Product
Folder
Sample &
Buy
Support &
Community
Tools &
Software
Technical
Documents
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
TLC227x, TLC227xA: Advanced LinCMOS Rail-to-Rail Operational Amplifiers
1 Features
•
•
•
•
1
•
•
•
•
•
•
•
Output Swing Includes Both Supply Rails
Low Noise: 9 nV/√Hz Typical at f = 1 kHz
Low-Input Bias Current: 1-pA Typical
Fully-Specified for Both Single-Supply and SplitSupply Operation
Common-Mode Input Voltage Range Includes
Negative Rail
High-Gain Bandwidth: 2.2-MHz Typical
High Slew Rate: 3.6-V/μs Typical
Low Input Offset Voltage: 950 μV Maximum at
TA = 25°C
Macromodel Included
Performance Upgrades for the TLC272 and
TLC274
Available in Q-Temp Automotive
The TLC227x also make great upgrades to the
TLC27x in standard designs. They offer increased
output dynamic range, lower noise voltage, and lower
input offset voltage. This enhanced feature set allows
them to be used in a wider range of applications. For
applications that require higher output drive and wider
input voltage range, see the TLV2432 and TLV2442
devices.
If the design requires single amplifiers, see the
TLV2211, TLV2221 and TLV2231 family. These
devices are single rail-to-rail operational amplifiers in
the SOT-23 package. Their small size and low power
consumption make them ideal for high density,
battery-powered equipment.
Device Information(1)
PART NUMBER
TLC2272
2 Applications
White Goods (Refrigerators, Washing Machines)
Hand-held Monitoring Systems
Configuration Control and Print Support
Transducer Interfaces
Battery-Powered Applications
3 Description
The TLC2272 and TLC2274 are dual and quadruple
operational amplifiers from Texas Instruments. Both
devices exhibit rail-to-rail output performance for
increased dynamic range in single- or split-supply
applications. The TLC227x family offers 2 MHz of
bandwidth and 3 V/μs of slew rate for higher-speed
applications. These devices offer comparable AC
performance while having better noise, input offset
voltage, and power dissipation than existing CMOS
operational amplifiers. The TLC227x has a noise
voltage of 9 nV/√Hz, two times lower than competitive
solutions.
The TLC227x family of devices, exhibiting high input
impedance and low noise, is excellent for small-signal
conditioning for high-impedance sources such as
piezoelectric transducers. Because of the micropower
dissipation levels, these devices work well in handheld monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature, with single- or
split-supplies, makes this family a great choice when
interfacing with analog-to-digital converters (ADCs).
For precision applications, the TLC227xA family is
available with a maximum input offset voltage of
950 μV. This family is fully characterized at 5 V and
±5 V.
TLC2274
BODY SIZE (NOM)
4.40 mm × 3.00 mm
SOIC (8)
3.91 mm × 4.90 mm
SO (8)
5.30 mm × 6.20 mm
PDIP (8)
6.35 mm × 9.81 mm
TSSOP (14)
4.40 mm × 5.00 mm
SOIC (14)
3.91 mm × 8.65 mm
SO (14)
5.30 mm × 10.30
mm
PDIP (14)
6.35 mm × 19.30
mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Maximum Peak-to-Peak Output Voltage vs
Supply Voltage
V(OPP)
V
O(PP) − Maximum Peak-to-Peak Output Voltage − V
•
•
•
•
•
PACKAGE
TSSOP (8)
16
TA = 25°C
14
12
IO = ± 50 µA
10
IO = ± 500 µA
8
6
4
4
6
8
10
12
14
16
|VDD ±| − Supply Voltage − V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7
1
1
1
2
3
5
Absolute Maximum Ratings ...................................... 5
ESD Ratings.............................................................. 5
Recommended Operating Conditions....................... 5
Thermal Information .................................................. 6
TLC2272 and TLC2272A Electrical Characteristics
VDD = 5 V ................................................................... 6
TLC2272 and TLC2272A Electrical Characteristics
VDD± = ±5 V................................................................ 8
TLC2274 and TLC2274A Electrical Characteristics
VDD = 5 V ................................................................... 9
TLC2274 and TLC2274A Electrical Characteristics
VDD± = ±5 V.............................................................. 11
Typical Characteristics ............................................ 13
Detailed Description ............................................ 24
7.1
7.2
7.3
7.4
8
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
24
24
24
24
Application and Implementation ........................ 25
8.1 Application Information............................................ 25
8.2 Typical Application .................................................. 26
9 Power Supply Recommendations...................... 28
10 Layout................................................................... 29
10.1 Layout Guidelines ................................................. 29
10.2 Layout Example .................................................... 29
11 Device and Documentation Support ................. 30
11.1
11.2
11.3
11.4
11.5
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
30
30
30
30
30
12 Mechanical, Packaging, and Orderable
Information ........................................................... 30
4 Revision History
Changes from Revision G (May 2004) to Revision H
Page
•
Added Feature Description section, Device Functional Modes, Application and Implementation section, Power
Supply Recommendations section, Layout section, Device and Documentation Supportsection, and Mechanical,
Packaging, and Orderable Information section. ..................................................................................................................... 1
•
Added ESD Rating table for the D and PW package devices. .............................................................................................. 5
2
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
5 Pin Configuration and Functions
TLC2272
D, JG, P, or PW Package
8-Pin SOIC, CDIP, PDIP, or TSSOP
Top View
1OUT
1IN −
1IN +
VDD − /GND
1
8
2
7
3
6
4
5
VDD +
2OUT
2IN −
2IN +
1OUT
1IN −
1IN +
VDD +
2IN +
2IN −
2OUT
NC
1OUT
NC
VDD+
NC
TLC2272
FK Package
20-Pin LCCC
Top View
TLC2274
D, J, N, PW, or W Package
14-Pin SOIC, CDIP, PDIP, TSSOP, or CFP
Top View
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2 OUT
NC
2 IN−
NC
1
10
2
9
3
8
4
7
5
6
3
12
4
11
5
10
6
9
7
8
4OUT
4IN −
4IN +
VDD −
3IN +
3IN −
3OUT
1IN +
NC
VDD +
NC
2IN +
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4IN +
NC
VDD −
NC
3IN +
2IN −
2OUT
NC
3OUT
3IN −
TLC2272
U Package
10-Pin CFP
Top View
NC
1 OUT
1 IN−
1 IN+
VDD−/GND
13
1IN −
1OUT
NC
4OUT
4IN −
4
14
2
TLC2274
FK Package
20-Pin LCCC
Top View
NC
VDD−/GND
NC
2 IN+
NC
NC
1 IN−
NC
1 IN+
NC
1
NC
VDD+
2 OUT
2 IN−
2 IN+
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
3
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
Pin Functions
PIN
NO.
TLC2272
NAME
I/O
TLC2274
DESCRIPTION
D, JG, P,
or PW
FK
U
D, J, N,
PW, or W
FK
1IN+
3
7
4
3
4
I
Non-inverting input, Channel 1
1IN-
2
5
3
2
3
I
Inverting input, Channel 1
1OUT
1
2
2
1
2
O
Output, Channel 1
2IN+
5
12
6
5
8
I
Non-inverting input, Channel 2
2IN-
6
15
7
6
9
I
Inverting input, Channel 2
2OUT
7
17
8
7
10
O
Output, Channel 2
3IN+
—
—
—
10
14
I
Non-inverting input, Channel 3
3IN-
—
—
—
9
13
I
Inverting input, Channel 3
3OUT
—
—
—
8
12
O
Output, Channel 3
4IN+
—
—
—
12
18
I
Non-inverting input, Channel 4
4IN-
—
—
—
13
19
I
Inverting input, Channel 4
4OUT
—
—
—
14
20
O
Output, Channel 4
VDD+
8
20
9
4
6
—
Positive (highest) supply
VDD–
—
—
—
11
16
—
Negative (lowest) supply
VDD–/GND
4
10
5
—
—
—
Negative (lowest) supply
—
1, 3, 4, 6, 8,
9, 11, 13, 14,
16, 18, 19
1, 10
—
1, 5, 7, 11,
15, 17
—
No Connection
NC
4
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
8
V
Supply voltage, VDD+ (2)
VDD-
(2)
–8
V
Differential input voltage, VID (3)
±16
V
VDD+
V
Input current, II (any input)
±5
mA
Output current, IO
±50
mA
Total current into VDD+
±50
mA
±50
mA
Input voltage, VI(any input) (2)
VDD− − 0.3
Total current out of VDD–
Duration of short-circuit current at (or below) 25°C (4)
Unlimited
C level parts
Operating free-air temperature range, TA
0
70
I, Q level parts
–40
125
M level parts
–55
125
°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
D, N, P or PW package
260
°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
J or U package
300
°C
150
°C
Storage temperature, Tstg
(1)
(2)
(3)
(4)
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD.
Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– − 0.3 V.
The output may be shorted to either supply. Temperature or supply voltages must be limited to ensure that the maximum dissipation
rating is not exceeded.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
Electrostatic discharge
Human-body model (HBM), per AEC
Q100-002 (1)
Q-grade and M-grade devices in D and
PW packages
±2000
Charged-device model (CDM), per
AEC Q100-011
Q-grade and M-grade devices in D and
PW packages
±1000
UNIT
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions
VDD±
VI
VIC
Supply voltage
Input voltage
Common-mode input voltage
Copyright © 1997–2016, Texas Instruments Incorporated
MIN
MAX
C LEVEL PARTS
±2.2
±8
I LEVEL PARTS
±2.2
±8
Q LEVEL PARTS
±2.2
±8
M LEVEL PARTS
±2.2
±8
C LEVEL PARTS
VDD−
VDD+ −1.5
I LEVEL PARTS
VDD−
VDD+ −1.5
Q LEVEL PARTS
VDD−
VDD+ −1.5
M LEVEL PARTS
VDD−
VDD+ −1.5
C LEVEL PARTS
VDD−
VDD+ −1.5
I LEVEL PARTS
VDD−
VDD+ −1.5
Q LEVEL PARTS
VDD−
VDD+ −1.5
M LEVEL PARTS
VDD−
VDD+ −1.5
UNIT
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
V
V
V
5
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
Recommended Operating Conditions (continued)
MIN
MAX
0
70
I LEVEL PARTS
–40
125
Q LEVEL PARTS
–40
125
M LEVEL PARTS
–55
125
C LEVEL PARTS
TA
Operating free-air temperature
UNIT
°C
6.4 Thermal Information
TLC2272
THERMAL METRIC (1)
TLC2274
D
(SOIC)
P
(PDIP)
PW
(TSSOP)
FK
(LCCC)
U
(CFP)
D
(SOIC)
N
(PDIP)
PW
(TSSOP)
FK
(LCCC)
J
(CDIP)
UNIT
8-PIN
8-PIN
8-PIN
20-PIN
10-PIN
14-PIN
14-PIN
14-PIN
20-PIN
14-PIN
RθJA
Junction-to-ambient thermal
resistance (2) (3)
115.6
58.5
175.8
—
—
83.8
—
111.6
—
—
°C/W
RθJC(top)
Junction-to-case (top) thermal
resistance (2) (3)
61.8
48.3
58.8
18
121.3
43.2
34
41.2
16
16.2
°C/W
RθJB
Junction-to-board thermal
resistance
55.9
35.6
104.3
—
—
38.4
—
54.7
—
—
°C/W
ψJT
Junction-to-top
characterization parameter
14.3
25.9
5.9
—
—
9.4
—
3.9
—
—
°C/W
ψJB
Junction-to-board
characterization parameter
55.4
35.5
102.6
—
—
38.1
—
53.9
—
—
°C/W
RθJC(bot)
Junction-to-case (bottom)
thermal resistance
—
—
—
—
8.68
—
—
—
—
—
°C/W
(1)
(2)
(3)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) − TA) / θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).
6.5 TLC2272 and TLC2272A Electrical Characteristics VDD = 5 V
at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
TLC2272
VIO
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
Input offset voltage
TLC2272A
TLC2272
TLC2272A
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
IIO
IIB
VICR
(1)
(2)
6
(2)
Input offset current
Input bias current
Common-mode input voltage
MIN
TA = 25°C
TYP
MAX
300
2500
300
Full Range (1)
2
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω
0.002
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
RS = 50 Ω; |VIO | ≤ 5 mV
μV/°C
μV/mo
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
TA = 25°C
Full Range (1)
µV
1500
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
950
3000
UNIT
0.5
60
pA
800
1
60
pA
800
–0.3
2.5
4
0
2.5
3.5
V
TA = –55°C to 125°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
TLC2272 and TLC2272A Electrical Characteristics VDD = 5 V (continued)
at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
MIN
IOH = −20 μA
VOH
High-level output voltage
IOH = −200 μA
IOH = −1 mA
TA = 25°C
4.85
Full Range (1)
4.85
TA = 25°C
4.25
Full Range (1)
4.25
IOL = 50 μA
VOL
Low-level output voltage
VIC = 2.5 V
IOL = 500 μA
IOL = 5 mA
C level part
Large-signal differential
voltage amplification
AVD
VIC = 2.5 V,
VO = 1 V to 4 V;
RL = 10 kΩ (3)
I level part
Q level part
M level part
V
4.65
0.09
0.15
0.15
TA = 25°C
0.9
Full Range (1)
15
TA = 0°C to 80°C
15
TA = 25°C
15
TA = –40°C to 85°C
15
TA = 25°C
10
TA = –40°C to 125°C
10
TA = 25°C
10
TA = –55°C to 125°C
10
1.5
35
35
35
V/mV
35
175
ri
Common-mode input resistance
ci
Common-mode input capacitance
f = 10 kHz, P package
zo
Closed-loop output impedance
f = 1 MHz, AV = 10
CMRR
Common-mode rejection ratio
VIC = 0 V to 2.7 V,
VO = 2.5 V, RS = 50 Ω
TA = 25°C
70
Full Range (1)
70
kSVR
Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD = 4.4 V to 16 V,
VIC = VDD / 2, no load
TA = 25°C
80
Full Range (1)
80
IDD
Supply currrent
VO = 2.5 V, no load
SR
Slew rate at unity gain
VO = 0.5 V to 2.5 V,
RL = 10 kΩ (3), CL = 100 pF (3)
Vn
Equivalent input noise voltage
VNPP
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
1012
Ω
12
Ω
8
pF
140
Ω
10
TA = 25°C
75
2.2
Full Range (1)
dB
3
3
TA = 25°C
2.3
Full Range (1)
1.7
3.6
50
f = 1 kHz
9
f = 0.1 Hz to 1 Hz
dB
95
f = 10 Hz
1
f = 0.1 Hz to 10 Hz
1.4
0.6
VO = 0.5 V to 2.5 V,
f = 20 kHz, RL = 10 kΩ (3)
V
1.5
TA = 25°C
Differential input resistance
AV = 1
0.0013%
AV = 10
0.004%
AV = 100
0.03%
Gain-bandwidth product
f = 10 kHz, RL = 10 kΩ (3), CL = 100 pF (3)
Maximum output-swing bandwidth
VO(PP) = 2 V, AV = 1, RL = 10 kΩ (3), CL = 100 pF (3)
ts
Settling time
AV = –1, RL = 10 kΩ (3),
Step = 0.5 V to 2.5 V, CL = 100 pF (3)
φm
Phase margin at unity gain
RL = 10 kΩ (3), CL = 100 pF (3)
50°
Gain margin
RL = 10 kΩ (3), CL = 100 pF (3)
10
(3)
UNIT
4.93
Full Range (1)
rid
BOM
MAX
0.01
TA = 25°C
VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ (3)
THD+N Total harmonic distortion + noise
TYP
4.99
mA
V/µs
nV/√Hz
µV
fA/√Hz
2.18
MHz
1
MHz
To 0.1%
1.5
To 0.01%
2.6
µs
dB
Referenced to 0 V.
