0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE2227CDW

TLE2227CDW

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16_300MIL

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
TLE2227CDW 数据手册
TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 D D D D P PACKAGE (TOP VIEW) Outstanding Combination of DC Precision and AC Performance: Unity-Gain Bandwidth . . . 15 MHz Typ Vn . . . 3.3 nV/√Hz at f = 10 Hz Typ, 2.5 nV/√Hz at f = 1 kHz Typ VIO . . . 100 µV Typ AVD . . . 45 V/µV Typ With RL = 2 kΩ 38 V/µV Typ With RL = 1 kΩ Available in 16-Pin Small-Outline Wide-Body Package Macromodels and Statistical Information Included Output Features Saturation Recovery Circuitry 1OUT 1IN – 1IN + VCC – 1 8 2 7 3 6 4 5 VCC + 2OUT 2IN – 2IN + DW PACKAGE (TOP VIEW) NC NC 1OUT 1IN – 1IN + VCC – NC NC description The TLE22x7C combines innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in dual operational amplifiers. This device allows upgrades to systems that use lower-precision devices and is manufactured using Texas Instruments state-of-the-art Excalibur process. 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 NC NC VCC + 2OUT 2IN – 2IN + NC NC NC – No internal connection In the area of dc precision, the TLE22x7C offers a typical offset voltage of 100 µV, a common-mode rejection ratio of 115 dB (typ), a supply voltage rejection ratio of 120 dB (typ), and a dc gain of 45 V/µV (typ). The ac performance is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and 1 kHz, respectively. The TLE22x7C is available in a wide variety of packages, including the industry standard 16-pin small-outline wide-body version for high-density system applications. This device is characterized for operation from 0°C to 70°C. AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C VIOtyp AT 25°C SMALL OUTLINE† (DW) PLASTIC DIP (P) 100 µV TLE2227CDW TLE2227CP 100 µV TLE2237CDW TLE2237CP CHIP FORM‡ (Y) TLE2227Y TLE2237Y † The DW package is available taped and reeled. Add R suffix to device type (e.g., TLE2227CDWR). ‡ Chip forms are tested at 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 symbol (each amplifier) IN + + IN – – OUT TLE2227Y chip information This chip, properly assembled, displays characteristics similar to the TLE2227C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips my be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) (5) (8) 1IN + (3) (2) 1IN – 116 (4) 2OUT (7) VCC+ (8) + (1) 1OUT – + – (5) (6) (4) VCC– CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 × 4 MINIMUM TJmax = 150°C (1) (2) (3) TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. 104 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2IN + 2IN – TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TLE2237Y chip information ThIs chip, when properly assembled, displays characteristics similar to TLE2237. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) VCC + (8) (5) (8) 1IN + (3) (2) 1IN – 2OUT (7) + (1) 1OUT – + – (4) 116 (5) (6) 2IN + 2IN – (4) VCC – CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. (1) (2) (3) ALL DIMENSIONS ARE IN MILS. 104 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 Q2 Q10 R1 R4 R2 R5 Q42 Q1 Q59 Q32 Q17 Q39 R17 Q25 Q28 Q8 Q57 OUT Q37 C3 Q7 IN – Q44 R22 Q43 R13 C2 Q56 Q38 R16 R11 Q19 Q12 Q55 R21 Q14 R8 Q4 Q52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q48 Q47 C4 Q50 Q62 Q18 Q23 Q53 Q34 Q24 Q41 Q20 Q33 Q54 Q21 Q15 Q51 Q26 Q29 Q22 R6 Q45 R7 R10 R12 R24 R14 R19 R18 VCC – ACTUAL DEVICE COMPONENT COUNT COMPONENT Q60 R23 Q40 Q35 Q31 Q16 R3 Q61 Q30 Q6 IN + Q58 Q46 Q36 Q13 Q11 R25 Q49 Q27 C1 Q9 Q3 R20 R15 TLE2227 TLE2237 Transistors 62 62 Resistors 24 24 Diodes 0 0 Capacitors 4 4 R26 Template Release Date: 7–11–94 R9 Q5 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS VCC + SLOS184 – FEBRUARY 1997 4 equivalent schematic (each amplifier) TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V Supply voltage, VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1.2 V Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC ± Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately ± 1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING DW 1025 mW 8.2 mW/°C 656 mW P 1000 mW 8.0 mW/°C 640 mW recommended operating conditions Supply voltage, VCC ± MIN MAX UNIT ±4 ± 19 V ±11 TA = 25°C Common mode input voltage Common-mode voltage, VIC TA = Full range† Operating free-air temperature, TA † Full range is 0°C to 70°C. 