0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE2072QDRQ1

TLE2072QDRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP JFET 10MHZ 8SOIC

  • 数据手册
  • 价格&库存
TLE2072QDRQ1 数据手册
TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226B − DECEMBER 2003 − REVISED MAY 2008 D Qualified for Automotive Applications D Direct Upgrades to TL05x, TL07x, and D D Ensured Maximum Noise Floor 17 nV/√Hz D On-Chip Offset Voltage Trimming for TL08x BiFET Operational Amplifiers Greater Than 2× Bandwidth (10 MHz) and 3× Slew Rate (45 V/µs) Than TL07x D Improved DC Performance Wider Supply Rails Increase Dynamic Signal Range to ±19 V description/ordering information The TLE207x series of JFET-input operational amplifiers more than double the bandwidth and triple the slew rate of the TL07x and TL08x families of BiFET operational amplifiers. Texas Instruments Excalibur process yields a typical noise floor of 11.6 nV/√Hz, 17-nV/√Hz ensured maximum, offering immediate improvement in noise-sensitive circuits designed using the TL07x. The TLE207x also has wider supply voltage rails, increasing the dynamic signal range for BiFET circuits to ±19 V. On-chip zener trimming of offset voltage yields precision grades for greater accuracy in dc-coupled applications. The TLE207x are pin-compatible with lower performance BiFET operational amplifiers for ease in improving performance in existing designs. BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption. The TLE207x family of BiFET amplifiers are Texas Instruments highest performance BiFETs, with tighter input offset voltage and ensured maximum noise specifications. Designers requiring less stringent specifications but seeking the improved ac characteristics of the TLE207x should consider the TLE208x operational amplifier family. Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies. ORDERING INFORMATION† TA −40°C 40°C to 125°C VIOmax AT 25°C ORDERABLE PART NUMBER PACKAGE‡ TOP-SIDE MARKING 2 mV SOIC − D Tape and reel TLE2071AQDRQ1 2071AQ 4 mV SOIC − D Tape and reel TLE2071QDRQ1 2071Q1 3.5 mV SOIC − D Tape and reel TLE2072AQDRQ1 2072AQ 6 mV SOIC − D Tape and reel TLE2072QDRQ1 2072Q1 TLE2074AQ1 TLE2074Q1 4 mV SOP − DW Tape and reel TLE2074AQDWRQ1§ 7 mV SOP − DW Tape and reel TLE2074QDWRQ1§ † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging. § Product Preview Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2008, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226B − DECEMBER 2003 − REVISED MAY 2008 description/ordering information (continued) The TLE207x are fully specified at ±15 V and ± 5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC- and TLV-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate and bandwidth requirements and output loading. TLE2071 AND TLE2071A D PACKAGE (TOP VIEW) OFFSET N1 IN − IN + VCC − 1 8 2 7 3 6 4 5 TLE2072 AND TLE2072A D PACKAGE (TOP VIEW) NC VCC + OUT OFFSET N2 1OUT 1IN − 1IN + VCC − 1 8 2 7 3 6 4 5 VCC + 2OUT 2IN − 2IN+ NC − No internal connection symbol IN + + IN − − OUT 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2074 AND TLE2074A DW PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VCC + 2IN + 2IN − 2OUT NC 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN − 4IN + VCC − 3IN + 3IN − 3OUT NC equivalent schematic VCC + R2 Q1 R1 R6 Q11 Q3 R11 Q17 Q8 Q23 D2 R3 Q24 D3 Q12 Q4 Q15 R13 Q19 OUT R12 IN + Q30 Q9 Q16 R8 Q5 Q25 C6 C3 Q29 Q2 D1 Q6 Q14 Q21 Q22 Q26 Q27 Q10 C5 R7 Q31 R4 Q7 R5 C4 R9 C2 OFFSET N1 (see Note A) VCC − NOTES: A. OFFSET N1 AND OFFSET N2 are only availiable on the TLE2071x devices. OFFSET N2 (see Note A) R10 R14 3 SLOS181A − FEBRUARY 1997 − REVISED MARCH 2000 (sourced from) Q18 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q20 Q13 C1 IN − Q28 Template Release Date: 7−11−94 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS ACTUAL DEVICE COMPONENT COUNT TLE2071 TLE2072 TLE2074 Transistors 33 57 114 Resistors POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS181A − FEBRUARY 1997 − REVISED MARCH 2000 (sourced from) 4 equivalent schematic (continued) COMPONENT 25 37 74 Diodes 8 5 10 Capacitors 6 11 22 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −19 V Differential input voltage range, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC − Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC − Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 80 mA Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Maximum Junction Temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Package thermal impedance, θJA (see Note 4): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC − . 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperatures and/or supply voltages must be limited to ensure that the maximum dissipation rate is not exceeded. 4. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions MIN MAX ± 2.25 ± 19 VCC ± = ± 5 V −0.8 5 VCC ± = ±15 V −10.8 15 −40 125 Supply voltage, VCC± Common mode input voltage, Common-mode voltage VIC Operating free-air temperature, TA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V V °C 5 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2071-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLE2071-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50 Ω, VO = 0, IIB Common-mode Common mode input voltage range Maximum positive peak output voltage swing RS = 50 Ω IO = −2 2 mA IO = −20 20 mA IO = 200 µA A VOM − Maximum negative peak output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification 2.3 3V VO = ± 2 RL = 2 kΩ RL = 10 kΩ ri Input resistance VIC = 0 ci Input capacitance VIC = 0, See Figure 5 MAX 0.3 2 7 15 175 µV/°C 5 100 pA 20 nA 15 175 pA 60 nA 60 Full range 5 to −0.8 25°C 3.8 Full range 3.6 25°C 3.5 Full range 3.3 25°C 1.5 Full range 1.4 25°C −3.8 Full range −3.6 25°C −3.5 Full range −3.3 25°C −1.5 Full range −1.