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
7
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
6.6 TLC2272 and TLC2272A Electrical Characteristics VDD± = ±5 V
at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
TLC2272
VIO
Input offset voltage
VIC = 0 V, VO = 0 V,
RS = 50 Ω
TLC2272A
TLC2272
TLC2272A
αVIO
IIO
Temperature coefficient of
input offset voltage
VIC = 0 V, VO = 0 V, RS = 50 Ω
Input offset voltage long-term drift (2)
VIC = 0 V, VO = 0 V, RS = 50 Ω
Input offset current
IIB
Input bias current
VICR
Common-mode input voltage
VIC = 0 V, VO = 0 V,
RS = 50 Ω
VIC = 0 V, VO = 0 V,
RS = 50 Ω
MIN
TA = 25°C
Maximum positive peak
output voltage
Full Range (1)
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
0.5
IO = −200 μA
IO = 500 μA
C level part
I level part
Large-signal differential
voltage amplification
60
pA
800
1
60
pA
800
–5.3
0
4
–5
0
3.5
V
4.99
IO = 5 mA
AVD
μV/mo
0.002
Full Range (1)
µV
μV/°C
2
TA = 25°C
UNIT
1500
TA = 25°C
RS = 50 Ω; |VIO | ≤ 5 mV
VIC = 0 V,
950
3000
TA = 25°C
4.85
Full Range (1)
4.85
TA = 25°C
4.25
Full Range (1)
4.25
IO = 50 μA
Maximum negative
peak output voltage
2500
All level parts
IO = −1 mA
VOM-
MAX
300
300
IO = −20 μA
VOM+
TYP
VO = ±4 V; RL = 10 kΩ
Q level part
M level part
4.93
V
4.65
–4.99
TA = 25°C
–4.85
Full Range (1)
–4.85
TA = 25°C
–3.5
Full Range (1)
–3.5
TA = 25°C
25
TA = 0°C to 80°C
25
TA = 25°C
25
TA = –40°C to 85°C
25
TA = 25°C
20
TA = –40°C to 125°C
20
TA = 25°C
20
TA = –55°C to 125°C
20
VO = ±4 V; RL = 1 MΩ
–4.91
V
–4.1
50
50
50
V/mV
50
300
rid
Differential input resistance
1012
ri
Common-mode input resistance
1012
Ω
ci
Common-mode input capacitance
f = 10 kHz, P package
8
pF
zo
Closed-loop output impedance
f = 1 MHz, AV = 10
130
Ω
CMRR
Common-mode rejection ratio
VIC = –5 V to 2.7 V,
VO = 0 V, RS = 50 Ω
TA = 25°C
75
Full Range (1)
75
kSVR
Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD+ = 2.2 V to ±8 V,
VIC = 0 V, no load
TA = 25°C
80
Full Range (1)
80
IDD
Supply currrent
VO = 0 V, no load
(1)
(2)
8
TA = 25°C
Ω
80
dB
95
2.4
Full Range (1)
dB
3
3
mA
TA = –55°C to 125°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
TLC2272 and TLC2272A Electrical Characteristics VDD± = ±5 V (continued)
at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VNPP
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
THD+N Total harmonic distortion + noise
TEST CONDITIONS
VO = ±2.3 V,
RL = 10 kΩ, CL = 100 pF
MIN
TYP
TA = 25°C
2.3
3.6
Full Range (1)
1.7
f = 10 Hz
50
f = 1 kHz
9
f = 0.1 Hz to 1 Hz
MAX
V/µs
nV/√Hz
1
f = 0.1 Hz to 10 Hz
µV
1.4
0.6
VO = ±2.3,
f = 20 kHz, RL = 10 kΩ
AV = 1
0.0011%
AV = 10
0.004%
AV = 100
0.03%
UNIT
fA/√Hz
Gain-bandwidth product
f = 10 kHz, RL = 10 kΩ, CL = 100 pF
2.25
MHz
Maximum output-swing bandwidth
VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF
0.54
MHz
ts
Settling time
AV = –1, RL = 10 kΩ,
Step = –2.3 V to 2.3 V, CL = 100 pF
φm
Phase margin at unity gain
RL = 10 kΩ, CL = 100 pF
52°
Gain margin
RL = 10 kΩ, CL = 100 pF
10
BOM
To 0.1%
1.5
To 0.01%
3.2
µs
dB
6.7 TLC2274 and TLC2274A Electrical Characteristics VDD = 5 V
at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
TLC2274
VIO
Input offset voltage
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
TLC2274A
TLC2274
TLC2274A
αVIO
IIO
IIB
VICR
MIN
TA = 25°C
2500
950
3000
Full Range (1)
UNIT
µV
1500
Temperature coefficient of
input offset voltage
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω
2
μV/°C
Input offset voltage long-term drift (2)
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω
0.002
μV/mo
Input offset current
Input bias current
Common-mode input voltage
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
RS = 50 Ω; |VIO | ≤ 5 mV
High-level output voltage
IOH = −200 μA
IOH = −1 mA
(1)
(2)
MAX
300
300
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
TA = 25°C
Full Range (1)
0.5
60
pA
800
1
60
pA
800
–0.3
2.5
4
0
2.5
3.5
IOH = −20 μA
VOH
TYP
V
4.99
TA = 25°C
4.85
Full Range (1)
4.85
TA = 25°C
4.25
Full Range (1)
4.25
4.93
V
4.65
TA = –55°C to 125°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
9
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
TLC2274 and TLC2274A Electrical Characteristics VDD = 5 V (continued)
at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
MIN
IOL = 50 μA
VOL
Low-level output voltage
IOL = 500 μA
VIC = 2.5 V
IOL = 5 mA
C level part
Large-signal differential
voltage amplification
AVD
VIC = 2.5 V, VO = 1 V to
4 V;
RL = 10 kΩ (3)
I level part
Q level part
M level part
TYP
MAX
UNIT
0.01
TA = 25°C
0.09
Full Range (1)
0.15
0.15
TA = 25°C
0.9
Full Range (1)
V
1.5
1.5
TA = 25°C
15
TA = 0°C to 80°C
15
TA = 25°C
15
TA = –40°C to 85°C
15
TA = 25°C
10
TA = –40°C to 125°C
10
TA = 25°C
10
TA = –55°C to 125°C
10
VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ (3)
35
35
35
V/mV
35
175
rid
Differential input resistance
1012
ri
Common-mode input resistance
1012
Ω
ci
Common-mode input capacitance
f = 10 kHz, P package
8
pF
zo
Closed-loop output impedance
f = 1 MHz, AV = 10
140
Ω
CMRR
Common-mode rejection ratio
VIC = 0 V to 2.7 V,
VO = 2.5 V, RS = 50 Ω
TA = 25°C
70
Full Range (1)
70
kSVR
Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD = 4.4 V to 16 V,
VIC = VDD / 2, no load
TA = 25°C
80
Full Range (1)
80
IDD
Supply currrent
VO = 2.5 V, no load
SR
Slew rate at unity gain
VO = 0.5 V to 2.5 V,
RL = 10 kΩ (3), CL = 100 pF (3)
Vn
Equivalent input noise voltage
VNPP
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
THD+N Total harmonic distortion + noise
BOM
TA = 25°C
75
4.4
2.3
Full Range (1)
1.7
3.6
f = 10 Hz
50
f = 1 kHz
9
1
1.4
0.6
VO = 0.5 V to 2.5 V,
f = 20 kHz, RL = 10 kΩ (3)
AV = 1
0.0013%
AV = 10
0.004%
AV = 100
0.03%
Gain-bandwidth product
f = 10 kHz, RL = 10 kΩ (3), CL = 100 pF (3)
Maximum output-swing bandwidth
VO(PP) = 2 V, AV = 1, RL = 10 kΩ (3), CL = 100 pF (3)
(3)
mA
V/µs
nV/√Hz
µV
fA/√Hz
MHz
1
MHz
To 0.1%
1.5
To 0.01%
2.6
Settling time
AV = –1, RL = 10 kΩ ,
Step = 0.5 V to 2.5 V, CL = 100 pF (3)
φm
Phase margin at unity gain
RL = 10 kΩ (3), CL = 100 pF (3)
50°
Gain margin
RL = 10 kΩ (3), CL = 100 pF (3)
10
10
6
2.18
ts
(3)
dB
6
TA = 25°C
f = 0.1 Hz to 10 Hz
dB
95
Full Range (1)
f = 0.1 Hz to 1 Hz
Ω
µs
dB
Referenced to 0 V.