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ±10.5 V 70 °C 5 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TEST CONDITIONS Input offset current IIB Input bias current 25°C RS = 50 Ω VIC = 0, 25°C 0.006 1 µV/mo 25°C 7.5 90 RS = 50 Ω RL = 2 kΩ Maximum negative g peak output voltage g swing zo Open-loop output impedance 15 RL = 1 kΩ – 11 to 11 12 – 10 25°C – 12 Full range – 11 2.5 RL = 2 kΩ 25°C RL = 2 kΩ Full range VO = ± 10 V V, RL = 1 kΩ 25°C Full range 3.5 25°C 98 Full range 95 CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC ± = ± 4 V to ± 18 V, VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 RS = 50 Ω Full range 92 ICC Supply current VO = 0 0, No load 25°C V – 13 V – 13.5 45 V/µV 38 1 25°C Full range V 2 25°C IO = 0 nA 11 – 10.5 Full range VO = ± 10 V, nA 10.5 25°C VO = ± 11 V, – 13 to 13 – 10.5 to 10.5 10 25°C 90 150 Full range Full range RL = 2 kΩ Input capacitance 150 Full range Maximum positive ositive peak eak out output ut voltage VOM + swing µV µV/°C 25°C ci 350 UNIT 1 25°C Common mode input voltage range Common-mode Large-signal differential voltage g g g amplification 100 Full range RL = 1 kΩ AVD MAX 0.4 Full range VOM – TYP 500 Full range 25°C VICR TLE2227C MIN Full range Input offset voltage long-term drift (see Note 4) IIO TA† 8 pF 50 Ω 115 dB 120 7.3 dB 10.6 11.2 mA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 operating characteristics at specified free-air temperature, VCC ± = ± 15 V PARAMETER TA† TEST CONDITIONS RL = 2 kΩ kΩ, CL = 100 pF RS = 20 Ω, f = 10 Hz RS = 20 Ω, f = 1 kHz TYP 25°C 1.7 2.5 Full range 1.2 SR Slew rate Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD Total harmonic distortion VO = ± 10 V, See Note 5 AVD = 1, 25°C B1 Unity-gain bandwidth RL = 2 kΩ, CL = 100 pF 25°C BOM Maximum output-swing bandwidth RL = 2 kΩ 0 1 Hz to 10 Hz f = 0.1 f = 10 Hz 25°C 25°C 25°C f = 1 kHz φm Phase margin RL = 2 kΩ CL = 100 pF † Full range is 0°C to 70°C. NOTE 5: Measured distortion of the source used in the analysis is 0.002%. POST OFFICE BOX 655303 TLE2227C MIN • DALLAS, TEXAS 75265 MAX UNIT V/ s V/µs 3.3 8 2.5 4.5 50 250 1.5 4 0.4 0.6 nV/√HZ nV pA/√HZ < 0.002% 7 13 MHz 25°C 30 kHz 25°C 40° 7 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VIC = 0 0, RS = 50 Ω 350 0.4 0.006 1 7.5 90 150 25°C 15 Full range RS = 50 Ω Common mode input voltage range Common-mode 25°C VOM + Maximum positive peak output voltage swing RL = 2 kΩ Maximum negative peak output voltage swing RL = 2 kΩ Large signal differential voltage amplification Large-signal VO = ± 11V, VO = ± 10 V, VO = ± 10 V V, – 11 to 11 12 Full range – 10 25°C – 12 Full range – 11 25°C 2.5 RL = 2 kΩ Full range Full range µV µV/°C µV/mo nA nA V V 11 – 10.5 RL = 2 kΩ RL = 1 kΩ UNIT 10.5 10 25°C – 13 to 13 – 10.5 to 10.5 25°C 25°C 90 150 Full range Full range RL = 1 kΩ 1 25°C Full range RL = 1 kΩ AVD 100 25°C Full range VOM – MAX 500 Full range 25°C VICR TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLE2237C MIN 25°C VIO IIO TA† – 13 V – 13.5 45 2 3.5 V/µV 38 1 Ci Input capacitance 25°C 8 pF zO Open-loop output impedance IO = 0 25°C 50 Ω Common mode rejection ratio Common-mode VIC = VICRmin,, RS = 50 Ω 25°C 98 Full range 95 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω Full range 92 CMRR kSVR ICC Supply voltage rejection ratio (∆VCC ± /∆VIO) Supply-voltage Supply current VO = 0 0, No load 115 dB 120 dB 