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 5 to −1.9 5 to −1 5 to −1.9 V 5 to −0.8 4.1 3.8 4.1 3.6 3.9 3.5 3.9 V 3.3 2.3 1.5 −4.2 −3.8 2.3 1.4 −4.2 −3.6 −4.1 −3.5 −4.1 V −3.3 −2.4 −1.5 −2.4 −1.4 91 80 91 78 100 90 100 dB 88 106 95 106 93 1012 Common mode 25°C 11 11 Differential 25°C 2.5 2.5 25°C 80 80 f = 1 MHz CMRR Common mode Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω 25°C 70 Full range 68 25°C 82 Full range 80 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 20 20 5 to −1 UNIT 3.2 1012 Open-loop output impedance 6 TYP 25°C zo † 100 Full range IO = −200 200 µA A VOM + 5 Full range 25°C 25 C VICR 4 3.2 25°C Input bias current 0.34 MIN 9 Full range VO = 0, MAX Full range 25°C VIC = 0, See Figure 4 TLE2071A-Q1 TYP 89 70 82 80 pF Ω 89 dB 68 99 Ω 99 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2071-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) PARAMETER † TEST CONDITIONS ICC Supply current VO = 0, 0 IOS Short-circuit output current VO = 0 No load TLE2071-Q1 MIN TYP MAX MIN TYP MAX 25°C 1.35 1.6 2.2 1.35 1.6 2.2 Full range VID = 1 V VID = −1 V TLE2071A-Q1 TA† 2.2 25°C 2.2 −35 −35 45 45 UNIT mA mA Full range is −40°C to 125°C. TLE2071-Q1 operating characteristics at specified free-air temperature, VCC ± = ±5 V PARAMETER TEST CONDITIONS TA† TLE2071-Q1 MIN TYP 25°C SR + Positive slew rate SR − Negative slew rate ts Vn VN(PP) † Settling time VO(PP) = ± 2.3 V, AVD = −1, 1 RL = 2 kΩ, kΩ CL = 100 pF, See Figure 1 AVD = −1, 2-V step, RL = 1 kΩ, CL = 100 pF TYP MAX V/µs 20 38 38 20 V/µs 20 To 10 mV 0.25 0.25 0.4 0.4 µss 25°C To 1 mV f = 10 kHz 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT 35 20 f = 10 Hz RS = 20 Ω, See Figure 3 g MIN 35 25°C Full range Equivalent input noise voltage Peak-to-peak equivalent input noise voltage Full range TLE2071A-Q1 MAX 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz V µV 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, f = 1 kHz, kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 4 V, RL = 2 kΩ , AVD = −1, 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 56 56 fA/√Hz Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2071-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLE2071-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50 Ω VO = 0, IIB Common-mode Common mode input voltage range Maximum positive peak output voltage swing RS = 50 Ω IO = −2 2 mA IO = −20 20 mA VOM − IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification VO = ± 10 V RL = 2 kΩ RL = 10 kΩ ri Input resistance VIC = 0 ci Input capacitance VIC = 0, See Figure 5 0.47 2 7 20 175 Full range 25°C 13.8 Full range 13.6 25°C 13.5 Full range 13.3 25°C 11.5 15 to −11.9 µV/°C 6 100 pA 20 nA 20 175 pA 60 nA −13.8 Full range −13.6 25°C −13.5 Full range −13.3 25°C −11.5 Full range −11.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 15 to −11.9 V 15 to −10.9 14.1 13.8 14.1 13.6 13.9 13.5 13.9 V 13.3 12.3 11.5 −14.2 −13.8 11.4 25°C 15 to −11 12.3 11.4 −14.2 −13.6 −14 −13.5 −14 V −13.3 −12.4 −11.5 −12.4 −11.4 96 80 96 78 109 90 109 dB 88 118 95 118 93 1012 Common mode 25°C 7.5 7.5 Differential 25°C 2.5 2.5 25°C 80 80 f = 1 MHz CMRR Common mode Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω 25°C 80 Full range 78 25°C 82 Full range 80 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 20 60 15 to −11 UNIT 3.2 1012 Open-loop output impedance 8 MAX 25°C zo † TYP 20 15 to −10.9 Full range IO = 200 µA A Maximum negative peak output voltage swing 100 Full range IO = −200 200 µA A VOM + 6 Full range 25°C 25 C VICR 4 3.2 25°C Input bias current 0.49 MIN 9 Full range VO = 0, MAX Full range 25°C VIC = 0, See Figure 4 TLE2071A-Q1 TYP 98 80 82 80 pF Ω 98 dB 78 99 Ω 99 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2071-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) (continued) PARAMETER † TEST CONDITIONS ICC Supply current VO = 0, 0 IOS Short circuit output current Short-circuit VO = 0 No load TLE2071-Q1 MIN TYP MAX MIN TYP MAX 25°C 1.35 1.7 2.2 1.35 1.7 2.2 Full range VID = 1 V VID = −1 V TLE2071A-Q1 TA† 25°C 2.2 2.2 −30 −45 −30 −45 30 48 30 48 UNIT mA mA Full range is −40°C to 125°C. TLE2071-Q1 operating characteristics at specified free-air temperature, VCC ± = ±15 V PARAMETER SR + TEST CONDITIONS Positive slew rate VO(PP) = 10 V, RL = 2 kΩ, kΩ See Figure 1 SR − ts Vn VN(PP) † AVD = −1, CL = 100 pF, pF Negative slew rate Settling time AVD = −1, 10-V step, RL = 1 kΩ, CL = 100 pF TLE2071-Q1 MIN TYP 25°C 30 40 Full range 22 25°C 30 Full range 22 45 MIN TYP 30 40 MAX 30 45 V/µs 0.4 0.4 1.5 1.5 µss 25°C To 1 mV 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT V/µs 22 To 10 mV f = 10 kHz RS = 20 Ω, See Figure 3 TLE2071A-Q1 MAX 22 f = 10 Hz Equivalent input noise voltage Peak to peak equivalent Peak-to-peak input p noise voltage g TA† 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz µV V 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, f = 1 kHz kHz, RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 8 10 8 10 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 20 V, RL = 2 kΩ, AVD = −1, 1, CL = 25 pF 25°C 478 637 478 637 kHz φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 57 fA/√Hz 57 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2072-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) TLE2072-Q1 PARAMETER TEST CONDITIONS TA† MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50 Ω, VO = 0, 0.9 Full range Full range IIB VO = 0, VICR Common-mode Common mode input voltage range IO = −200 200 µA A VOM + Maximum positive peak output voltage swing IO = −2 2 mA IO = −20 20 mA IO = 200 µA A VOM − Maximum negative peak output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification 2.3 3V VO = ± 2 RL = 2 kΩ RL = 10 kΩ ri ci † Input resistance Input capacitance VIC = 0, See Figure 5 TYP MAX 0.65 3.5 8 15 175 Full range 25°C 3.8 Full range 3.6 25°C 3.5 Full range 3.3 25°C 1.5 Full range 1.4 25°C −3.8 Full range −3.6 25°C −3.5 Full range −3.3 25°C −1.5 Full range −1.