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
6.8 TLC2274 and TLC2274A Electrical Characteristics VDD± = ±5 V
at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER
TEST CONDITIONS
TLC2274
VIO
Input offset voltage
VIC = 0 V, VO = 0 V,
RS = 50 Ω
TLC2274A
TLC2274
TLC2274A
αVIO
IIO
Temperature coefficient of
input offset voltage
VIC = 0 V, VO = 0 V, RS = 50 Ω
Input offset voltage long-term drift (2)
VIC = 0 V, VO = 0 V, RS = 50 Ω
Input offset current
IIB
Input bias current
VICR
Common-mode input voltage
VIC = 0 V, VO = 0 V,
RS = 50 Ω
VIC = 0 V, VO = 0 V,
RS = 50 Ω
MIN
TA = 25°C
Maximum positive peak
output voltage
Full Range (1)
μV/mo
0.002
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
All level parts
TA = 25°C
C level part
TA = 0°C to 80°C
100
I level part
TA = –40°C to 85°C
150
Q level part
TA = –40°C to 125°C
800
M level part
TA = –55°C to 125°C
0.5
60
Full Range (1)
pA
800
1
TA = 25°C
60
pA
800
–5.3
0
4
–5
0
3.5
V
4.99
IO = −200 μA
IO = 500 μA
C level part
I level part
Large-signal differential
voltage amplification
µV
μV/°C
2
C level part
IO = 5 mA
AVD
UNIT
1500
TA = 25°C
RS = 50 Ω; |VIO | ≤ 5 mV
VIC = 0 V
950
3000
TA = 25°C
4.85
Full Range (1)
4.85
TA = 25°C
4.25
Full Range (1)
4.25
IO = 50 μA
Maximum negative peak
output voltage
2500
All level parts
IO = −1 mA
VOM-
MAX
300
300
IO = −20 μA
VOM+
TYP
VO = ±4 V; RL = 10 kΩ
Q level part
M level part
4.93
V
4.65
–4.99
TA = 25°C
–4.85
Full Range (1)
–4.85
TA = 25°C
–3.5
Full Range (1)
–3.5
TA = 25°C
25
TA = 0°C to 80°C
25
TA = 25°C
25
TA = –40°C to 85°C
25
TA = 25°C
20
TA = –40°C to 125°C
20
TA = 25°C
20
TA = –55°C to 125°C
20
VO = ±4 V; RL = 1 MΩ
–4.91
V
–4.1
50
50
50
V/mV
50
300
rid
Differential input resistance
1012
ri
Common-mode input resistance
1012
Ω
ci
Common-mode input capacitance
f = 10 kHz, P package
8
pF
zo
Closed-loop output impedance
f = 1 MHz, AV = 10
130
Ω
CMRR
Common-mode rejection ratio
VIC = –5 V to 2.7 V,
VO = 0 V, RS = 50 Ω
TA = 25°C
75
Full Range (1)
75
kSVR
Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD+ = 2.2 V to ±8 V,
VIC = 0 V, no load
TA = 25°C
80
Full Range (1)
80
IDD
Supply currrent
VO = 0 V, no load
(1)
(2)
TA = 25°C
Ω
80
dB
95
4.8
Full Range (1)
dB
6
6
mA
TA = –55°C to 125°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
11
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
TLC2274 and TLC2274A Electrical Characteristics VDD± = ±5 V (continued)
at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VNPP
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
THD+N Total harmonic distortion + noise
TEST CONDITIONS
VO = ±2.3 V,
RL = 10 kΩ, CL = 100 pF
MIN
TYP
TA = 25°C
2.3
3.6
Full Range (1)
1.7
f = 10 Hz
50
f = 1 kHz
9
f = 0.1 Hz to 1 Hz
MAX
1
f = 0.1 Hz to 10 Hz
1.4
0.6
VO = ±2.3,
f = 20 kHz, RL = 10 kΩ
AV = 1
0.0011%
AV = 10
0.004%
AV = 100
0.03%
UNIT
V/µs
nV/√Hz
µV
fA/√Hz
Gain-bandwidth product
f = 10 kHz, RL = 10 kΩ, CL = 100 pF
2.25
MHz
Maximum output-swing bandwidth
VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF
0.54
MHz
ts
Settling time
AV = –1, RL = 10 kΩ,
Step = –2.3 V to 2.3 V, CL = 100 pF
φm
Phase margin at unity gain
RL = 10 kΩ, CL = 100 pF
52°
Gain margin
RL = 10 kΩ, CL = 100 pF
10
BOM
12
Submit Documentation Feedback
To 0.1%
1.5
To 0.01%
3.2
µs
dB
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
6.9 Typical Characteristics
Table 1. Table of Graphs
FIGURE (1)
Distribution
1, 2, 3, 4
VIO
Input offset voltage
αVIO
Input offset voltage temperature coefficient
Distribution
IIB /IIO
Input bias and input offset current
vs Free-air temperature
VI
Input voltage
VOH
vs Common-mode voltage
5, 6
7, 8, 9, 10 (2)
vs Supply voltage
11 (2)
12
vs Free-air temperature
13 (2)
High-level output voltage
vs High-level output current
14 (2)
VOL
Low-level output voltage
vs Low-level output current
15, 16 (2)
VOM+
Maximum positive peak output voltage
vs Output current
17 (2)
VOM-
Maximum negative peak output voltage
vs Output current
18 (2)
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
19
vs Supply voltage
20
IOS
Short-circuit output current
VO
Output voltage
vs Differential input voltage
Large-signal differential voltage amplification
vs Load resistance
Large-signal differential voltage amplification and phase margin
vs Frequency
Large-signal differential voltage amplification
vs Free-air temperature
Output impedance
vs Frequency
29, 30
vs Frequency
31
vs Free-air temperature
32
AVD
z0
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio
IDD
Supply current
SR
Slew rate
VO
Vn
vs Free-air temperature
vs Frequency
27 (2), 28 (2)
33, 34
vs Free-air temperature
35 (2)
vs Supply voltage
36 (2), 37 (2)
vs Free-air temperature
38 (2), 39 (2)
vs Load Capacitance
vs Free-air temperature
40
41 (2)
42, 43
Voltage-follower large-signal pulse response
44, 45
Inverting small-signal pulse response
46, 47
Voltage-follower small-signal pulse response
48, 49
vs Frequency
50, 51
52
Integrated noise voltage
vs Frequency
53
Total harmonic distortion + noise
vs Frequency
54
Gain-bandwidth product
(1)
(2)
24
25, 26
Noise voltage over a 10-second period
φm
22, 23
Inverting large-signal pulse response
Equivalent input noise voltage
THD+N
21 (2)
vs Supply voltage
vs Free-air temperature
55
56 (2)
Phase margin
vs Load capacitance
57
Gain margin
vs Load capacitance
58
For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
13
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
15
20
891 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
TA = 25°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
20
www.ti.com
10
5
0
−1.6 −1.2 − 0.8 − 0.4
0
0.4
0.8
1.2
15
10
5
0
−1.6 −1.2 −0.8 − 0.4
1.6
0
0.4
0.8
1.2
1.6
VIO − Input Offset Voltage − mV
VIO − Input Offset Voltage − mV
Figure 1. Distribution of TLC2272 Input Offset Voltage
Figure 2. Distribution of TLC2272 Input Offset Voltage
20
20
992 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