25°C Full range 7.3 10.6 11.2 mA † Full range is 0°C to 70°C. NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 operating characteristics at specified free-air temperature, VCC ± = ± 15 V PARAMETER AVD = 5,, RL = 2 kΩ,, CL = 100 pF MIN TYP 25°C 4 5 Full range 3 SR Slew rate Vn Equivalent input noise voltage Vn(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD Total harmonic distortion VO = ± 10 V,, AVD = 5 V,, See Note 5 25°C GBP Gain bandwidth product Gain-bandwidth f = 100 kHz,, RL = 2 kΩ,, CL = 100 pF 25°C RS = 20 Ω, f = 10 Hz RS = 20 Ω, f = 1 kHz f = 0.1 Hz to 10 Hz f = 10 Hz 25°C 25°C 25°C f = 1 kHz BOM Maximum output-swing bandwidth RL = 2 kΩ φm Phase margin RL = 2 kΩ , CL = 100 pF † Full range is 0°C to 70°C. NOTE 5. Measured distortion of the source used in the analysis was 0.002%. POST OFFICE BOX 655303 TLE2237C TA† TEST CONDITIONS • DALLAS, TEXAS 75265 MAX UNIT V/µs 3.3 8 2.5 4.5 50 250 1.5 4 0.4 0.6 nV/√Hz nV pA/√Hz < 0.002% 0 002% 35 50 MHz 25°C 80 kHz 25°C 40° 9 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS Input offset voltage Input offset voltage long-term drift (see Note 4) IIO IIB TLE2227Y MIN Input offset current RS = 50 Ω VIC = 0 0, Input bias current VICR Common-mode input voltage range VOM + Maximum positive peak output voltage swing VOM – Maximum negative peak output voltage swing AVD Large signal differential voltage amplification Large-signal ci zo Input capacitance CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (∆VCC ± / ∆VIO) Open-loop output impedance TYP MAX 350 1 µV/mo 7.5 90 nA 15 90 nA RS = 50 Ω RL = 1 kΩ 10.5 RL = 2 kΩ 12 RL = 1 kΩ – 10.5 – 13 RL = 2 kΩ – 12 – 13.5 RL = 2 kΩ 2.5 45 RL = 1 kΩ 3.5 38 IO = 0 VIC = VICRmin, VCC ± = ± 4 V to ± 18 V, VO = 0, µV 100 0.006 – 11 to 11 VO = ± 11 V, VO = ± 10 V, UNIT – 13 to 13 V V V V/µV 8 pF 50 Ω RS = 50 Ω 98 115 dB RS = 50 Ω 94 120 dB ICC Supply current No load 7.3 10.6 mA NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. operating characteristics, VCC± = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS SR Slew rate Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak 2.5 RS = 20 Ω, f = 10 Hz 3.3 8 RS = 20 Ω, f = 1 kHz 2.5 4.5 0 1 Hz to 10 Hz f = 0.1 50 250 f = 10 Hz 1.5 4 f = 1 kHz 0.4 0.6 THD Total harmonic distortion VO = ± 10 V, See Note 5 AVD = 1, B1 Unity-gain bandwidth RL = 2 kΩ, CL = 100 pF BOM Maximum output-swing bandwidth RL = 2 kΩ Phase margin RL = 2 kΩ CL = 100 pF Measured distortion of the source used in the analysis is 0.002%. POST OFFICE BOX 655303 1.7 MAX CL = 100 pF Equivalent input noise current 10 TYP RL = 2 kΩ, In φm NOTE 5 TLE2227Y MIN • DALLAS, TEXAS 75265 UNIT V/µs nV/√HZ nV pA/√HZ < 0.002% 7 13 MHz 30 kHz 40° TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 electrical characteristics at specified free-air temperature VCC ± = ±15 V (unless otherwise noted) PARAMETER VIO TEST CONDITIONS Input offset voltage Input offset voltage long-term drift (see Note 4) IIO IIB TLE2237Y MIN Input offset current RS = 50 Ω VIC = 0 0, Input bias current VICR Common-mode input voltage range VOM + Maximum positive peak output voltage swing VOM – Maximum negative peak output voltage swing AVD Large signal differential voltage amplification Large-signal Ci Input capacitance zO Open-loop output impedance CMRR Common-mode rejection ratio TYP MAX 100 350 1 µV/mo 7.5 90 nA 15 90 nA RS = 50 Ω RL = 1 kΩ 10.5 RL = 2 kΩ 12 RL = 1 kΩ – 10.5 – 13 RL = 2 kΩ – 12 – 13.5 RL = 2 kΩ 2.5 45 RL = 1 kΩ 3.5 38 – 13 to 13 V V V V/µV 8 IO = 0 VIC = VICRmin, RS = 50 Ω 98 µV 0.006 – 11 to 11 VO = ± 11 V, VO = ± 10 V, UNIT pF 50 Ω 115 dB Supply-voltage rejection ratio (∆VCC ± / ∆VIO) VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 94 120 dB ICC Supply current VO = 0, No load 7.3 10.6 mA NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. kSVR operating characteristics at specified free-air temperature VCC ± = ±15 V PARAMETER SR TEST