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 5 to −1.9 5 to −1 µV/°C 5 100 pA 20 nA 15 175 pA 60 nA 5 to −1.9 V 5 to −0.8 4.1 3.8 4.1 3.6 3.9 3.5 3.9 V 3.3 2.3 1.5 −4.2 −3.8 2.3 1.4 −4.2 −3.6 −4.1 −3.5 −4.1 V −3.3 −2.4 −1.5 −2.4 −1.4 91 80 91 78 100 90 100 dB 88 106 95 106 93 25°C 1012 1012 Common mode 25°C 11 11 Differential 25°C 2.5 2.5 25°C 80 80 Open-loop output impedance f = 1 MHz CMRR Common mode Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω 25°C 70 Full range 68 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 20 60 5 to −1 UNIT 2.3 20 5 to −0.8 VIC = 0 zo 10 100 Full range RS = 50 Ω 6 5 Full range 25°C 25 C MIN 2.3 25°C Input bias current TLE2072A-Q1 MAX 10 25°C VIC = 0, See Figure 4 TYP 89 70 68 Ω pF Ω 89 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2072-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) TLE2072-Q1 PARAMETER † TEST CONDITIONS kSVR Supply-voltage rejection ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply current (both channels) 0 VO = 0, No load ax Crosstalk attenuation VIC = 0, RL = 2 kΩ IOS Short-circuit output current VO = 0 TA† MIN Full range 80 25°C 2.7 TYP 2.9 TYP MAX 3.6 2.7 25°C UNIT dB 2.9 3.6 25°C VID = −1 V MIN 80 Full range VID = 1 V TLE2072A-Q1 MAX 3.6 3.6 120 120 −35 −35 45 45 mA dB mA Full range is −40°C to 125°C. TLE2072-Q1 operating characteristics at specified free-air temperature, VCC ± = ±5 V TLE2072-Q1 PARAMETER TEST CONDITIONS TA† MIN 25°C SR + Positive slew rate SR − Negative slew rate ts † Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage VO(PP) = ± 2.3 V, AVD = −1, 1 RL = 2 kΩ, kΩ CL = 100 pF, See Figure 1 Full range AVD = −1, 2-V step, RL = 1 kΩ, CL = 100 pF To 10 mV MIN TYP MAX To 1 mV f = 10 kHz 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT 35 18 V/µs 18 38 38 18 V/µs 18 0.25 0.25 0.4 0.4 µss 25°C f = 10 Hz RS = 20 Ω, See Figure 3 TLE2072A-Q1 MAX 35 25°C Full range TYP 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz V µV 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, kHz, f = 1 kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 4 V, RL = 2 kΩ , AVD = −1, 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 56 56 fA /√Hz Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2072-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) TLE2072-Q1 PARAMETER TEST CONDITIONS TA† MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50 Ω VO = 0, 1.1 Full range Full range IIB VO = 0, VICR Common-mode Common mode input voltage range IO = −200 200 µA A VOM + Maximum positive peak output voltage swing IO = −2 2 mA IO = −20 20 mA VOM − IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification VO = ± 10 V RL = 2 kΩ RL = 10 kΩ ri ci † Input resistance Input capacitance 0.7 3.5 8 20 175 15 to −11 25°C 13.8 Full range 13.6 25°C 13.5 Full range 13.3 25°C 11.5 15 to −11.9 14.1 −13.8 Full range −13.6 25°C −13.5 Full range −13.3 25°C −11.5 Full range −11.4 25°C 80 Full range 78 25°C 90 Full range 89 25°C 95 Full range 93 13.8 µV/°C 6 100 pA 20 nA 20 175 pA 60 nA 15 to −11.9 V 14.1 13.6 13.9 13.5 13.9 V 13.3 12.3 11.5 −14.2 −13.8 12.3 11.4 −14.2 −13.6 −14 −13.5 −14 V −13.3 −12.4 −11.5 −12.4 −11.4 96 80 96 78 109 90 109 dB 89 118 95 118 93 1012 1012 Common mode 25°C 7.5 7.5 Differential 25°C 2.5 2.5 25°C 80 80 Open-loop output impedance f = 1 MHz CMRR Common mode Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω 25°C 80 Full range 78 25°C 82 Full range 80 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 20 15 to −10.8 11.4 25°C 15 to −11 UNIT 2.4 25°C zo 12 MAX 60 Full range VIC = 0 VIC = 0, See Figure 5 TYP 20 15 to −10.8 Full range IO = 200 µA A Maximum negative peak output voltage swing 100 Full range RS = 50 Ω 6 6 Full range 25°C 25 C MIN 2.4 25°C Input bias current TLE2072A-Q1 MAX 10 25°C VIC = 0, See Figure 4 TYP 98 80 82 80 pF Ω 98 dB 78 99 Ω 99 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2072-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) (continued) TLE2072-Q1 PARAMETER † TEST CONDITIONS ICC Supply current (both channels) VO = 0, 0 No load ax Crosstalk attenuation VIC = 0, RL = 2 kΩ IOS Short circuit output Short-circuit current VO = 0 MIN TYP MAX MIN TYP MAX 25°C 2.7 3.1 3.6 2.7 3.1 3.6 Full range 3.6 25°C VID = 1 V 3.6 120 120 −30 −45 −30 −45 30 48 30 48 25°C VID = −1 V TLE2072A-Q1 TA† UNIT mA dB mA Full range is −40°C to 125°C. TLE2072-Q1 operating characteristics at specified free-air temperature, VCC ± = ±15 V TLE2072-Q1 PARAMETER SR + TEST CONDITIONS Positive slew rate VO(PP) = 10 V, RL = 2 kΩ, kΩ See Figure 1 SR − ts † AVD = −1, CL = 100 pF, pF Negative slew rate Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage AVD = −1, 10-V step, RL = 1 kΩ, CL = 100 pF TA† MIN TYP 25°C 28 40 Full range 20 25°C 30 Full range 20 To 10 mV TLE2072A-Q1 MAX MIN TYP 28 40 MAX V/µs 20 45 30 45 V/µs 20 0.4 0.4 1.5 1.5 µss 25°C To 1 mV f = 10 Hz f = 10 kHz RS = 20 Ω, See Figure 3 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz µV V 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, f = 1 kH kHz, RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 8 10 8 10 MHz BOM Maximum output swing output-swing bandwidth VO(PP) = 20 V, RL = 2 kΩ, AVD = −1, 1, CL = 25 pF 25°C 478 637 478 637 kHz φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 57 fA /√Hz 57 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2074-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLE2074-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50Ω −1.6 Full range VO = 0, Full range IIB VICR Common-mode Common mode input voltage range Maximum positive peak output voltage swing IO = −2 2 mA IO = −20 20 mA IO = 200 µA A VOM − Maximum negative peak output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification 2.3 3V VO = ± 2 RL = 2 kΩ RL = 10 kΩ ri VIC = 0 Common mode ci Input capacitance zo Open-loop output impedance Differential 0 VIC = 0, 5 to See Figure 5 Full range 5 to −0.8 25°C 3.8 Full range 3.6 25°C 3.5 Full range 3.3 25°C 1.5 Full range 1.4 25°C −3.8 Full range −3.6 25°C −3.5 Full range −3.3 25°C −1.5 Full range −1.