0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV2422MJGB

TLV2422MJGB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    CDIP8

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
TLV2422MJGB 数据手册
TLV2422, TLV2422A, TLV2422Y Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001 D D D D D Output Swing Includes Both Supply Rails Extended Common-Mode Input Voltage Range . . . 0 V to 4.5 V (Min) With 5-V Single Supply No Phase Inversion Low Noise . . . 18 nV/√Hz Typ at f = 1 kHz Low Input Offset Voltage 950 µV Max at TA = 25°C (TLV2422A) D D D D Low Input Bias Current . . . 1 pA Typ Micropower Operation . . . 50 µA Per Channel 600-Ω Output Drive Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description Other members in the TLV2422 family are the high-power, TLV2442, and low-power, TLV2432, versions. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 VDD = 5 V VOH – High-Level Output Voltage – V The TLV2422 and TLV2422A are dual low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range for this device has been extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, the devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV2422 only requires 50 µA of supply current per channel, making it ideal for battery-powered applications. The TLV2422 also has increased output drive over previous rail-to-rail operational amplifiers and can drive 600-Ω loads for telecom applications. TA = –40°C 4 TA = 25°C 3 2 TA = 85°C 1 TA = 125°C 0 0 4 8 12 16 20 24 28 32 36 40 IOH – High-Level Output Current – mA Figure 1 The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV2422A is available with a maximum input offset voltage of 950 µV. If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright  2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2422, TLV2422A, TLV2422Y Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) TSSOP (PW) CERAMIC FLAT PACK (U) 0°C to 70°C 2.5 mV TLV2422CD — — TLV2422CPWLE — – 40°C to 85°C 950 µV µ 2.5 mV TLV2422AID TLV2422ID — — — — TLV2422AIPWLE — — — – 40°C to 125°C 950 µV µ 2.5 mV TLV2422AQD TLV2422QD — — — — — — — — – 55°C to 125°C 950 µV µ 2 mV — — TLV2422AMFK TLV2422MFK TLV2422AMJG TLV2422MJG — — TLV2422AMU TLV2422MU CHIP FORM (Y) TLV2422Y The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2422CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C. D OR JG PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD – /GND 1 8 2 7 3 6 4 5 PW PACKAGE (TOP VIEW) VDD + 2OUT 2IN – 2IN + 1OUT 1IN– 1IN + VDD – / GND 1 2 3 4 8 7 6 5 VDD + 2OUT 2IN – 2IN + NC 1OUT NC VDD+ NC FK PACKAGE (TOP VIEW) 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC 1OUT 1IN – 1IN + VDD – /GND NC VDD– /GND NC 2IN+ NC NC 1IN – NC 1IN + NC U PACKAGE (TOP VIEW) NC – No internal connection 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 10 2 9 3 8 4 7 5 6 NC VDD + 2OUT 2IN – 2IN + equivalent schematic (each amplifier) COMPONENT COUNT Q22 Q29 Q31 Q34 Q36 Transistors Diodes Resistors Capacitors VB3 69 5 26 6 Q26 Q32 VB2 VB1 VDD+ Q25 Q35 Q33 Q27 Q30 Q37 R10 D1 R9 R3 Q3 R4 R7 Q13 IN– Q1 Q6 Q4 Q8 Q15 Q10 Q18 Q20 IN+ Q7 R5 Q9 C2 VDD–/GND C1 VB3 Q11 Q16 R6 OUT C3 VB2 Q2 Q14 Q5 Q17 Q12 R1 Q21 Q19 R2 R8 VB4 SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q23 VB4 3 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS Q24 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage, VI (any input, see Note 1): C and I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D FK JG PW U 725 