CONDITIONS Slew rate Vn Equivalent input noise voltage Vn(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD Total harmonic distortion B1 BOM Unity-gain bandwidth TLE2237Y MIN MAX RL = 2 kΩ, CL = 100 pF RS = 20 Ω, f = 10 Hz 3.3 8 RS = 20 Ω, f = 1 kHz 2.5 4.5 f = 0.1 Hz to 10 Hz 50 250 f = 10 Hz 1.5 4 f = 1 kHz 0.4 0.6 VO = ± 10 V, RL = 2 kΩ, Maximum output-swing bandwidth RL = 2 kΩ φm Phase margin RL = 2 kΩ , NOTE 5. Measured distortion of the source used in the analysis is 0.002%. POST OFFICE BOX 655303 AVD = 1, See Note 5 CL = 100 pF CL = 100 pF • DALLAS, TEXAS 75265 4 TYP 5 UNIT V/µs nV/√Hz nV pA/√Hz < 0.002% 35 50 MHz 80 kHz 40° 11 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION 2 kΩ 4 kΩ 15 V 15 V – – VO VO VI + + – 15 V 4 kΩ CL = 100 pF (see Note A) – 15 V 20 Ω 20 Ω NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit 10 kΩ 100 Ω VI 15 V 15 V – – VO VO VI + – 15 V CL = 100 pF (see Note A) 2 kΩ NOTE A: CL includes fixture capacitance. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit 12 + POST OFFICE BOX 655303 – 15 V 2 kΩ CL = 100 pF (see Note A) NOTE A: CL includes fixture capacitance. Figure 4. Small-Signal PulseResponse Test Circuit • DALLAS, TEXAS 75265 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO ∆VIO Input offset voltage Distribution Input offset voltage change vs Time after power on 6, 7 IIO Input offset current vs Free-air temperature 8 IIB Input bias current vs Common-mode input voltage vs Free-air temperature 9 10 II VO(PP) Input current vs Differential input voltage 11 Maximum peak-to-peak output voltage vs Frequency 12 VOM Maximum peak positive output voltage vs Load resistance vs Free-air temperature 13 15 VOM Maximum peak negative output voltage vs Load resistance vs Free-air temperature 14 16 AVD Large-signal differential voltage amplification vs Supply voltage vs Load resistance vs Frequency vs Free-air temperature 17 19 18, 20, 21 22 zo Output impedance vs Frequency 23 CMRR Common-mode rejection ratio vs Frequency 24 kSVR Supply-voltage rejection ratio vs Frequency IOS Short-circuit output current vs Supply voltage vs Elasped time vs Free-air temperature 26, 27 28, 29 30, 31 ICC Supply current vs Supply voltage vs Free-air temperature 32 33 Voltage-follower small-signal pulse response vs Time 34, 35 Voltage-follower large-signal pulse response vs Time 36, 37 Equivalent input noise voltage vs Frequency 38 Noise voltage (referred to input) Over 10-second interval 39 B1 Unity-gain bandwidth vs Supply voltage vs Load capacitance 40, 41 42, 43 SR Slew rate vs Free-air temperature 44, 45 Phase margin vs Supply voltage vs Load capacitance 46 47, 48 Phase shift vs Frequency Vn φm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 25 18, 20, 21 13 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON DISTRIBUTION OF INPUT OFFSET VOLTAGE Percentage of Amplifiers – % 14 12 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 1568 Amplifiers Tested From 2 Wafer Lots VCC ± = ± 15 V TA = 25°C DW Package 10 8 6 4 2 0 –120 – 90 – 60 – 30 0 30 60 VIO – Input Offset Voltage – µV 90 12 XVIO ∆V IO – Change In Input Offset Voltage – uV µV 16 10 8 6 VCC ± = ± 15 V TA = 25°C DW Package Sample Size = 50 Units 2 0 120 ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ 4 0 10 20 Figure 5 3 ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ VCC ± = ± 15 V TA = 25°C P Package Sample Size = 50 Units From 2 Wafer Lots 20 40 60 80 100 120 140 t – Time After Power On – s 160 180 IIIO IO – Input Offset Current – nA XVIO V ∆V IO – Change In Input Offset Voltage – µuV 4 0 VCC ± = ± 15 V VIC = 0 16 12 8 4 0 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C Figure 8 Figure 7 14 60 ÎÎÎÎÎÎ ÎÎÎÎÎÎ 20 5 0 50 INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 6 1 40 Figure 6 INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON 2 30 t – Time After Power On – s POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 