Percentage of Amplifiers − %
Percentage of Amplifiers − %
992 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
15
10
5
0
− 1.6 −1.2 − 0.8
−0.4
0
0.4
0.8
1.2
15
10
5
0
− 1.6 −1.2 −0.8
1.6
−0.4
0
0.4
0.8
1.2
1.6
VIO − Input Offset Voltage − mV
VIO − Input Offset Voltage − mV
Figure 3. Distribution of TLC2274 Input Offset Voltage
Figure 4. Distribution of TLC2274 Input Offset Voltage
1
VDD = 5 V
TA = 25°C
RS = 50 Ω
VIO − Input Offset Voltage − mV
VIO
VIO
VIO − Input Offset Voltage − mV
1
0.5
0
−0.5
−1
−1
0
1
2
3
4
5
VIC − Common-Mode Voltage − V
Figure 5. Input Offset Voltage vs Common-Mode Voltage
14
891 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
TA = 25°C
Submit Documentation Feedback
VDD = ± 5 V
TA = 25°C
RS = 50 Ω
0.5
0
−0.5
−1
−6 −5 −4 −3 −2
−1
0
1
2
3
4
5
VIC − Common-Mode Voltage − V
Figure 6. Input Offset Voltage vs Common-Mode Voltage
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
20
25
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
P Package
25°C to 125°C
15
10
5
0
−5 −4
−3
−2
−1
0
1
2
3
4
128 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
P Package
25°C to 125°C
20
Percentage of Amplifiers − %
Percentage of Amplifiers − %
25
15
10
5
0
−5 −4
5
Figure 7. Distribution of TLC2272 vs
Input Offset Voltage Temperature Coefficient
−1
0
2
1
3
4
5
25
20
Percentage of Amplifiers − %
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
N Package
TA = 25°C to 125°C
15
10
5
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
N Package
TA = 25°C to 125°C
20
15
10
5
0
−4
−3
−2
−1
0
1
2
3
4
5
−5
−4
−3
−2
−1 0
1
2
3
4
5
α VIO − Temperature Coefficient − µV/°C
α VIO − Temperature Coefficient − µV/°C
Figure 9. Distribution of TLC2274 vs
Input Offset Voltage Temperature Coefficient
Figure 10. Distribution of TLC2274 vs
Input Offset Voltage Temperature Coefficient
12
35
30
TA = 25°C
RS = 50 Ω
10
VDD = ± 2.5 V
VIC = 0 V
VO = 0 V
RS = 50 Ω
8
6
25
20
IIB
15
IIO
10
V I − Input Voltage − V
Percentage of Amplifiers − %
IIB
I IO − Input Bias and Input Offset Currents − pA
IIB and IIO
−2
Figure 8. Distribution of TLC2272 vs
Input Offset Voltage Temperature Coefficient
25
0
−5
−3
αV IO − Temperature Coefficient − µV/°C
αV IO − Temperature Coefficient − µV/°C
4
2
|VIO| ≤ 5 mV
0
−2
−4
−6
5
−8
− 10
0
25
45
65
85
105
125
TA − Free-Air Temperature − °C
Figure 11. Input Bias and Input Offset Current vs
Free-Air Temperature
Copyright © 1997–2016, Texas Instruments Incorporated
2
3
4
5
6
7
8
|VDD ±| − Supply Voltage − V
Figure 12. Input Voltage vs Supply Voltage
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
15
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
5
6
VDD = 5 V
V0H
V
OH − High-Level Output Voltage − V
VDD = 5 V
V I − Input Voltage − V
4
3
|VIO| ≤ 5 mV
2
1
0
−1
−75 − 50
5
4
TA = 125°C
3
TA = 25°C
2
TA = − 55°C
1
0
− 25
0
25
50
75
100
125
0
TA − Free-Air Temperature − °C
Figure 13. Input Voltage vs Free-Air Temperature
1.4
VOL
VOL − Low-Level Output Voltage − V
VOL
VOL − Low-Level Output Voltage − V
VDD = 5 V
TA = 25°C
1
VIC = 0 V
0.8
VIC = 1.25 V
0.6
VIC = 2.5 V
0.2
0
1
2
3
4
IOL − Low-Level Output Current − mA
4
VDD = 5 V
VIC = 2.5 V
1.2
1
TA = 125°C
0.8
TA = 25°C
0.6
TA = − 55°C
0.4
0.2
5
0
Figure 15. Low-Level Output Voltage vs
Low-Level Output Current
5
VDD ± = ± 5 V
4
TA = − 55°C
TA = 25°C
3
TA = 125°C
2
1
0
1
2
3
4
5
|IO| − Output Current − mA
Figure 17. Maximum Positive Peak Output Voltage vs
Output Current
Submit Documentation Feedback
5
1
2
3
4
IOL − Low-Level Output Current − mA
6
Figure 16. Low-Level Output Voltage vs
Low-Level Output Current
V OM − − Maximum Negative Peak Output Voltage − V
V OM + − Maximum Positive Peak Output Voltage − V
3
0
0
16
2
Figure 14. High-Level Output Voltage vs
High-Level Output Current
1.2
0.4
1
IOH − High-Level Output Current − mA
− 3.8
VDD = ± 5 V
VIC = 0 V
−4
TA = 125°C
− 4.2
TA = 25°C
− 4.4
TA = − 55°C
− 4.6
− 4.8
−5
0
1
2
3
4
5
6
IO − Output Current − mA
Figure 18. Maximum Positive Peak Output Voltage vs
Output Current
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
10
16
RL = 10 kΩ
TA = 25°C
9
IIOS
OS − Short-Circuit Output Current − mA
V(OPP)
V O(PP) − Maximum Peak-to-Peak Output Voltage − V
www.ti.com
8
7
6
VDD = 5 V
5
4
VDD = ± 5 V
3
2
1
VID = − 100 mV
12
8
4
0
VID = 100 mV
−4
VO = 0 V
TA = 25°C
−8
0
10 k
100 k
2
10 M
1M
f − Frequency − Hz
VO − Output Voltage − V
IIOS
OS − Short-Circuit Output Current − mA
4
7
−3
−1
−5
3
2
0
− 800
125
VDD = ± 5 V
TA = 25°C
RL = 10 kΩ
VIC = 0 V
1
−1
800
−400
0
400
VID − Differential Input Voltage − µV
1200
Figure 22. Output Voltage vs Differential Input Voltage
1000
VO = ± 1 V
TA = 25°C
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 21. Short-Circuit Output Current vs
Free-Air Temperature
VO − Output Voltage − V
8
1
VID = 100 mV
3
7
VDD = 5 V
TA = 25°C
RL = 10 kΩ
VIC = 2.5 V
VID = − 100 mV
5
6
5
11
−50
5
Figure 20. Short-Circuit Output Current vs Supply Voltage
VO = 0 V
VDD = ± 5 V
− 75
4
|VDD ±| − Supply Voltage − V
Figure 19. Maximum Peak-to-Peak Output Voltage vs
Frequency
15
3
100
VDD = ± 5 V
10
VDD = 5 V
1
−3
−5
0
250 500 750 1000
−1000 − 750 − 500 − 250
VID − Differential Input Voltage − µV
Figure 23. Output Voltage vs Differential Input Voltage
Copyright © 1997–2016, Texas Instruments Incorporated
0.1
0.1
1
10
RL − Load Resistance − kΩ
100
Figure 24. Large-Signal Differential Voltage Amplification vs
Load Resistance
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
17
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
80
135°
60
40
90°
20
45°
0
0°
−20
−45°
−40
1k
10 k
100 k
1M
−90°
10 M
90°
20
45°
0°
0
−20
−45°
−40
1k
10 k
AVD
AVD− Large-Signal Differential
Voltage Amplification − V/mV
AVD
AVD− Large-Signal Differential
Voltage Amplification − V/mV
1k
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
100
RL = 10 kΩ
10
− 75
−50
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
VDD = ± 5 V
VIC = 0 V
VO = ± 4 V
RL = 1 MΩ
100
RL = 10 kΩ
10
− 75
125
Figure 27. Large-Signal Differential Voltage Amplification vs
Free-Air Temperature
125
VDD = ± 5 V
TA = 25°C
zo
O
zo − Output Impedance − Ω
zo
O
zo − Output Impedance − Ω
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
1000
VDD = 5 V
TA = 25°C
18
−50
Figure 28. Large-Signal Differential Voltage Amplification vs
Free-Air Temperature
1000
100
AV = 100
10
AV = 10
0.1
100
−90°
10 M
100 k
1M
f − Frequency − Hz
Figure 26. Large-Signal Differential Voltage Amplification
and Phase Margin vs Frequency
1k
1
135°
40
f − Frequency − Hz
Figure 25. Large-Signal Differential Voltage Amplification
and Phase Margin vs Frequency
180°
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
φ
om
m − Phase Margin
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
60
180°
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
φ
om
m − Phase Margin
80
AV = 1
100
AV = 100
10
AV = 10
1
AV = 1
1k
10 k
100 k
1M
0.1
100
1k
10 k
100 k
1M
f − Frequency − Hz
f − Frequency − Hz
Figure 29. Output Impedance vs Frequency
Figure 30. Output Impedance vs Frequency
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
90
TA = 25°C
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
100
VDD = ± 5 V
80
VDD = 5 V
60
40
20
100
1k
10 k
100 k
1M
82
VDD = ± 5 V
VIC = − 5 V to 2.7 V
78
VDD = 5 V
74
VIC = 0 V to 2.7 V
70
−75
0
10
86
10 M
−50
Figure 31. Common-Mode Rejection Ratio vs Frequency
kSVR
k
SVR − Supply-Voltage Rejection Ratio − dB
kSVR
k SVR − Supply-Voltage Rejection Ratio − dB
50
75
100
125
80
60
kSVR+
40
kSVR −
20
0
100
1k
10 k
100 k
1M
VDD = ± 5 V
TA = 25°C
80
60
kSVR+
40
kSVR −
20
0
−20
10
10 M
100
f − Frequency − Hz
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 33. Supply-Voltage Rejection Ratio vs Frequency
Figure 34. Supply-Voltage Rejection Ratio vs Frequency
110
3
VDD ± = ± 2.2 V to ± 8 V
VO = 0 V
VO = 0 V
No Load
105
2.4
IIDD
DD − Supply Current − mA
kSVR
k
SVR − Supply Voltage Rejection Ratio − dB
25
100
VDD = 5 V
TA = 25°C
100
95
1.8
TA = 25°C
TA = − 55°C
1.2
TA = 125°C
0.6
90
85
− 75
0
Figure 32. Common-Mode Rejection Ratio vs
Free-Air Temperature
100
−20
10
−25
TA − Free-Air Temperature − °C
f − Frequency − Hz
0
− 50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 35. Supply-Voltage Rejection Ratio vs
Free-Air Temperature
Copyright © 1997–2016, Texas Instruments Incorporated
0
1
2
3
4
5
6
|VDD ± | − Supply Voltage − V
7
8
Figure 36. TLC2272 Supply Current vs Supply Voltage
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
19
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
3
6
VO = 0 V
No Load
VDD = ± 5 V
VO = 0 V
2.4
3.6
IIDD
DD − Supply Current − mA
IIDD
DD − Supply Current − mA
4.8
TA = 25°C
TA = − 55°C
2.4
TA = 125°C
1.2
0
VDD = 5 V
VO = 2.5 V
1.8
1.2
0.6
0
1
2
3
4
5
6
7
0
−75
8
− 50
−25
0
25
50
75
125
TA − Free-Air Temperature − °C
Figure 37. TLC2274 Supply Current vs Supply Voltage
Figure 38. TLC2272 Supply Current vs Free-Air Temperature
6
5
VDD = 5 V
AV = − 1
TA = 25°C
VDD = ± 5 V
VO = 0 V
4
SR − Slew Rate − V/ µs
IIDD
DD − Supply Current − mA
4.8
VDD = 5 V
VO = 2.5 V
3.6
2.4
0
− 75
SR −
3
2
SR +
1
1.2
− 50
− 25
0
25
50
75
100
0
10
125
100
1k
CL − Load Capacitance − pF
TA − Free-Air Temperature − °C
5
5
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = − 1
SR −
4
VO − Output Voltage − mV
VO
SR − Slew Rate − V/ µs
4
SR +
3
2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
1
0
− 75
10 k
Figure 40. Slew Rate vs Load Capacitance
Figure 39. TLC2274 Supply Current vs Free-Air Temperature
20
100
|VDD ± | − Supply Voltage − V
3
2
1
0
−50
−25
0
25
50
75
100
125
0
1
2
3
4
5
6
7
8
9
TA − Free-Air Temperature − °C
t − Time − µs
Figure 41. Slew Rate vs Free-Air Temperature
Figure 42. Inverting Large-Signal Pulse Response
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
5
3
2
4
VO − Output Voltage − V
VO
4
V
VO
O − Output Voltage − V
5
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = − 1
1
0
−1
−2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
3
2
1
−3
−4
−5
0
0
1
2
3
4
5
6
7
8
9
0
1
2
3
t − Time − µs
Figure 43. Inverting Large-Signal Pulse Response
5
5
6
7
8
9
2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = −1
2.6
VO − Output Voltage − V
VO
3
Figure 44. Voltage-Follower Large-Signal Pulse Response
2.65
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
4
VO − Output Voltage − V
VO
4
t − Time − µs
1
0
−1
−2
−3
2.55
2.5
2.45
−4
−5
2.4
0
1
2
3
4
5
6
7
8
9
0
0.5
1 1.5
2 2.5 3
3.5 4
4.5
5 5.5
t − Time − µs
t − Time − µs
Figure 45. Voltage-Follower Large-Signal Pulse Response
Figure 46. Inverting Small-Signal Pulse Response
2.65
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
50
2.6
VO − Output Voltage − V
VO
VO − Output Voltage − mV
VO
100
0
−50
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
2.55
2.5
2.45
2.4
−100
0
0.5
1
1.5
2
2.5
3
3.5
4
0
0.5
1
1.5
t − Time − µs
t − Time − µs
Figure 47. Inverting Small-Signal Pulse Response
Figure 48. Voltage-Follower Small-Signal Pulse Response
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
21
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
50
Vn
nV HzHz
Vn − Equivalent Input Noise Voltage − nV/
VO − Output Voltage − mV
VO
100
www.ti.com
0
−50
VDD = 5 V
TA = 25°C
RS = 20 Ω
40
30
20
10
0
−100
100
1k
f − Frequency − Hz
Figure 49. Voltage-Follower Small-Signal Pulse Response
Figure 50. Equivalent Input Noise Voltage vs Frequency
1
1.5
60
1000
VDD = ± 5 V
TA = 25°C
RS = 20 Ω
500
40
30
20
250
0
−250
−500
10
−750
0
10
−1000
10 k
100
1k
f − Frequency − Hz
10
1
0.1
100
1k
6
8
10
Figure 52. Noise Voltage Over a 10 Second Period
THD + N − Total Harmonic Distortion Plus Noise − %
Calculated Using
Ideal Pass-Band Filter
Lower Frequency = 1 Hz
TA= 25°C
10
4
t − Time − s
100
1
2
0
Figure 51. Equivalent Input Noise Voltage vs Frequency
µ V RMS
Integrated Noise Voltage − uVRMS
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
750
Noise Voltage − nV
Vn
nV HzHz
Vn − Equivalent Input Noise Voltage − nV/
0.5
10
10 k
t − Time − µs
0
22
60
10 k
100 k
1
VDD = 5 V
TA = 25°C
RL = 10 kΩ
0.1
AV = 100
0.01
AV = 10
0.001
0.0001
100
AV = 1
1k
10 k
100 k
f − Frequency − Hz
f − Frequency − Hz
Figure 53. Integrated Noise Voltage vs Frequency
Figure 54. Total Harmonic Distortion + Noise vs Frequency
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
3
f = 10 kHz
RL = 10 kΩ
CL = 100 pF
TA = 25°C
2.4
VDD = 5 V
f = 10 kHz
RL = 10 kΩ
CL = 100 pF
2.8
Gain-Bandwidth Product − MHz
Gain-Bandwidth Product − MHz
2.5
2.3
2.2
2.1
2.6
2.4
2.2
2
1.8
1.6
1.4
2
0
1
6
2
3
4
5
|VDD ±| − Supply Voltage − V
7
8
Figure 55. Gain-Bandwidth Product vs Supply Voltage
75°
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Figure 56. Gain-Bandwidth Product vs Free-Air Temperature
15
VDD = ± 5 V
TA = 25°C
Rnull = 100 Ω
60°
12
Rnull = 50 Ω
Gain Margin − dB
φ m − Phase Margin
om
− 75
45°
Rnull = 20 Ω
30°
VDD = 5 V
AV = 1
RL = 10 kΩ
TA = 25°C
9
6
10 kΩ
15°
10 kΩ
0°
10
3
VDD +
Rnull
VI
Rnull = 0
CL
VDD −
Rnull = 10 Ω
100
1000
CL − Load Capacitance − pF
10000
Figure 57. Phase Margin vs Load Capacitance
Copyright © 1997–2016, Texas Instruments Incorporated
0
10
100
1000
CL − Load Capacitance − pF
10000
Figure 58. Gain Margin vs Load Capacitance
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
23
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
7 Detailed Description
7.1 Overview
The TLC227x and TLC227xA families of devices are rail-to-rail output operational amplifiers. These devices
operate from 4.4-V to 16-V single supply and ±2.2-V ±8-V dual supply, are unity-gain stable, and are suitable for
a wide range of general-purpose applications.
7.2 Functional Block Diagram
VDD +
Q3
Q6
Q9
Q12
Q14
Q16
IN +
OUT
C1
IN −
R5
Q1
Q4
Q13
Q15
Q17
D1
Q2
Q5
R3
R4
Q7
Q8
Q10
Q11
R1
R2
VDD−
Table 2. Device Component Count (1)
(1)
Component
TLC2272
TLC2274
Transistors
38
76
Resistors
26
52
Diodes
9
18
Capacitors
3
6
Includes both amplifiers and all ESD, bias, and trim circuitry.
7.3 Feature Description
The TLC227x and TLC227xA family of devices feature 2-MHz bandwidth and voltage noise of 9 nV/√Hz with
performance rated from 4.4 V to 16 V across an automotive temperature range (–40°C to 125°C). LinMOS suits
a wide range of audio, automotive, industrial, and instrumentation applications.
7.4 Device Functional Modes
The TLC227x and TLC227xA families of devices is powered on when the supply is connected. The devices may
operate with single or dual supply, depending on the application. The devices are in its full performance once the
supply is above the recommended value.
24
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
8.1.1 Macromodel Information
Macromodel information provided was derived using MicroSim Parts™, the model generation software used with
MicroSim PSpice™. The Boyle macromodel (1) and subcircuit in Figure 59 were generated using the TLC227x
typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the
following key parameters can be generated to a tolerance of 20% (in most cases):
• Maximum positive output voltage swing
• Maximum negative output voltage swing
• Slew rate
• Quiescent power dissipation
• Input bias current
• Open-loop voltage amplification
• Unity gain frequency
• Common-mode rejection ratio
• Phase margin
• DC output resistance
• AC output resistance
• Short-circuit output current limit
99
DIN
3
EGND +
VCC +
9
RSS
10
VC
IN −
J1
DP
J2
11
VAD
VCC −
DC
12
−
−
−
+
VIN
7
+
GCM
GA
VLIM
−
RD2
60
+
−
+ DIP
C2
6
8
C1
RD1
R2
−
53
IN +
HLIM
−
+
91
+
VIP
90
RO2
VB
RP
2
1
92
FB
−
+
ISS
RO1
DE
54
4
−
5
+
VE
.SUBCKT TLC227x 1 2 3 4 5
C1
11
1214E−12
C2
6
760.00E−12
DC
5
53DX
DE
54
5DX
DLP
90
91DX
DLN
92
90DX
DP
4
3DX
EGND
99
0POLY (2) (3,0) (4,) 0 .5 .5
FB
99
0POLY (5) VB VC VE VLP VLN 0
+ 984.9E3 −1E6 1E6 1E6 −1E6
GA
6
011 12 377.0E−6
GCM 0 6 10 99 134E−9
ISS
3
10DC 216.OE−6
HLIM
90
0VLIM 1K
J1
11
210 JX
J2
12
110 JX
R2
6
9100.OE3
OUT
RD1
60
112.653E3
RD2
60
122.653E3
R01
8
550
R02
7
9950
RP
3
44.310E3
RSS
10
99925.9E3
VAD
60
4−.5
VB
9
0DC 0
VC 3 53 DC .78
VE
54
4DC .78
VLIM
7
8DC 0
VLP
91
0DC 1.9
VLN
0
92DC 9.4
.MODEL DX D (IS=800.0E−18)
.MODEL JX PJF (IS=1.500E−12BETA=1.316E-3
+ VTO=−.270)
.ENDS
Figure 59. Boyle Macromodel and Subcircuit
(1)
Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
25
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
8.2 Typical Application
8.2.1 High-Side Current Monitor
VBAT
V1
ILOUD
V2
RS
0.1 µF
R1
R
ILOAD
VOUT
+
_
R2
47 kΩ
Rg
Figure 60. Equivalent Schematic (Each Amplifier)
8.2.1.1 Design Requirements
For this design example, use the parameters listed in Table 3 as the input parameters.
Table 3. Design Parameters
PARAMETER
VALUE
VBAT
Battery Voltage
12 V
RSENSE
Sense Resistor
ILOAD
Load Current
0.1 Ω
0 A to 10 A
Operational Amplifier
Set in Differential configuration with Gain = 10
8.2.1.2 Detailed Design Procedure
This circuit is designed for measuring the high-side current in automotive body control modules with 12-V battery
or similar applications. The operational amplifier is set as differential with an external resistor network.
8.2.1.2.1 Differential Amplifier Equations
Equation 1 and Equation 2 are used to calculate VOUT.
VOUT
VOUT
æ R R
1æ R
R
ç
1+ ç 1 +
- 1
ç
2 è R2 Rg
Rg ç Rg R2 V1 + V2
=
´
+
ç
R
R
R ç
2
1+ 1
1+ 1
çç
R2
R2
è
æ R R
1æ R
R
ç
1+ ç 1 +
- 1
2 çè R2 Rg
Rg ç Rg R2
=
´ VBAT +
ç
R1
R
R ç
1+
1+ 1
çç
R2
R2
è
ö
ö
÷
÷
÷
ø (V - V ) ÷
1
2 ÷
÷
÷÷
ø
(1)
ö
ö
÷
÷
÷
÷
ø ´R ´I
S
Load ÷
÷
÷÷
ø
(2)
In an ideal case R1 = R and R2 = Rg, and VOUT can then be calculated using Equation 3:
Rg
VOUT =
´ RS ´ ILoad
R
26
Submit Documentation Feedback
(3)
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
However, as the resistors have tolerances, they cannot be perfectly matched.
R1 = R ± ΔR1
R2 = R2 ± ΔR2
R = R ± ΔR
Rg = Rg ± ΔRg
DR
Tol =
R
(4)
By developing the equations and neglecting the second order, the worst case is when the tolerances add up.
This is shown by Equation 5.
æ
æ
Rg
2R ö ö Rg
VOUT = ± (4 Tol)
´ VBAT + ç 1 ± 2 Tol ç 1 +
÷÷
´ RS ´ ILOAD
ç
÷÷
ç
R + Rg
è R + Rg ø ø R
è
where
•
•
Tol = 0.01 for 1%
Tol = 0.001 for 0.1%
(5)
If the resistors are perfectly matched, then Tol = 0 and VOUT is calculated using Equation 6.
Rg
VOUT =
´ RS ´ ILOAD
R
(6)
The highest error is from the Common mode, as shown in Equation 7.
Rg
4 (Tol)
´ VBAT
R + Rg
(7)
Gain of 10, Rg / R = 10, and Tol = 1%:
Common mode error = ((4 × 0.01) / 1.1) × 12 V = 0.436 V
Gain of 10 and Tol = 0.1%:
Common mode error = 43.6 mV
The resistors were chosen from 2% batches.
R1 and R 12 kΩ
R2 and Rg 120 kΩ
Ideal Gain = 120 / 12 = 10
The measured value of the resistors:
R1 = 11.835 kΩ
R = 11.85 kΩ
R2 = 117.92 kΩ
Rg = 118.07 kΩ
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
27
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
1.2
12
1
10
Output Voltage (V)
Output Voltage (V)
8.2.1.3 Application Curves
0.8
0.6
0.4
0.2
8
6
4
2
Measured
Ideal
Measured
Ideal
0
0
0
0.2
0.4
0.6
0.8
Load Current (A)
1
Figure 61. Output Voltage Measured vs Ideal
(0 to 1 A)
1.2
D001
0
2
4
6
8
Load Current (A)
10
12
D001
Figure 62. Output Voltage Measured vs Ideal
(0 to 10 A)
9 Power Supply Recommendations
Supply voltage for a single supply is from 4.4 V to 16 V, and from ±2.2 V to ±8 V for dual supply. In the high-side
sensing application, the supply is connected to a 12-V battery.
28
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
www.ti.com
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
10 Layout
10.1 Layout Guidelines
The TLC227x and TLC227xA families of devices are wideband amplifiers. To realize the full operational
performance of the devices, good high-frequency printed-circuit-board (PCB) layout practices are required. Lowloss 0.1-μF bypass capacitors must be connected between each supply pin and ground as close to the device as
possible. The bypass capacitor traces should be designed for minimum inductance.
10.2 Layout Example
Figure 63. Layout Example
Copyright © 1997–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
29
TLC2272, TLC2272A, TLC2272M, TLC2272AM
TLC2274, TLC2274A, TLC2274M, TLC2274AM
SLOS190H – FEBRUARY 1997 – REVISED MARCH 2016
www.ti.com
11 Device and Documentation Support
11.1 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 4. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TLC2272
Click here
Click here
Click here
Click here
Click here
TLC2272A
Click here
Click here
Click here
Click here
Click here
TLC2272M
Click here
Click here
Click here
Click here
Click here
TLC2272AM
Click here
Click here
Click here
Click here
Click here
TLC2274
Click here
Click here
Click here
Click here
Click here
TLC2274A
Click here
Click here
Click here
Click here
Click here
TLC2274M
Click here
Click here
Click here
Click here
Click here
TLC2274AM
Click here
Click here
Click here
Click here
Click here
11.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.3 Trademarks
E2E is a trademark of Texas Instruments.
MicroSim Parts, PSpice are trademarks of MicroSim.
All other trademarks are the property of their respective owners.
11.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
30
Submit Documentation Feedback
Copyright © 1997–2016, Texas Instruments Incorporated
Product Folder Links: TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLC2272ACD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AC
Samples
TLC2272ACDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AC
Samples
TLC2272ACDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AC
Samples
TLC2272ACDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AC
Samples
TLC2272ACP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2272AC
Samples
TLC2272ACPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
P2272A
Samples
TLC2272ACPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
P2272A
Samples
TLC2272AID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AI
Samples
TLC2272AIDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AI
Samples
TLC2272AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AI
Samples
TLC2272AIDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AI
Samples
TLC2272AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2272AI
Samples
TLC2272AMD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AM
Samples
TLC2272AMDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AM
Samples
TLC2272AMDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AM
Samples
TLC2272AMDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272AM
Samples
TLC2272AQD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
C2272A
Samples
TLC2272AQDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
C2272A
Samples
TLC2272AQDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
C2272A
Samples
TLC2272AQDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
C2272A
Samples
Addendum-Page 1
-55 to 125
-55 to 125
-40 to 125
-40 to 125
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLC2272CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2272C
Samples
TLC2272CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2272C
Samples
TLC2272CDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2272C
Samples
TLC2272CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLC2272CP
Samples
TLC2272CPS
ACTIVE
SO
PS
8
80
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2272
Samples
TLC2272CPSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2272
Samples
TLC2272CPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2272
Samples
TLC2272CPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2272
Samples
TLC2272ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272I
Samples
TLC2272IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272I
Samples
TLC2272IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2272IP
Samples
TLC2272IPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2272
Samples
TLC2272IPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2272
Samples
TLC2272IPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2272
Samples
TLC2272MD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272M
Samples
TLC2272MDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272M
Samples
TLC2272MDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2272M
Samples
TLC2272QPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
T2272Q
Samples
TLC2274ACD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2274AC
Samples
TLC2274ACDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2274AC
Samples
TLC2274ACDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2274AC
Samples
Addendum-Page 2
-55 to 125
-55 to 125
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLC2274ACDRG4
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2274AC
Samples
TLC2274ACN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLC2274ACN
Samples
TLC2274ACPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2274A
Samples
TLC2274ACPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2274A
Samples
TLC2274ACPWRG4
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
P2274A
Samples
TLC2274AID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2274AI
Samples
TLC2274AIDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2274AI
Samples
TLC2274AIN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLC2274AIN
Samples
TLC2274AIPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
Y2274A
Samples
TLC2274AIPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
Y2274A
Samples
TLC2274AIPWRG4
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
Y2274A
Samples
TLC2274AMD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
2274AM
Samples
TLC2274AMDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
2274AM
Samples
TLC2274AMDRG4
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
2274AM
Samples
TLC2274AQD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLC2274A
Samples
TLC2274AQDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLC2274A
Samples
TLC2274AQDRG4
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
PJ2274A
Samples
TLC2274CD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274C
Samples
TLC2274CDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274C
Samples
TLC2274CDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274C
Samples
TLC2274CN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2274CN
Samples
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLC2274CNE4
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2274CN
Samples
TLC2274CNS
ACTIVE
SO
NS
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274
Samples
TLC2274CNSR
ACTIVE
SO
NS
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274
Samples
TLC2274CPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
P2274
Samples
TLC2274CPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
P2274
Samples
TLC2274ID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274I
Samples
TLC2274IDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274I
Samples
TLC2274IDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274I
Samples
TLC2274IN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
TLC2274IN
Samples
TLC2274IPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2274
Samples
TLC2274IPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2274
Samples
TLC2274IPWRG4
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Y2274
Samples
TLC2274MD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274M
Samples
TLC2274MDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
PJ2274M
Samples
TLC2274MDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TLC2274M
Samples
TLC2274MDRG4
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
PJ2274M
Samples
TLC2274MN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-55 to 125
TLC2274MN
Samples
TLC2274QD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLC2274
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
Addendum-Page 4
-55 to 125
-55 to 125
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of