mW 1375 mW 1050 mW 525 mW 675 mW 5.8 mW/°C 11.0 mW/°C 8 4 mW/°C 8.4 4.2 mW/ mW/°C C 5.4 mW/°C 464 mW 880 mW 672 mW 336 mW 432 mW 377 mW 715 mW 546 mW 273 mW 350 mW 145 mW 275 mW 210 mW 105 mW 135 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD ± 2.7 Input voltage range, VI Common-mode input voltage, VIC VDD – VDD – Operating free-air temperature, TA 0 4 MAX 10 VDD + – 0.8 VDD + – 0.8 70 I SUFFIX MIN 2.7 VDD – VDD – – 40 POST OFFICE BOX 655303 MAX 10 VDD + – 0.8 VDD + – 0.8 85 Q SUFFIX MIN 2.7 VDD – VDD – – 40 • DALLAS, TEXAS 75265 MAX 10 VDD + – 0.8 VDD + – 0.8 125 M SUFFIX MIN 2.7 VDD – VDD – – 55 MAX UNIT 10 V VDD + – 0.8 VDD + – 0.8 V 125 °C V TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VOL AVD MAX 300 2000 2500 25°C to 70°C VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0 0, 25°C 0.003 25°C 0.5 25°C 1 |VIO| ≤ 5 mV mV, Common mode input voltage range Common-mode High-level output voltage IOH = – 500 µA Low-level output voltage Large-signal g g differential voltage g amplification 0 to 2.5 Full range 0 to 2.2 RS = 50 Ω IOL = 100 µA VIC = 0 0, IOL = 250 µA RL = 10 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 2 V RL = 1 MΩ‡ –0.25 to 2.75 25°C 2.97 25°C 2.75 Full range VIC = 0, 60 150 25°C µV µV/mo 60 150 Full range UNIT µV/°C 2 Full range IOH = – 100 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLV2422C MIN 25°C VIO IIO TA† pA pA V V 2.5 25°C 0.05 25°C 0.2 Full range V 0.5 25°C 6 Full range 3 10 V/mV 25°C 700 ri(d) Differential input resistance 25°C 1012 Ω ri(c) Common-mode input resistance 25°C 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.5 V,, VO = 1.5 V,, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 2.7 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 1 1.5 5V V, AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 83 dB 95 100 dB 150 175 µA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH VOL Common-mode input voltage range High-level Hi hl l output t t voltage Low-level L l l output t t voltage TEST CONDITIONS TA† TLV2422I MIN 25°C MAX 300 2000 Full range VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VIC = 0 0, 0.003 0.003 µV/mo 25°C 0.5 60 0.5 150 1 0 to 2.5 60 Full range 0 to 2.2 –0.25 to 2.75 1 2.97 25°C 2.75 0 to 2.5 –0.25 to 2.75 0.05 25°C 0.2 Full range V V 2.75 0.05 V 0.2 0.5 3 pA 2.5 25°C 6 pA 2.97 2.5 25°C 60 150 0 to 2.2 25°C Full range 60 150 150 25°C Full range IOL = 250 µA µV 25°C RS = 50 Ω IOL = 100 µA 950 1500 UNIT µV/°C 25°C IOH = – 500 µA 300 MAX 2 Full range IOH = – 100 µA TYP 2 Full range |VIO| ≤ 5 mV mV, MIN 2500 25°C to 70°C VIC = 0, VO = 0, TLV2422AI TYP 10 0.5 6 10 AVD Large signal Large-signal differential voltage amplification 25°C 700 700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 130 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.5 V,, VO = 1.5 V,, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD/∆VIO) VDD = 2.7 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 1 1.5 5V V, RL = 10 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 2 V RL = 1 MΩ‡ AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 3 83 70 V/mV 83 dB 70 95 80 95 dB 25°C Full range 80 100 150 175 100 150 175 µA † Full range is – 40°C to 85°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS VO = 1.5 1 5 V to t 3.5 3 5 V, V CL = 100 pF‡ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise ts φm MIN TYP 25°C 0.01 0.02 Full range 0.008 25°C 100 25°C 23 f = 0.1 Hz to 1 Hz 25°C 2.7 f = 0.1 Hz to 10 Hz 25°C 4 25°C 0.6 Maximum output-swing bandwidth VO(PP) = 1 V, RL = 10 kΩ‡, AV = 1, CL = 100 pF‡ To 0.1% 0 1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 10 kΩ‡, CL = 100 pF‡ ‡ RL = 10 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 fA√Hz 1.8% 25°C 46 kHz 25°C 8.3 kHz 86 8.6 01% To 0 0.01% • DALLAS, TEXAS 75265 µV 0.25% µs 25°C Gain margin † Full range for the C version is 0°C to 70°C. Full range for the I version is – 40°C to 85°C. ‡ Referenced to 2.5 V nV/√Hz 25°C AV = 10 RL = 10 kΩ‡, UNIT MAX V/µs f = 1 kHz AV = 1 Phase margin at unity gain TLV2422C, TLV2422I TLV2422AI f = 10 Hz VO = 0.5 V to 2.5 V, f = 1 kHz kHz, RL = 10 kΩ‡ f = 10 kHz, CL = 100 pF‡ Gain-bandwidth product BOM RL = 10 kΩ‡, TA† 16 25°C 62° 25°C 11 dB 7 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLV2422Q, TLV2422M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH VOL AVD Common-mode input voltage range High-level Hi hl l output t t voltage Low-level L l l output t t voltage Large-signal Large signal differential voltage amplification 25°C TYP MAX 300 2000 Full range VDD ± = ± 1.5 V, RS = 50 Ω µV/mo 25°C 0.5 RL = 10 kΩ‡ VIC = 1.5 1 5 V, V VO = 1 V to 2 V RL = 1 MΩ‡ 60 0.5 150 1 25°C 0 to 2.5 60 Full range 0 to 2.2 –0.25 to 2.75 1 0 to 2.5 –0.25 to 2.75 V 2.75 2.5 25°C 0.05 25°C 0.2 Full range 0.05 V 0.2 0.5 2 pA 2.97 2.75 Full range pA V 0 to 2.2 2.5 6 60 300 2.97 25°C 60 150 300 25°C IOL = 250 µA µV 0.003 Full range VIC = 0 0, 1800 0.003 25°C IOL = 100 µA 950 25°C RS = 50 Ω VIC = 0, 300 µV/°C 25°C IOH = – 500 µA MAX 2 Full range IOH = – 100 µA UNIT TYP 2 Full range |VIO| ≤ 5 mV mV, MIN 2500 Full range VIC = 0, VO = 0, TLV2422AQ, TLV2422AM 10 0.5 6 10 2 V/mV 25°C 700 700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 130 Ω CMRR Common-mode rejection ratio VIC = VICR min,, VO = 1.5 V,, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD/∆VIO) VDD = 2.7 V to 8 V,, VIC = VDD /2, No load IDD Supply current 5V VO = 1 1.5 V, AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C Full range 80 100 150 175 100 150 175 µA † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS VO = 1.1 1 1 V to t 1.9 1 9 V, V CL = 100 pF‡ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise BOM ts φm RL = 10 kΩ‡, TYP 0.01 0.02 Full range 0.008 25°C 100 25°C 23 f = 0.1 Hz to 1 Hz 25°C 2.7 f = 0.1 Hz to 10 Hz 25°C 4 25°C 0.6 Gain-bandwidth product f = 10 kHz, CL = 100 pF‡ RL = 10 kΩ‡, Maximum output-swing bandwidth VO(PP) = 1 V, RL = 10 kΩ‡, AV = 1, CL = 100 pF‡ 0 1% To 0.1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 10 kΩ‡, CL = 100 pF‡ ‡ RL = 10 kΩ‡, CL = 100 pF‡ UNIT MAX V/µs f = 1 kHz AV = 1 Gain margin MIN 25°C f = 10 Hz VO = 0.5 V to 2.5 V, f = 1 kHz kHz, RL = 10 kΩ‡ Phase margin at unity gain TA† TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM nV/√Hz µV fA√Hz 0.25% 25°C AV = 10 1.8% 25°C 46 kHz 25°C 8.3 kHz 86 8.6 µs 25°C To 0 0.01% 01% 16 25°C 62° 25°C 11 dB † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 1.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VOL AVD MAX 300 2000 2500 25°C to 70°C VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0 0, 25°C 0.003 25°C 0.5 25°C 1 |VIO| ≤ 5 mV mV, Common mode input voltage range Common-mode High-level output voltage Large-signal g g differential voltage g amplification Full range 0 to 4.2 25°C IOH = – 1 mA Low-level output voltage 0 to 4.5 RS = 50 Ω VIC = 2.5 V, IOL = 100 µA 5V VIC = 2 2.5 V, IOL = 500 µA RL = 10 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 1 MΩ‡ 60 150 25°C µV µV/mo 60 150 Full range UNIT µV/°C 2 Full range IOH = – 100 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLV2422C MIN 25°C VIO IIO TA† –0.25 to 4.75 pA pA V 4.97 25°C 4.5 Full range 4.25 V 4.75 25°C 0.04 25°C 0.15 Full range V 0.5 25°C 8 Full range 5 12 V/mV 25°C 1000 ri(d) Differential input resistance 25°C 1012 Ω ri(c) Common-mode input resistance 25°C 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 4.5 V,, VO = 2.5 V,, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 4.4 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 2 2.5 5V V, AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 90 dB 95 100 dB 150 175 µA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH VOL Common-mode input voltage range High-level Hi hl l output t t voltage Low-level L l l output t t voltage TA† TEST CONDITIONS TLV2422I MIN 25°C MAX 300 2000 Full range VDD ± = ± 2.5 V, RS = 50 Ω VIC = 2.5 V, VIC = 2 2.5 5V V, 0.003 0.003 µV/mo 25°C 0.5 60 0.5 150 1 60 Full range 0 to 4.2 25°C –0.25 to 4.75 1 4.5 Full range 4.25 0 to 4.5 –0.25 to 4.75 4.5 0.15 Full range 0.04 V 0.15 0.5 5 V 4.75 4.25 0.04 8 pA 4.97 4.75 25°C 25°C pA V 0 to 4.2 25°C Full range 60 150 4.97 25°C 60 150 150 0 to 4.5 RS = 50 Ω IOL = 500 µA µV 25°C 25°C IOL = 100 µA 950 1500 UNIT µV/°C 25°C IOH = – 1 mA 300 MAX 2 Full range IOH = – 100 µA TYP 2 Full range |VIO| ≤ 5 mV mV, MIN 2500 25°C to 70°C VIC = 0, VO = 0, TLV2422AI TYP 12 0.5 8 12 AVD Large signal Large-signal differential voltage amplification 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 130 Ω CMRR Common-mode rejection ratio VIC = 0 to 4.5 V,, VO = 2.5 V,, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD/∆VIO) VDD = 4.4 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 2 2.5 5V V, RL = 10 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 1 MΩ‡ AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 5 90 70 V/mV 90 dB 70 95 80 95 dB 25°C Full range 80 100 150 175 100 150 175 µA † Full range is – 40°C to 85°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR TEST CONDITIONS VO = 1 1.5 5 V to 3 3.5 5V V, CL = 100 pF F‡ Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise BOM ts φm RL = 10 kΩ‡, TYP 25°C 0.01 0.02 Full range 0 008 0.008 100 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 f = 0.1 Hz to 10 Hz 25°C 2.8 25°C 0.6 Gain-bandwidth product f = 10 kHz, CL = 100 pF‡ RL =10 kΩ‡, Maximum output-swing bandwidth VO(PP) = 2 V, RL = 10 kΩ‡, AV = 1, CL = 100 pF‡ 0 1% To 0.1% Settling time AV = – 1, Step = 1.5 V to 3.5 V,, RL = 10 kΩ‡, CL = 100 pF‡ ‡ RL = 10 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 nV/√Hz µV fA√Hz 0.24% 25°C AV = 10 1.7% 25°C 52 kHz 25°C 5.3 kHz 85 8.5 µs 25°C To 0.01% 0 01% • DALLAS, TEXAS 75265 UNIT MAX V/µs 25°C † Full range for the C version is 0°C to 70°C. Full range for the I version is – 40°C to 85°C. ‡ Referenced to 2.5 V 12 MIN f = 1 kHz AV = 1 Gain margin TLV2422C, TLV2422I TLV2422AI f = 10 Hz VO = 1.5 V to 3.5 V, f = 1 kHz kHz, RL = 10 kΩ‡ Phase margin at unity gain TA† 15 5 15.5 25°C 66° 25°C 11 dB TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLV2422Q, TLV2422M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH VOL AVD Common-mode input voltage range High-level Hi hl l output t t voltage Low-level L l l output t t voltage Large-signal Large signal differential voltage amplification 25°C TYP MAX 300 2000 Full range VDD ± = ± 2.5 V, RS = 50 Ω µV/mo 25°C 0.5 RL = 10 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 1 MΩ‡ 60 0.5 150 1 25°C 0 to 4.5 60 Full range 0 to 4.2 –0.25 to 4.75 1 0 to 4.5 –0.25 to 4.75 V 4.75 4.5 25°C 0.04 25°C 0.15 Full range 0.04 V 0.15 0.5 3 pA 4.97 4.75 Full range pA V 0 to 4.2 4.5 8 60 300 4.97 25°C 60 150 300 25°C IOL = 500 µA µV 0.003 Full range VIC = 2 2.5 5V V, 1800 0.003 25°C IOL = 100 µA 950 25°C RS = 50 Ω VIC = 2.5 V, 300 µV/°C 25°C IOH = – 1 mA MAX 2 Full range IOH = – 100 µA UNIT TYP 2 Full range |VIO| ≤ 5 mV mV, MIN 2500 Full range VIC = 0, VO = 0, TLV2422AQ, TLV2422AM 12 0.5 8 12 3 V/mV 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 130 Ω CMRR Common-mode rejection ratio VIC = VICR min,, VO = 2.5 V,, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD/∆VIO) VDD = 4.4 V to 8 V,, VIC = VDD /2, No load IDD Supply current 5V VO = 2 2.5 V, AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 90 70 90 dB 70 95 80 95 dB 25°C Full range 80 100 150 175 100 150 175 µA † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR TEST CONDITIONS VO = 1 1.5 5 V to 3 3.5 5V V, CL = 100 pF F‡ Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise RL = 10 kΩ‡, Full range 0 008 0.008 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 f = 0.1 Hz to 10 Hz 25°C 2.8 25°C 0.6 RL =10 kΩ‡, BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 10 kΩ‡, AV = 1, CL = 100 pF‡ Settling time AV = – 1, Step = 1.5 V to 3.5 V,, RL = 10 kΩ‡, CL = 100 pF‡ 0 1% To 0.1% ts ‡ RL = 10 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 nV/√Hz µV fA√Hz 0.24% 1.7% 25°C 52 kHz 25°C 5.3 kHz 85 8.5 µs 25°C To 0.01% 0 01% • DALLAS, TEXAS 75265 MAX 25°C AV = 10 † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V UNIT V/µs f = 1 kHz f = 10 kHz, CL = 100 pF‡ 14 0.02 100 Gain-bandwidth product Gain margin TYP 0.01 25°C AV = 1 Phase margin at unity gain MIN 25°C f = 10 Hz VO = 1.5 V to 3.5 V, f = 1 kHz kHz, RL = 10 kΩ‡ φm TA† TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM 15 5 15.5 25°C 66° 25°C 11 dB TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2,3 , 4,5 αVIO IIB/IIO Input offset voltage temperature coefficient Distribution 6,7 Input bias and input offset currents vs Free-air temperature VOH VOL High-level output voltage vs High-level output current 9,11 Low-level output voltage vs Low-level output current 10,12 VO(PP) Maximum peak-to-peak output voltage vs Frequency 13 IOS Short circuit output current Short-circuit vs Supplyy voltage g vs Free-air temperature 14 15 VID Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18 Large-signal differential voltage amplification Differential voltage amplification vs Frequency q y vs Free-air temperature 19,20 , 21,22 zo Output impedance vs Frequency 23,24 CMRR Common mode rejection ratio Common-mode vs Frequency q y vs Free-air temperature 25 26 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency q y vs Free-air temperature 27,28 , 29 IDD Supply current vs Supply voltage 30 SR Slew rate vs Load capacitance vs Free-air temperature 31 32 VO VO Inverting large-signal pulse response 33,34 Voltage-follower large-signal pulse response 35,36 VO VO Inverting small-signal pulse response 37,38 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period Total harmonic distortion plus noise vs Frequency Gain bandwidth product Gain-bandwidth vs Supply y voltage g vs Free-air temperature Phase margin vs Frequency q y vs Load capacitance 19,20 , 48 Gain margin vs Load capacitance 49 Unity-gain bandwidth vs Load capacitance 50 AVD THD + N φm B1 Voltage-follower small-signal pulse response POST OFFICE BOX 655303 8 39,40 • DALLAS, TEXAS 75265 41, 42 43 44,45 46 47 15 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2422 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2422 INPUT OFFSET VOLTAGE 18 20 Percentage of Amplifiers – % 16 14 Percentage of Amplifiers – % 452 Amplifiers from 1 Wafer Lot VDD = 3 V RL = 10 kΩ TA = 25°C 12 10 8 6 4 454 Amplifiers from 1 Wafer Lot VDD = 5 V RL = 10 kΩ TA = 25°C 15 10 5 2 0 0 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 –0.4 –0.3 –0.2 –0.1 0 VIO – Input Offset Voltage – mV Figure 2 Figure 3 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 2 2 VDD = 3 V VDD = 5 V 1.5 VIO – Input Offset Voltage – mV VIO – Input Offset Voltage – mV 1.5 1 0.5 0 –0.5 –1 –1.5 –2 –0.5 1 0.5 0 –0.5 –1 –1.5 0 0.5 1 1.5 2 2.5 3 VIC – Common-Mode Input Voltage – V –2 –0.5 0 0.5 1 1.5 2 2.5 Figure 5 POST OFFICE BOX 655303 3 3.5 4 4.5 VIC – Common-Mode Input Voltage – V Figure 4 16 0.1 0.2 0.3 0.4 0.5 0.6 VIO – Input Offset Voltage – mV • DALLAS, TEXAS 75265 5 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2422 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2422 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V TA = 25°C to 125°C 20 15 10 5 0 –4 32 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C to 125°C 20 Percentage of Amplifiers – % Percentage of Amplifiers – % 25 2 3 –3 –2 –1 0 1 αVIO – Temperature Coefficient – µV / °C 15 10 5 0 4 –4 2 3 –3 –2 –1 0 1 αVIO – Temperature Coefficient – µV / °C Figure 7 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT INPUT BIAS AND INPUT OFFSET CURRENTS vs FREE-AIR TEMPERATURE 3 200 VDD = ± 2.5 V VDD = 3 V VOH – High-Level Output Voltage – V I IB and I IO – Input Bias and Input Offset Currents – pA Figure 6 4 160 120 IIB 80 40 2.5 TA = 85°C 2 TA = 0°C 1.5 TA = 125°C 1 TA = 25°C 0.5 IIO 0 –55 0 –40 0 25 70 85 125 TA – Free-Air Temperature – °C 0 3 6 9 12 15 IOH – High-Level Output Current – mA Figure 8 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.6 5 VDD = 3 V VDD = 5 V VOH – High-Level Output Voltage – V VOL – Low-Level Output Voltage – V 1.4 1.2 TA = 125°C 1 TA = 85°C 0.8 0.6 0.4 TA = 25°C 0.2 TA = –40°C 4 TA = 25°C 3 2 TA = 85°C 1 TA = 125°C TA = –40°C 0 0 1 2 3 4 0 5 0 IOL – Low-Level Output Current – mA 4 12 8 Figure 10 1 TA = 125°C 0.8 TA = 85°C 0.4 TA = 25°C TA = –40°C 0 1 2 3 4 5 VO(PP) – Maximum Peak-to-Peak Output Voltage – V VOH – High-Level Output Voltage – V VDD = 5 V 0 28 32 36 40 5 RL = 10 kΩ TA = 25°C VDD = 5 V 4 3 VDD = 3 V 2 1 0 102 IOL – Low-Level Output Current – mA 103 104 f – Frequency – Hz Figure 12 18 24 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.2 0.2 20 Figure 11 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 0.6 16 IOH – High-Level Output Current – mA Figure 13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 105 106 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 8 30 VO = VDD/2 VIC = VDD/2 TA = 25°C 20 VID = –100 mV I OS – Short-Circuit Output Current – mA I OS – Short-Circuit Output Current – mA 25 15 10 5 0 –5 –10 –15 –20 –25 3 4 5 6 8 7 9 4 2 VDD = 5 V 0 –2 –4 –6 VID = 100 mV –8 –55 –30 2 6 10 –40 Figure 14 85 125 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 1000 1000 VDD = 3 V RL = 10 kΩ TA = 25°C VDD = 5 V RL = 10 kΩ TA = 25°C 800 VID – Differential Input Voltage – µV VID – Differential Input Voltage – µV 70 Figure 15 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 800 25 0 TA – Free-Air Temperature – °C VDD – Supply Voltage – V 600 400 200 0 –200 –400 –600 –800 600 400 200 0 –200 –400 –600 –800 –1000 0 0.5 1 1.5 2 2.5 3 –1000 0 VO – Output Voltage – V 1 2 3 4 5 VO – Output Voltage – V Figure 16 Figure 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS DIFFERENTIAL GAIN vs LOAD RESISTANCE 10000 Differential Gain – V/mV 1000 VID = 5 V VID = 3 V 100 10 1 10 100 1000 RL – Load Resistance – kΩ Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 50 AVD – Large-Signal Differential Voltage Amplification – dB 30 135 20 PHASE 90 10 45 0 GAIN –10 0 –20 –30 – 45 –40 –50 103 104 105 f – Frequency – Hz Figure 19 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 – 90 106 φ m – Phase Margin – ° 40 180 VDD = 3 V RL = 10 kΩ CL = 100 pF TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 60 180 VDD = 5 V RL = 10 kΩ CL = 100 pF AVD – Large-Signal Differential Voltage Amplification – dB 40 135 PHASE 30 90 20 45 10 0 GAIN –10 0 –20 φ m – Phase Margin – ° 50 – 45 –30 –40 103 104 – 90 106 105 f – Frequency – Hz Figure 20 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 10000 VDD = 3 V AVD – Differential Voltage Amplication – V/mV AVD – Differential Voltage Amplication – V/mV 10000 RL = 1 MΩ 1000 100 RL = 10 kΩ 10 1 –75 –50 –25 0 25 50 75 100 125 VDD = 5 V RL = 1 MΩ 1000 100 RL = 10 kΩ 10 1 –75 –50 TA – Free-Air Temperature – °C –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 21 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 1000 AV = 100 AV = 10 z o – Output Impedance – Ω z o – Output Impedance – Ω AV = 100 100 AV = 1 10 AV = 10 100 AV = 1 10 VDD = 3 V TA = 25°C VDD = 5 V TA = 25°C 1 102 104 103 1 102 105 f – Frequency – Hz Figure 24 COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 94 TA = 25°C CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 80 60 VDD = 5 V 40 VDD = 3 V 20 103 104 105 106 93 92 VDD = 5 V 91 90 VDD = 3 V 89 88 87 86 85 84 –55 –40 f – Frequency – Hz 0 25 70 85 TA – Free-Air Temperature – °C Figure 25 22 105 f – Frequency – Hz Figure 23 0 102 104 103 Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 120 VDD = 3 V TA = 25°C KSVR – Supply-Voltage Rejection Ratio – dB KSVR – Supply-Voltage Rejection Ratio – dB 120 100 KSVR+ 80 60 KSVR– 40 20 0 101 103 102 104 105 VDD = 5 V TA = 25°C 100 KSVR+ 80 60 KSVR– 40 20 0 101 106 103 102 f – Frequency – Hz Figure 27 105 106 Figure 28 SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 100 160 VDD = 2.7 V to 8 V VO = VDD/2 No Load 140 TA = –40°C 98 I DD – Supply Current – µ A k SVR – Supply-Voltage Rejection Ratio – dB 104 f – Frequency – Hz 96 94 TA = 25°C 120 100 TA = 85°C 80 60 40 92 20 90 –55 –40 0 25 70 85 125 0 0 1 2 TA – Free-Air Temperature – °C 3 4 5 6 7 8 9 10 VDD – Supply Voltage – V Figure 29 Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS SLEW RATE vs LOAD CAPACITANCE SLEW RATE vs FREE-AIR TEMPERATURE 0.03 0.025 30 VDD = 3 V AV = –1 TA = 25°C SR – Slew Rate – V/ms SR – Slew Rate – V/µs 25 SR– 0.02 SR+ 0.015 0.01 20 15 10 0.005 0 102 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 104 103 105 5 –55 106 –40 CL – Load Capacitance – pF 0 Figure 31 1500 3 1000 2 VO – Output Voltage – mV VO – Output Voltage – mV 4 500 0 –500 –2000 –1000 VDD = 3 V RL = 10 kΩ CL = 100 pF AV = –1 TA = 25°C –600 0 0 –1 –2 200 600 1000 –4 –1000 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = –1 TA = 25°C –600 t – Time – µs –200 0 200 t – