SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062A TL062BCD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 062BC TL062BCDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 062BC Samples TL062BCP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL062BCP Samples TL062CD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C Samples TL062CDRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C Samples TL062CDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C Samples TL062CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL062CP Samples TL062CPE4 ACTIVE PDIP P 8 50 TBD Call TI Call TI 0 to 70 TL062CPS LIFEBUY SO PS 8 80 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPSR LIFEBUY SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPW LIFEBUY TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPWRG4 LIFEBUY TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T062 Samples Samples TL062ID LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IDG4 LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I Samples TL062IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 TL062IP Samples TL062IPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 Z062 Samples TL062IPWRG4 ACTIVE TSSOP PW 8 2000 TBD Call TI Call TI -40 to 85 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 2-Dec-2023 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TL062MFKB LIFEBUY LCCC FK 20 55 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 81023022A TL062MFKB TL062MJG ACTIVE CDIP JG 8 50 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TL062MJG Samples TL062MJGB ACTIVE CDIP JG 8 50 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102302PA TL062M Samples TL064ACD LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC TL064ACDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC Samples TL064ACN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL064ACN Samples TL064BCD LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC TL064BCDG4 LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC TL064BCDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC Samples TL064BCN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL064BCN Samples TL064CD LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C Samples TL064CN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TL064CN Samples TL064CNSR LIFEBUY SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TL064 TL064CPW LIFEBUY TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064CPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064ID LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IDG4 LIFEBUY SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 85 TL064I TL064IDRG4 LIFEBUY SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 TL064IN TL064INE4 ACTIVE PDIP N 14 25 TBD Call TI Call TI -40 to 85 TL064INS LIFEBUY SO NS 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064INSR LIFEBUY SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I Addendum-Page 3 Samples Samples Samples Samples PACKAGE OPTION ADDENDUM www.ti.com 2-Dec-2023 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TL064IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 Z064 Samples TL064MFKB ACTIVE LCCC FK 20 55 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 81023032A TL064MFKB Samples TL064MJ ACTIVE CDIP J 14 25 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TL064MJ Samples TL064MJB ACTIVE CDIP J 14 25 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102303CA TL064MJB Samples TL064MWB ACTIVE CFP W 14 25 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8102303DA TL064MWB Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TL062MJGB 价格&库存

很抱歉,暂时无法提供与“TL062MJGB”相匹配的价格&库存,您可以联系我们找货

免费人工找货