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 9 100 20 175 5 to −1.9 5 to −1 3.8 µV/°C 15 100 pA 20 nA 20 175 pA 60 nA 5 to −1.9 V 4.1 3.6 3.9 3.5 3.9 V 3.3 2.3 1.5 −4.2 −3.8 2.3 1.4 −4.2 −3.6 −4.1 −3.5 −4.1 V −3.3 −2.4 −1.5 −2.4 −1.4 91 80 91 78 100 90 100 dB 88 106 95 106 93 25°C 11 11 25°C 2.5 2.5 CMRR Common-mode Common mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω 70 Full range 68 Supply-voltage Supply voltage rejection ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω 25°C 82 Full range 80 80 Full range is −40°C to 125°C. • DALLAS, TEXAS 75265 mV 30 5 to −0.8 4.1 UNIT 10.1 1012 25°C POST OFFICE BOX 655303 4 1012 25°C 14 −0.5 25°C f = 1 MHz kSVR S † Input resistance MAX 60 −1 RS = 50 Ω IO = −200 200 µA A VOM + 15 Full range 25°C 25 C 7 TYP 20 25°C Input bias current MIN 10.1 Full range VO = 0, TLE2074A-Q1 MAX 11 25°C VIC = 0, See Figure 4 TYP 89 80 70 82 80 pF Ω 89 dB 68 99 Ω 99 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2074-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) PARAMETER ICC IOS † TEST CONDITIONS TA† TLE2074-Q1 TYP MAX MIN TYP MAX 5.2 6.3 7.5 5.2 6.3 7.5 25°C Supply current ( four amplifiers ) 0 VO = 0, No load Crosstalk attenuation VIC = 0, RL = 2 kΩ Short circuit output current Short-circuit VO = 0 VID = 1 V VID = −1 V TLE2074A-Q1 MIN Full range 7.5 25°C 7.5 120 120 −35 −35 45 45 25°C UNIT mA dB mA Full range is −40°C to 125°C. TLE2074-Q1 operating characteristics at specified free-air temperature, VCC ± = ±5 V PARAMETER TEST CONDITIONS TA† TLE2074-Q1 MIN TYP 25°C SR + Positive slew rate SR − Negative slew rate ts † Settling time Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent Peak-to-peak input p noise voltage g VO(PP) = ± 2.3 V, AVD = −1, 1 RL = 2 kΩ, kΩ CL = 100 pF, See Figure 1 Full range AVD = −1, 2-V step, RL = 1 kΩ, CL = 100 pF TYP MAX V/µs 18 38 38 18 V/µs 18 To 10 mV 0.25 0.25 0.4 0.4 µss 25°C To 1 mV f = 10 kHz 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT 35 18 f = 10 Hz RS = 20 Ω, See Figure 3 MIN 35 25°C Full range TLE2074A-Q1 MAX 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz µV V 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, f = 1 kHz, kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 4 V, RL = 2 kΩ, AVD = −1, 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz fm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 56 56 fA/√Hz Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2074-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLE2074-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current VIC = 0, RS = 50 Ω −1.6 Full range VO = 0, Full range IIB VICR Common-mode Common mode input voltage range Maximum positive peak output voltage swing IO = −2 2 mA IO = −20 20 mA IO = 200 µA A VOM − Maximum negative peak output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal differential Large-signal voltage amplification VO = ±10 V RL = 2 kΩ RL = 10 kΩ ri † Input resistance VIC = 0 Common mode ci Input capacitance zo Open-loop output impedance Differential 0 VIC = 0, See Figure 5 15 to Full range 15 to −10.8 25°C 13.8 Full range 13.6 25°C 13.5 Full range 13.3 25°C 11.5 Full range 11.4 25°C −13.8 Full range −13.6 25°C −13.5 Full range −13.3 25°C −11.5 Full range −11.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 25 175 15 100 pA 20 nA 25 175 pA 60 nA 15 to −11 15 to −11.9 V 15 to −10.8 14.1 13.8 14.1 13.6 13.9 13.5 13.9 V 13.3 12.3 11.5 −14.2 −13.8 12.3 11.4 −14.2 −13.6 −14 −13.5 −14 V −13.3 −12.4 −11.5 −12.4 −11.4 96 80 96 78 109 90 109 dB 88 118 95 118 93 25°C 2.5 2.5 25°C 82 Full range 80 80 Full range is −40°C to 125°C. POST OFFICE BOX 655303 µV/°C 7.5 78 VCC ± = ± 5 V to ±15 V, VO = 0, RS = 50 Ω 15 to −11.9 • DALLAS, TEXAS 75265 mV 30 7.5 Full range Supply-voltage Supply voltage rejection ratio (∆VCC± /∆VIO) 16 100 UNIT 10.1 25°C 80 kSVR 9 1012 25°C VIC = VICRmin, VO = 0, RS = 50 Ω 4 1012 25°C Common mode rejection ratio Common-mode −0.5 25°C f = 1 MHz CMRR MAX 60 −11 RS = 50 Ω IO = −200 200 µA A VOM + 15 Full range 25°C 25 C 7 TYP 20 25°C Input bias current MIN 10.1 Full range VO = 0, TLE2074A-Q1 MAX 11 25°C VIC = 0, See Figure 4 TYP 98 80 80 82 80 pF Ω 98 dB 78 99 Ω 99 dB TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TLE2074-Q1 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) (continued) PARAMETER ICC IOS † TEST CONDITIONS TA† 25°C Supply current ( four amplifiers ) 0 VO = 0, No load Crosstalk attenuation VIC = 0, RL = 2 kΩ Short circuit output current Short-circuit VO = 0 VID = 1 V VID = −1 V TLE2074-Q1 TYP MAX MIN TYP MAX 5.2 6.5 7.5 5.2 6.5 7.5 Full range 7.5 25°C 25°C TLE2074A-Q1 MIN 7.5 120 120 −30 −45 −30 −45 30 48 30 48 UNIT mA dB mA Full range is −40°C to 125°C. TLE2074-Q1 operating characteristics at specified free-air temperature, VCC ± = ±15 V PARAMETER SR + TEST CONDITIONS Positive slew rate VO(PP) = 10 V, RL = 2 kΩ, kΩ See Figure 1 SR − ts Vn VN(PP) † AVD = −1, CL = 100 pF, pF Negative slew rate Settling time AVD = −1, 10 V step, 10-V RL = 1 kΩ, CL = 100 pF TLE2074-Q1 MIN TYP 25°C 25 40 Full range 17 25°C 30 Full range 20 45 MIN TYP 25 40 MAX 30 45 V/µs 0.4 0.4 1.5 1.5 µss 25°C To 1 mV 25°C f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT V/µs 20 To 10 mV f = 10 kHz RS = 20 Ω, See Figure g 3 TLE2074A-Q1 MAX 17 f = 10 Hz Equivalent input noise voltage Peak to peak equivalent Peak-to-peak input p noise voltage g TA† 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz µV V 25°C In Equivalent input noise current 0, VIC = 0 f = 10 kHz 25°C 28 2.8 28 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, f = 1 kH kHz, RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity gain bandwidth Unity-gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 8 10 8 10 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 20 V, RL = 2 kΩ, AVD = −1, 1, CL = 25 pF 25°C 478 637 478 637 kHz φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 57 fA/√Hz 57 Full range is −40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 PARAMETER MEASUREMENT INFORMATION 2 kΩ 10 kΩ VCC + VCC + 2 kΩ VI − + 100 Ω VI VO − + VCC + VCC + RL † VO RL CL† † Includes fixture capacitance Figure 1. Slew-Rate Test Circuit CL† Includes fixture capacitance Figure 2. Unity-Gain Bandwidth and Phase-Margin Test Circuit 2 kΩ VCC + Ground Shield − + RS RS VCC + − + VO VO VCC − Picoammeters VCC − Figure 3. Noise-Voltage Test Circuit Figure 4. Input-Bias and OffsetCurrent Test Circuit VCC + IN − IN + Cic − + Cid Cic VO VCC − Figure 5. Internal Input Capacitance typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoampere bias current level typical of the TLE207x and TLE207xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket and a second test is performed that measures both the socket leakage and the device input bias current. The two measurements are then subtracted algebraically to determine the bias current of the device. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution 6, 7, 8 αVIO Temperature coefficient of input offset voltage Distribution 9, 10, 11 IIO Input offset current vs Free-air temperature 12, 13 IIB Input bias current vs Free-air temperature vs Total supply voltage 12, 13 14 VICR Common-mode input voltage range vs Free-air temperature VO Output voltage vs Differential input voltage VOM + Maximum positive peak output voltage vs Output current VOM − Maximum negative peak output voltage vs Output current VOM Maximum peak output voltage vs Free-air temperature vs Supply voltage VO(PP) Maximum peak-to-peak output voltage vs Frequency 23 VO Output voltage vs Settling time 24 AVD Large-signal differential voltage amplification vs Load resistance vs Free-air temperature 25 26, 27 AVD Small-signal differential voltage amplification vs Frequency 28, 29 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature 30 31 kSVR Supply-voltage rejection ratio vs Frequency vs Free-air temperature 32 33 ICC Supply current vs Supply voltage vs Free-air temperature vs Differential input voltage IOS Short-circuit output current vs Supply voltage vs Elapsed time vs Free-air temperature SR Slew rate vs Free-air temperature vs Load resistance vs Differential input voltage Vn Equivalent Input noise voltage (spectral density) vs Frequency 53 Input referred noise voltage vs Noise bandwidth Over a 10-second time interval 54 55 Third-octave spectral noise density vs Frequency bands 56 THD + N Total harmonic distortion plus noise vs Frequency B1 Unity-gain bandwidth vs Load capacitance 59 Gain-bandwidth product vs Free-air temperature vs Supply voltage 60 61 Gain margin vs Load capacitance 62 Phase margin vs Free-air temperature vs Supply voltage vs Load capacitance 63 64 65 Phase shift vs Frequency Noninverting large-signal pulse response vs Time 66 Small-signal pulse response vs Time 67 Closed-loop output impedance vs Frequency 68 Crosstalk attenuation vs Frequency 69 Vn φm zo POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 16, 17 18 19 20, 21 22 34, 35, 36 37, 38, 39 40 − 45 46 47 48 49, 50 51 52 57, 58 28, 29 19 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2072 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2071 INPUT OFFSET VOLTAGE 30 27 20 VCC = ± 15 V TA = 25°C P Package 18 16 Percentage of Units − % Percentage of Units − % 24 21 18 15 12 9 14 12 10 8 6 4 6 2 3 0 −4 600 Units Tested From One Wafer Lot VCC = ± 15 V TA = 25°C P Package − 2.4 − 0.8 0.8 2.4 0 −4 4 − 2.4 VIO − Input Offset Voltage − mV Figure 6 45 30 VCC = ± 15 V TA = 25°C N Package Percentage of Amplifiers − % Percentage of Units − % VCC = ± 15 V TA = − 55°C to 125°C P Package 27 35 30 25 20 15 10 5 24 21 18 15 12 9 6 3 − 4.8 − 1.6 1.6 4.8 8 VIO V IO − Input Offset Voltage − mV 0 − 40 − 32 − 24 −16 − 8 0 Figure 9 POST OFFICE BOX 655303 8 16 24 32 αVIO − Temperature Coefficient − µV/°C Figure 8 20 4 DISTRIBUTION OF TLE2071 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 40 0 −8 2.4 0.8 Figure 7 DISTRIBUTION OF TLE2074 INPUT OFFSET VOLTAGE 50 − 0.8 VIO V IO − Input Offset Voltage − mV • DALLAS, TEXAS 75265 40 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2074 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLE2072 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 27 Percentage of Amplifiers − % 24 30 310 Amplifiers VCC = ± 15 V TA = − 55°C to 125°C P Package 27 Percentage of Amplifiers − % 30 21 18 15 12 9 6 VCC = ± 15 V TA = − 55°C to 125°C N Package 24 21 18 15 12 9 6 3 3 0 − 30 − 24 −18 −12 − 6 0 6 12 18 24 0 − 40 − 32 − 24 −16 − 8 30 100 VCC ± = ± 5 V VIC = 0 VO = 0 1 IIB IIO 0.1 0.01 45 65 85 105 125 TA − Free-Air Temperature − °C 32 40 100 10 VCC ± = ± 15 V VIC = 0 VO = 0 IIB 1 0.1 IIO 0.01 0.001 −75 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 12 † 24 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT† vs FREE-AIR TEMPERATURE I IO − Input Bias and Offset Currents − nA IIIB IB and IIO I IO − Input Bias and Offset Currents − nA IIIB IB and IIO INPUT BIAS CURRENT AND INPUT OFFSET CURRENT† vs FREE-AIR TEMPERATURE 25 16 Figure 11 Figure 10 0.001 −75 −55 −35 −15 −5 8 αVIO − Temperature Coefficient − µV/°C αVIO − Temperature Coefficient − µV/°C 10 0 Figure 13 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS COMMON-MODE INPUT VOLTAGE RANGE† vs FREE-AIR TEMPERATURE INPUT BIAS CURRENT vs TOTAL SUPPLY VOLTAGE 10 6 VCC + + 0.5 IIIB IB − Input Bias Current − pA 10 5 VVIC ICR − Common-Mode Input Voltage Range − V VICmax = VCC + TA = 125°C VICmin 10 4 10 3 10 2 TA = 25°C 10 1 TA = − 