70 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE ÎÎÎÎÎÎ ÎÎÎÎÎÎ 40 VCC ± = ± 15 V TA = 25°C 16 IIB I IB – Input Bias Current – nA IIB I IB – Input Bias Current – nA 35 20 30 25 20 15 10 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V VIC = 0 12 8 4 0 –4 5 –8 0 – 12 –8 –4 0 4 8 0 12 10 20 Figure 9 0.6 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V VIC = 0 TA = 25°C 0.4 0.2 0 – 0.2 – 0.4 – 0.6 – 0.8 –1 – 1.8 – 1.2 – 0.6 0 50 60 70 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 0.6 1.2 1.8 V VO(PP) O(PP) – Maximum Peak-to-Peak Output Voltage – V IIII – Input Current – mA 0.8 40 Figure 10 INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE 1 30 TA – Free-Air Temperature – °C VIC – Common-Mode Input Voltage – V ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 30 VCC ± = ± 15 V RL = 2 kΩ TA = 25°C 25 20 15 10 5 0 10 k VID – Differential Input Voltage – V 100 k 1M 10 M f – Frequency – Hz Figure 12 Figure 11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE 14 12 10 8 6 4 2 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V TA = 25°C 0 100 1k 10 k VVOM– OM – – Maximum Negative Peak Output Voltage – V VVOM+ OM + – Maximum Positive Peak Output Voltage – V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE – 14 – 12 – 10 –8 –6 –4 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ –2 VCC ± = ± 15 V TA = 25°C 0 100 Figure 13 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 13.24 13.2 13.16 13.12 13.08 0 10 20 30 40 50 60 70 VVOM– OM – – Maximum Negative Peak Output Voltage – V VVOM+ OM + – Maximum Positive Peak Output Voltage – V MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE VCC ± = ± 15 V RL = 2 kΩ 13.28 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ – 13.4 VCC ± = ± 15 V RL = 2 kΩ – 13.45 – 13.5 – 13.55 – 13.6 – 13.65 – 13.7 – 13.75 0 10 20 30 Figure 15 Figure 16 POST OFFICE BOX 655303 40 50 TA – Free-Air Temperature – °C TA – Free-Air Temperature – °C 16 10 k Figure 14 MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 13.32 1k RL – Load Resistance – Ω RL – Load Resistance – Ω • DALLAS, TEXAS 75265 60 70 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE 50 ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ AVD AVD – Large-Signal differential Voltage Amplification – V/ µ V TA = 25°C RL = 2 kΩ 40 RL = 1 kΩ 30 20 ÁÁ ÁÁ ÁÁ 10 0 0 4 8 12 16 | VCC± | – Supply Voltage – V 20 Figure 17 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 160 ÎÎÎÎ ÎÎÎ ÎÎÎ Phase Shift 120 100° 125° AVD 100 80 150° 175° Á ÎÎÎÎÎ Á ÎÎÎÎÎ Á ÎÎÎÎÎ 60 40 200° 225° VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C 20 250° 0 0.1 Phase Shift AVD AVD – Large-Signal Differential Voltage Amplification – dB 140 75° 100 100 k f – Frequency – Hz 275° 100 M Figure 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ AVD AVD – Large-Signal differential Voltage Amplification – V/ µ V 50 ÁÁ ÁÁ ÁÁ VCC ± = ± 15 V TA = 25°C 40 30 20 10 0 100 400 1k 4k RL – Load Resistance – Ω 10 k Figure 19 6 100° 3 125° 0 150° ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎ ÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ –3 175° AVD 200° –6 Phase Shift 225° –9 –12 250° VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C –15 –18 10 20 40 f – Frequency – MHz 275° 70 Figure 20 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 300° 100 Phase Shift AVD AVD – Large-Signal Differential Voltage Amplification – dB TLE2227 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS 30 100° 25 125° 20 150° ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 15 175° AVD 10 200° Phase Shift 5 0 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C –5 – 10 4 1 10 40 f – Frequency – MHz Phase Shift AVD AVD – Large-Signal Differential Voltage Amplification – dB TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 225° 250° 275° 300° 100 Figure 21 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ÁÁ ÁÁ ÁÁ ÎÎÎÎÎ 100 VCC ± = ± 15 V 55 zzo Ω o – Output Impedance – O AVD AVD – Large-Signal Differential Voltage Amplification – V/ µ V 60 OUTPUT IMPEDANCE vs FREQUENCY 50 ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 45 RL = 2 kΩ 40 RL = 1 kΩ 35 10 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ VCC ± = ± 15 V TA = 25°C AVD = 100 1 AVD = 1 AVD = 10 0.1 0.01 30 0 10 20 30 40 50 60 70 10 100 TA – Free-Air Temperature – °C 1k 10 k 100 k 1M 10 M 100 M f – Frequency – Hz Figure 22 Figure 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREQUENCY ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 120 ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ 140 VCC ± = ± 15 V TA = 25°C kXXXX SVR – Supply-Voltage Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 140 100 80 60 40 20 VCC ± = ± 15 V TA = 25°C 120 100 kSVR – 80 60 kSVR + 40 20 0 0 10 100 1k 10 k 100 k 1 M f – Frequency – Hz 10 M 100 10 100 M 1k 100 M SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 34 IIOS OS – Short-Circuit Output Current – mA – 42 IIOS OS – Short-Circuit Output Current – mA 10 M Figure 25 Figure 24 – 40 – 38 – 36 – 34 ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ VID = 100 mV VO = 0 TA = 25°C P Package – 32 0 2 VID = – 100 mV VO = 0 TA = 25°C P Package 33 32 31 30 29 28 27 26 25 24 – 30 4 6 8 10 12 14 16 |VCC ± | – Supply Voltage – V 18 20 0 2 4 6 8 10 12 14 16 |VCC ± | – Supply Voltage – V Figure 27 Figure 26 20 10 k 100 k 1 M f – Frequency – Hz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 18 20 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME – 43 ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V VID = 100 mV VO = 0 TA = 25°C P Package 36 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA – 45 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME – 41 – 39 – 37 – 35 0 30 60 90 120 150 34 32 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ VCC ± = ± 15 V VID = – 100 mV VO = 0 TA = 25°C P Package 30 28 26 180 0 t – Time – s 30 60 Figure 28 IIOS OS – Short-Circuit Output Current – mA VCC ± = ± 15 V VID = 100 mV VO = 0 P Package – 51 150 180 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE – 49 – 47 – 45 – 43 42 IIOS OS – Short-Circuit Output Current – mA ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ – 53 120 Figure 29 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE – 55 90 t – Time – s 41 40 ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ VCC ± = ± 15 V VID = – 100 mV VO = 0 P Package 39 38 37 36 35 – 41 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C 70 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C 70 Figure 31 Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY CURRENT vs FREE-AIR TEMPERATURE ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 10 VO = 0 No Load 8 TA = 70°C VCC ± = ± 15 V VO = 0 No Load 7.8 IICC CC – Supply Current – mA 8 IICC CC – Supply Current – mA ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ TA = 25°C 6 4 2 7.6 7.4 7.2 7 0 0 2 4 6 8 10 12 14 16 |VCC ± | – Supply Voltage – V 18 6.8 20 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C Figure 32 Figure 33 TLE2227 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VV) O – Output Voltage – mV VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 4 50 0 – 50 – 100 0 200 400 600 t – Time – ns 800 1000 TLE2237 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 VV) O – Output Voltage – mV ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 100 50 0 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C – 50 – 100 0 Figure 34 22 70 100 200 t – Time – ns Figure 35 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 300 400 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2237 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE TLE2227 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 15 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 10 VV) O – Output Voltage – V VV) O – Output Voltage – V 10 ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 15 5 0 –5 5 0 –5 – 10 – 10 – 15 – 15 0 5 10 15 t – Time – µs 20 0 25 2 Figure 36 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 50 40 30 Noise Voltage – nV V Vn nV/ Hz n – Equivalent Input Noise Voltage – nV/Hz 10 NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL VCC ± = ± 15 V RS = 20 Ω TA = 25°C See Figure 2 8 8 Figure 37 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 10 4 6 t – Time – µs 6 4 20 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V f = 0.1 to 10 Hz TA = 25°C 10 0 – 10 – 20 2 – 30 – 40 0 – 50 1 10 100 1k f – Frequency – Hz 10 k 100 k 0 Figure 38 2 4 6 t – Time – s 8 10 Figure 39 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2227 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE TLE2237 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 52 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 18 B1 B1 – Unity-Gain Bandwidth – MHz B1 B1 – Unity-Gain Bandwidth – MHz 20 16 14 12 10 0 2 4 6 8 10 12 14 16 | VCC ± | – Supply Voltage – V 18 f = 100 kHZ RL = 2 kΩ CL = 100 pF TA = 25°C 51 50 49 48 20 0 2 4 6 8 10 12 14 16 | VCC ± | – Supply Voltage – V Figure 40 TLE2237 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE B1 B1 – Unity-Gain Bandwidth – MHz VCC ± = ± 15 V RL = 2 kΩ TA = 25°C See Figure 3 8 4 0 100 1000 CL – Load Capacitance – pF 10000 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 52 B1 B1 – Unity-Gain Bandwidth – MHz ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 12 VCC ± = ± 15 V RL = 2 kΩ TA = 25°C 51 50 49 48 100 Figure 42 24 20 Figure 41 TLE2227 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 16 18 1000 CL – Load Capacitance – pF Figure 43 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10000 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2227 SLEW RATE vs FREE-AIR TEMPERATURE TLE2237 SLEW RATE vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 3 2.6 2.4 2.2 2 VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF See Figure 1 7 SR – Slew Rate – V/ V/us µs SR – Slew Rate – V/ V/us µs 2.8 ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 8 VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF See Figure 1 6 5 4 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C 3 70 0 10 20 30 40 50 60 TA – Free-Air Temperature – °C Figure 45 Figure 44 TLE2227 PHASE MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs SUPPLY VOLTAGE 38° φ m – Phase Margin om 36° ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 40° RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 VCC ± = ± 15 V RL = 2 kΩ TA = 25°C See Figure 3 35° φom m – Phase Margin 40° 70 34° 32° 30° 30° 25° 20° 15° 10° 28° 5° 26° 24° 0 2 4 6 8 10 12 14 16 | VCC ± | – Supply Voltage – V 18 20 0° 100 Figure 46 1000 CL – Load Capacitance – pF 10000 Figure 47 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2237 PHASE MARGIN vs LOAD CAPACITANCE 70° φom m – Phase Margin 60° ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ± 15 V RL = 2 kΩ TA = 25°C 50° 40° 30° ÁÁ ÁÁ 20° φm 10° 0° 100 1000 CL – Load Capacitance – pF 10000 Figure 48 APPLICATION INFORMATION TLE2227 macromodel information Macromodel information provided was derived using Microsim Parts , the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 49 and Figure 50 are generated using the TLE2227C typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D NOTE 6: Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification D D D D D D Unity-gain bandwidth Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon,“Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). PSpice and Parts are trademarks of MicroSim Corporation. Macromodels, simulation models, or other models provided by TI, directly or indirectly, are not warranted by TI as fully representing all of the specification and operating characteristics of the semiconductor product to which the model relates. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 APPLICATION INFORMATION TLE2227 macromodel information (continued) 99 3 VCC + 9 rc1 1 rc2 c1 rp Q1 2 dp vc Q2 13 ree 14 re1 dln 92 fb ro2 90 vb + IN – + – + 12 11 IN + egnd cee – C2 gcm vlim 8 – 4 vin + + ga – ro1 54 de VCC – – – 7 10 lee dip vip – r2 – 6 53 dc re2 + hlim 91 + 5 + ve OUT Figure 49. Boyle Macromodel .subckt * c1 c2 dc de dlp dln dp egnd fb ga gcm iee hlim q1 q2 r2 rc1 rc2 re1 re2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends TLE2227 1 2 3 4 5 11 12 4.003E-12 6 7 20.00E-12 5 53 dx 54 5 dx 90 91 dx 92 90 dx 4 3 dx 99 0 poly(2) (3,0) (4,0) 0 7 99 poly(5) vb vc ve vlp 6 0 11 12 2.062E-3 0 6 10 99 531.3E-12 10 4 dc 56.01E-6 90 0 vlim 1K 11 2 13 qx 12 1 14 qx 6 9 100.0E3 3 11 530.5 3 12 530.5 13 10 – 393.2 14 10 – 393.2 10 99 3.571E6 8 5 25 7 99 25 3 4 8.013E3 9 0 dc 0 3 53 dc 2.400 54 4 dc 2.100 7 8 dc 0 91 0 dc 40 0 92 dc 40 dx D(Is=800.0E-18) qx NPN(Is=800.0E-18 Bf=7.000E3) .5 .5 vln 0 954.8E6 –1E9 1E9 1E9 –1E9 Figure 50. TLE2227 Macromodel Subcircuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 TLE2037 macromodel information Macromodel information provided is derived using PSpice  Parts  model generation software. The Boyle macromodel (see Note 6) and subcircuit in Figure 51 and Figure 52 are generated using the TLE2237C typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D NOTE 6. D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain bandwidth Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon,“Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 rc1 1 c1 rp rc2 Q1 2 dp vc Q2 13 ree 14 re1 dln 92 fb ro2 90 vb + IN – + – + 12 11 IN + egnd cee – C2 7 + gcm ga vlim 8 10 lee ro1 54 de VCC – 4 – – 5 + ve OUT Figure 51. Boyle Macromodel Macromodels, simulation models, or other models provided by TI, directly or indirectly, are not warranted by TI as fully representing all of the specification and operating characteristics of the semiconductor product to which the model relates. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dlp vlp – r2 – 6 53 dc re2 + hlim 91 + – – vln + TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 APPLICATION INFORMATION TLE2037 macromodel information (continued) .subckt * c1 c2 dc de dlp dln dp egnd fb ga gcm iee hlim q1 q2 r2 rc1 rc2 re1 re2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends TLE2227 1 2 3 4 5 11 12 4.003E-12 6 7 20.00E-12 5 53 dx 54 5 dx 90 91 dx 92 90 dx 4 3 dx 99 0 poly(2) (3,0) (4,0) 0 7 99 poly(5) vb vc ve vlp 6 0 11 12 2.062E-3 0 6 10 99 531.3E-12 10 4 dc 56.01E-6 90 0 vlim 1K 11 2 13 qx 12 1 14 qx 6 9 100.0E3 3 11 530.5 3 12 530.5 13 10 – 393.2 14 10 – 393.2 10 99 3.571E6 8 5 25 7 99 25 3 4 8.013E3 9 0 dc 0 3 53 dc 2.400 54 4 dc 2.100 7 8 dc 0 91 0 dc 40 0 92 dc 40 dx D(Is=800.0E-18) qx NPN(Is=800.0E-18 Bf=7.000E3) .5 .5 vln 0 954.8E6 –1E9 1E9 1E9 –1E9 Figure 52. TLE2237 Macromodel Subcircuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS SLOS184 – FEBRUARY 1997 APPLICATION INFORMATION voltage-follower applications The TLE22x7C circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. A feedback resistor is recommended to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier’s phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 53). CF = 20 to 50 pF IF ≤ 1 mA RF VCC + – VO VI + VCC – Figure 53. Voltage-Follower Circuit 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 30-Mar-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLE2227CDW OBSOLETE SOIC DW 16 TBD Call TI Call TI TLE2227CP OBSOLETE PDIP P 8 TBD Call TI Call TI TLE2237CDW OBSOLETE SOIC DW 16 TBD Call TI Call TI TLE2237CP OBSOLETE PDIP P 8 TBD Call TI Call TI TLE2237IDW OBSOLETE SOIC DW 16 TBD Call TI Call TI Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2005, Texas Instruments Incorporated
TLE2227CDW 价格&库存

很抱歉,暂时无法提供与“TLE2227CDW”相匹配的价格&库存,您可以联系我们找货

免费人工找货