55°C 10 0 0 5 10 15 20 25 30 35 40 45 RS = 50 Ω VCC + VICmax VCC + − 0.5 VCC − + 3.5 VICmin VCC − + 3 VCC − + 2.5 VCC − + 2 − 75 −55 −35 −15 Figure 14 VO − Output voltage − V VO VO − Output voltage − V VO RL = 600 Ω RL = 2 kΩ RL = 10 kΩ 0 RL = 10 kΩ − 100 RL = 2 kΩ − 200 85 105 12 − 2 − 10 200 RL = 600 Ω RL = 2 kΩ 100 0 RL = 10 kΩ RL = 10 kΩ − 100 RL = 2 kΩ − 200 RL = 600 Ω RL = 600 Ω −3 VCC ± = ± 15 V VIC = 0 RS = 50 Ω TA = 25°C 300 100 − 400 −5 −4 − 300 0 1 2 3 4 5 − 400 − 15 − 10 VID − Differential Input Voltage − µV −5 0 5 10 VID − Differential Input Voltage − µV Figure 16 22 65 400 VCC ± = ± 5 V VIC = 0 RS = 50 Ω TA = 25°C − 300 † 45 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 400 200 25 Figure 15 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 300 5 TA − Free-Air Temperature − °C VCC − Total Supply Voltage (referred to VCC − ) − V Figure 17 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS 15 13.5 12 TA = − 55°C 10.5 9 7.5 TA = 25°C 6 TA = 125°C 4.5 TA = 85°C 3 1.5 VCC ± = ± 15 V 0 0 − 5 −10 −15 − 20 − 25 − 30 − 35 − 40 − 45 − 50 MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT V OM − − Maximum Negative Peak Output Voltage − V VVOM OM+ − Maximum Positive Peak Output Voltage − V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT −15 −13.5 TA = − 55°C −12 −10.5 TA = 25°C −9 −7.5 −6 TA = 85°C − 4.5 TA = 125°C −3 −1.5 VCC ± = ± 15 V 0 0 5 10 IO − Output Current − mA 15 Figure 18 | V OM| − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V V OM IO = − 2 mA 3 IO = − 20 mA 1 0 VCC ± = ± 5 V −1 IO = 20 mA −2 −3 IO = 2 mA −4 −5 −75 −55 −35 −15 IO = 200 µA 5 25 45 65 85 105 125 14.5 35 40 45 50 IO = 200 µA IO = − 200 µA 14 IO = 2 mA 13.5 IO = − 2 mA 13 IO = 20 mA 12.5 IO = − 20 mA 12 11.5 11 10.5 VCC ± = ± 15 V 10 −75 −55 −35 −15 TA − Free-Air Temperature − °C 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 20 † 30 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE 15 IO = − 200 µA 4 2 25 Figure 19 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE 5 20 IO − Output Current − mA Figure 21 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE† vs FREQUENCY 25 VOM VOM − Maximum Peak Output Voltage − V TA = 25°C 20 IO = − 200 µA 15 IO = − 2 mA 10 5 IO = − 20 mA 0 IO = 20 mA −5 −10 IO = 2 mA IO = 200 µA −15 − 20 − 25 0 2.5 5 10 12.5 15 17.5 20 22.5 25 7.5 V VO(PP) O(PP) − Maximum Peak-to-Peak Output Voltage − V MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 30 VCC ± = ± 15 V 25 20 TA = − 55°C 15 10 TA = 25°C, 125°C VCC ± = ± 5 V 5 TA = − 55°C 0 100 k 1M f − Frequency − Hz |VCC ± | − Supply Voltage − V Figure 22 10 M Figure 23 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE OUTPUT VOLTAGE vs SETTLING TIME 125 12.5 10 10 mV 120 AVD A VD − Large-Signal Differential Voltage Amplification − dB 1 mV 7.5 VO VO − Output Voltage − V RL = 2 kΩ TA = 25°C, 125°C 5 2.5 VCC ± = ± 15 V RL = 1 kΩ CL = 100 pF AV = − 1 TA = 25°C Rising 0 Falling − 2.5 −5 1 mV − 7.5 10 mV VIC = 0 RS = 50 Ω TA = 25°C 115 110 VCC ± = ± 15 V 105 VCC ± = ± 5 V 100 95 − 10 − 12.5 0 0.5 1 1.5 2 90 0.1 ts − Settling Time − µs 24 10 Figure 25 Figure 24 † 1 RL − Load Resistance − kΩ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 110 AVD A VD − Large-Signal Differential Voltage Amplification − dB 107 RL = 10 kΩ 104 101 RL = 2 kΩ 98 95 92 RL = 600 Ω 89 86 VCC ± = ± 5 V VO = ± 2.3 V 83 80 −75 − 55 − 35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 125 AVD A VD − Large-Signal Differential Voltage Amplification − dB 121 VCC ± = ± 15 V VO = ± 10 V RL = 10 kΩ 117 113 RL = 2 kΩ 109 105 101 97 RL = 600 Ω 93 89 85 −75 − 55 − 35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 27 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS SMALL-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 140 0° VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C Gain 100 20° 40° 80 60° Phase Shift 60 80° 40 100° 20 120° 0 140° − 20 160° Phase Shift AAVD VD − Small-Signal Differential Voltage Amplification − dB 120 180° − 40 1 10 100 1k 10 k 100 k 1 M 10 M 100 M f − Frequency − Hz Figure 28 SMALL-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 30 80° Phase Shift CL = 25 pF 10 120° Gain 0 140° CL = 100 pF VCC ± = ± 15 V VIC = 0 RL = 2 kΩ TA = 25°C − 10 CL = 25 pF 160° − 20 1 4 10 40 f − Frequency − MHz Figure 29 26 100° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 180° 100 Phase Shift AAVD VD − Small-Signal Differential Voltage Amplification − dB CL = 100 pF 20 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO† vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO vs FREQUENCY 100 CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rejection Ratio − dB 100 VCC ± = ± 15 V 90 80 VCC ± = ± 5 V 70 60 50 40 30 VIC = 0 VO = 0 RS = 50 Ω TA = 25°C 20 10 100 1k 10 k 100 k 1M VCC ± = ± 15 V 94 91 88 VCC ± = ± 5 V 85 82 79 76 73 VIC = VICRmin VO = 0 RS = 50 Ω 70 −75 − 55 − 35 −15 0 10 97 10 M Figure 30 kXXXX SVR − Supply-Voltage Rejection Ratio − dB kXXXX SVR − Supply-Voltage Rejection Ratio − dB kSVR + 80 60 kSVR − 40 ∆ VCC ± = ± 5 V to ± 15 V VIC = 0 VO = 0 RS = 50 Ω TA = 25°C 100 1k 10 k 100 k 1M 10 M 114 85 105 125 kSVR + 108 102 96 90 kSVR − 84 78 72 66 ∆ VCC ± = ± 5 V to ± 15 V VIC = 0 VO = 0 RS = 50 Ω 60 −75 − 55 − 35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C f − Frequency − Hz Figure 32 † 65 120 100 − 20 10 45 SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE 120 0 25 Figure 31 SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 20 5 TA − Free-Air Temperature − °C f − Frequency − Hz Figure 33 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS TLE2072 SUPPLY CURRENT vs SUPPLY VOLTAGE TLE2071 SUPPLY CURRENT vs SUPPLY VOLTAGE 4 4 VIC = 0 VO = 0 No Load 3.6 3.6 2.8 IICC CC − Supply Current − mA 3.2 IICC CC − Supply Current − mA VIC = 0 VO = 0 No Load 3.8 TA = 25°C 2.4 TA = 125°C 2 1.6 TA = − 55°C 1.2 3.4 TA = 125°C 3.2 3 TA = 25°C 2.8 2.6 0.8 2.4 0.4 2.2 TA = − 55°C 2 0 0 2 4 6 8 10 12 14 16 18 0 20 2.5 5 |VCC ±| − Supply Voltage − V 10 12.5 15 17.5 20 22.5 25 Figure 35 Figure 34 TLE2071 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE TLE2074 SUPPLY CURRENT vs SUPPLY VOLTAGE 4 10 VIC = 0 VO = 0 No Load 3.6 TA = 125°C 6 TA = 25°C TA = − 55°C VIC = 0 VO = 0 No Load 3.2 IICC CC − Supply Current − mA 8 IICC CC − Supply Current − mA 7.5 |VCC ±| − Supply Voltage − V 4 2.8 2.4 VCC ± = ± 15 V 2 1.6 VCC ± = ± 5 V 1.2 0.8 2 0.4 0 0 2 4 6 8 10 12 14 16 18 20 0 −75 − 55 − 35 −15 Figure 36 28 25 45 65 85 105 125 TA − Free-Air Temperature − °C |VCC ±| − Supply Voltage − V † 5 Figure 37 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS TLE2072 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE TLE2074 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE 10 3.5 3.4 VIC = 0 VO = 0 No Load VIC = 0 VO = 0 No Load 9 3.2 IICC CC − Supply Current − mA IICC CC − Supply Current − mA 3.3 VCC ± = ± 15 V 3.1 3 VCC ± = ± 5 V 2.9 2.8 8 7 VCC ± = ± 15 V VCC ± = ± 5 V 6 2.7 2.6 2.5 −75 −55 −35 −15 5 25 45 65 5 − 75 − 55 − 35 − 15 85 105 125 TA − Free-Air Temperature − °C Figure 38 65 85 105 125 14 VCC + = 5 V VCC − = 0 VIC = 4.5 V TA = 25°C Open Loop No Load 8 VCC + = 5 V VCC − = 0 VIC = 4.5 V TA = 25°C Open Loop No Load 12 IICC CC − Supply Current − mA 10 IICC CC − Supply Current − mA 45 TLE2072 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE 12 6 4 2 10 8 6 4 2 − 0.25 0 0.25 0.5 0 − 0.5 VID − Differential Input Voltage − V − 0.25 0 0.25 VID − Differential Input Voltage − V 0.5 Figure 41 Figure 40 † 25 Figure 39 TLE2071 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE 0 − 0.5 5 TA − Free-Air Temperature − °C Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS TLE2071 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE TLE2074 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE 25 20 VCC + = 5 V VCC − = 0 VIC = 4.5 V TA = 25°C Open Loop No Load IICC CC − Supply Current − mA 16 14 20 12 10 8 6 18 15 13 10 8 4 5 2 3 0 − 0.5 − 0.25 0 0.25 VID − Differential Input Voltage − V VCC ± = ± 15 V VIC = 0 TA = 25°C Open Loop No Load 23 IICC CC − Supply Current − mA 18 0 −1.5 0.5 − 0.9 Figure 42 0.3 0 0.9 1.5 Figure 43 TLE2074 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE TLE2072 SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE 40 25 15 10 VCC ± = ± 15 V VIC = 0 TA = 25°C Open Loop No Load 36 32 IICC CC − Supply Current − mA VCC ± = ± 15 V VIC = 0 TA = 25°C Open Loop No Load 20 IICC CC − Supply Current − mA − 0.3 VID − Differential Input Voltage − V 28 24 20 16 12 8 5 4 0 −1.5 −1 − 0.5 0 0.5 1 1.5 VID − Differential Input Voltage − V 0 −1.5 −1.2 − 0.9 − 0.6 − 0.3 Figure 44 30 0 0.3 Figure 45 POST OFFICE BOX 655303 0.6 0.9 VID − Differential Input Voltage − V • DALLAS, TEXAS 75265 1.2 1.5 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME 60 50 48 40 IIOS OS − Short-Circuit Output Current − mA IOS I OS − Short-Circuit Output Current − mA SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE VID = − 1 V 36 24 12 VO = 0 TA = 25°C 0 −12 − 24 VID = 1 V − 36 − 48 VID = − 1 V 30 20 10 VCC ± = ± 15 V VO = 0 TA = 25°C 0 −10 − 20 − 30 VID = 1 V − 40 − 50 − 60 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 60 |VCC ± | − Supply Voltage − V Figure 46 SLEW RATE† vs FREE-AIR TEMPERATURE 45 43 VID = − 1 V VCC ± = ± 15 V 48 32 VCC ± = ± 5 V 0 − 16 VCC ± = ± 5 V VID = 1 V − 32 VCC ± = ± 15 V − 48 − 64 41 SR − Slew Rate − V/xs V/µ s IIOS OS − Short-Circuit Output Current − mA 80 16 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF 39 SR − 37 35 SR + 33 31 29 27 VO = 0 − 80 −75 − 55 − 35 −15 5 25 45 65 85 105 125 25 −75 − 55 − 35 −15 TA − Free-Air Temperature − °C 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 48 † 180 Figure 47 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 64 120 t − Elapsed Time − s Figure 49 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS SLEW RATE† vs FREE-AIR TEMPERATURE SLEW RATE vs LOAD RESISTANCE 50 70 SR − Slew Rate − V/µ s 62 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF Rising Edge 40 30 SR − Slew Rate − V/µ s 66 58 54 50 SR − 46 SR + 42 20 VCC ± = ± 5 V VO ± = ± 2.5 V 10 0 −10 AV = − 1 CL = 100 pF TA = 25°C − 20 38 − 30 34 − 40 30 −75 − 55 − 35 −15 Falling Edge − 50 100 1k 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C EQUIVALENT INPUT NOISE VOLTAGE (SPECTRAL DENSITY) vs FREQUENCY 50 Hz AV = − 1 SR − Slew Rate − V/µ s V n − Equivalent Input Noise Voltage − nV/ Vn 40 AV = 1 Rising Edge 20 VCC ± = ± 15 V VO ± = ± 10 V (10% − 90%) CL = 100 pF TA = 25°C 10 0 −10 − 20 − 30 Falling Edge AV = − 1 − 40 − 50 0.1 AV = 1 0.4 1 4 10 45 40 VCC ± = ± 15 V VIC = 0 RS = 20 Ω TA = 25°C 35 30 25 20 15 10 5 0 10 Figure 52 32 100 1k f − Frequency − Hz VID − Differential Input Voltage − V † 100 k Figure 51 SLEW RATE vs DIFFERENTIAL INPUT VOLTAGE 30 10 k RL − Load Resistance − Ω Figure 50 50 VCC ± = ± 15 V VO ± = ± 10 V Figure 53 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 k TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS INPUT-REFERRED NOISE VOLTAGE vs NOISE BANDWIDTH 1.2 VCC ± = ± 15 V VIC = 0 RS = 20 Ω TA = 25°C 10 Vn − Input-Referred Noise Voltage − µV Vn Vn − Input-Referred Noise Voltage − µV Vn 100 INPUT-REFERRED NOISE VOLTAGE OVER A 10-SECOND TIME INTERVAL Peak-to-Peak 1 RMS 0.1 0.01 1 10 100 1k 10 k 0.9 0.6 0.3 0 − 0.3 − 0.6 0 100 k VCC ± = ± 15 V f = 0.1 to 10 Hz TA = 25°C 1 2 THIRD-OCTAVE SPECTRAL NOISE DENSITY vs FREQUENCY BANDS Start Frequency: 12.5 Hz Stop Frequency: 20 kHz VCC ± = ± 15 V VIC = 0 TA = 25°C − 90 − 95 −100 −105 −110 −115 10 15 20 25 30 5 6 7 8 9 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY THD + N − Total Harmonic Distortion + Noise − % Third-Octave Spectrial Noise Density − dB − 75 − 85 4 Figure 55 Figure 54 − 80 3 t − Time − s Noise Bandwidth − Hz 35 40 45 1 AV = 100, RL = 600 Ω 0.1 AV = 100, RL = 2 kΩ AV = 10, RL = 600 Ω 0.01 AV = 10, RL = 2 kΩ VCC ± = ± 5 V VO(PP) = 5 V TA = 25°C Filter: 10-Hz to 500-kHz Band Pass 0.001 10 Frequency Bands 100 1k 10 k 100 k f − Frequency − Hz Figure 56 Figure 57 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 1 13 Filter: 10-Hz to 500-kHz Band Pass VCC ± = ± 15 V VO(PP) = 20 V TA = 25°C 0.1 B1 B1 − Unity-Gain Bandwidth − MHz THD + N − Total Harmonic Distortion + Noise − % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY AV = 100, RL = 600 Ω AV = 100, RL = 2 kΩ 0.01 AV = 10, RL = 600 Ω AV = 10, RL = 2 kΩ 0.001 10 VCC ± = ± 15 V VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 12 11 10 9 8 7 100 1k 10 k 100 k 0 20 f − Frequency − Hz 40 Figure 58 13 f = 100 kHz VIC = 0 VO = 0 RL = 2 kΩ CL = 100 pF 12 11 VCC ± = ± 15 V 10 VCC ± = ± 5 V 9 8 7 −75 − 55 − 35 −15 Gain-Bandwidth Product − MHz Gain-Bandwidth Product − MHz 100 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 13 f = 100 kHz VIC = 0 VO = 0 RL = 2 kΩ CL = 100 pF TA = 25°C 12 11 10 9 8 7 5 25 45 65 85 105 125 0 TA − Free-Air Temperature − °C 5 10 15 20 25 |VCC VCC+± | − Supply Voltage − V Figure 60 34 80 Figure 59 GAIN-BANDWIDTH PRODUCT† vs FREE-AIR TEMPERATURE † 60 CL − Load Capacitance − pF Figure 61 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS PHASE MARGIN† vs FREE-AIR TEMPERATURE GAIN MARGIN vs LOAD CAPACITANCE 10 80° VIC = 0 VO = 0 RL = 2 kΩ 70° xm φ m − Phase Margin 8 Gain Margin − dB 90° VCC ± = ± 15 V VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 6 4 VCC ± = ± 15 V CL = 25 pF 60° VCC ± = ± 5 V 50° VCC ± = ± 15 V 40° 30° CL = 100 pF VCC ± = ± 5 V 20° 2 10° 0° −75 − 55 − 35 −15 0 0 20 40 60 80 100 Figure 62 80° 80° 70° 70° CL = 25 pF xm φ m − Phase Margin xm φ m − Phase Margin 90° 50° CL = 100 pF 40° 30° VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 85 105 125 60° VCC ± = ± 15 V 50° VCC ± = ± 5 V 40° 30° VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 20° 10° 0° 0° 0 4 8 12 16 20 0 20 |VCC ±| − Supply Voltage − V 40 60 80 100 CL − Load Capacitance − pF Figure 64 † 65 PHASE MARGIN vs LOAD CAPACITANCE 90° 10° 45 Figure 63 PHASE MARGIN vs SUPPLY VOLTAGE 20° 25 TA − Free-Air Temperature − °C CL − Load Capacitance − pF 60° 5 Figure 65 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS NONINVERTING LARGE-SIGNAL PULSE RESPONSE† SMALL-SIGNAL PULSE RESPONSE 100 15 TA = 25°C, 125°C VO VO − Output Voltage − mV VO VO − Output Voltage − V 10 TA = − 55°C 5 TA = − 55°C 0 TA = 25°C, 125°C −5 VCC ± = ± 15 V AV = 1 RL = 2 kΩ CL = 100 pF − 10 − 15 50 0 VCC ± = ± 15 V AV = − 1 RL = 2 kΩ CL = 100 pF TA = 25°C − 50 −100 0 1 2 3 t − Time − µs 4 5 0 Figure 66 TLE2072 AND TLE2074 CROSSTALK ATTENUATION vs FREQUENCY 140 VCC ± = ± 15 V TA = 25°C 120 10 1 Crosstalk Attenuation − dB Ω zo − Closed-Loop Output Impedance − X zo 100 AV = 100 0.1 AV = 10 0.01 AV = 1 100 80 60 40 0.001 10 100 1k 10 k 100 k 1M 10 M VCC ± = ± 15 V VIC = 0 RL = 2 kΩ TA = 25°C 20 10 100 1k 10 k 100 k f − Frequency − Hz f − Frequency − Hz Figure 69 Figure 68 36 1.6 Figure 67 CLOSED-LOOP OUTPUT IMPEDANCE vs FREQUENCY † 1.2 0.4 0.8 t − Time − µs Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 APPLICATION INFORMATION input characteristics The TLE207x, TLE207xA, and TLE207xB are specified with a minimum and a maximum input voltage that if exceeded at either input could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TLE207x, TLE207xA, and TLE207xB are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 70). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. + VI VI VO + + VO − − R1 R2 VO VI − R3 R4 Where R3 + R2 R1 R4 Figure 70. Use of Guard Rings TLE2071 input offset voltage nulling The TLE2071 series offers external null pins that can be used to further reduce the input offset voltage. The circuit of Figure 71 can be connected as shown if the feature is desired. When external nulling is not needed, the null pins may be left unconnected. IN − − OUT IN + N2 + N1 100 kΩ 5 kΩ VCC − Figure 71. Input Offset Voltage Nulling POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TLE207x-Q1, TLE207xA-Q1 EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT OPERATIONAL AMPLIFIERS  SGLS226A − DECEMBER 2003 − REVISED AUGUST 2004 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice Parts  model generation software. The Boyle macromodel (see Note 4) and subcircuit Figure 72 were generated using the TLE207x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G.R. Boyle, B.M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + EGND + 9 RSS + ISS 92 FB 10 IN − J1 DP VC J2 IN+ 11 R2 − 53 C2 6 DC 12 HLIM − + VCC − 54 4 − − − + + GCM GA − RO1 DE 5 + VE OUT .SUBCKT TLE2074 1 2 3 4 5 C1 11 12 2.2E−12 C2 6 7 10.00E−12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP VLN 0 + 5.607E6 −6E6 6E6 6E6 −6E6 GA 6 0 11 12 333.0E−6 GCM 0 6 10 99 7.43E−9 ISS 3 10 DC 400.0E−6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 4 11 3.003E3 RD2 4 12 3.003E3 R01 8 5 80 R02 7 99 80 RP 3 4 27.30E3 RSS 10 99 500.0E3 VB 9 0 DC 0 VC 3 53 DC 2.20 VE 54 4 DC 2.20 VLIM 7 8 DC 0 VLP 91 0 DC 45 VLN 0 92 DC 45 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=15.00E−12 BETA=554.5E−6 + VTO=−.6) .ENDS Figure 72. Boyle Macromodel and Subcircut PSpice and Parts are trademarks of MicroSim Corporation. 38 − VLIM 8 RD2 91 + VLP 7 C1 RD1 + DLP 90 RO2 VB RP 2 1 − DLN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VLN PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLE2071AQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2071AQ TLE2071AQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2071AQ TLE2072AQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2072AQ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLE2072QDRQ1 价格&库存

很抱歉,暂时无法提供与“TLE2072QDRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货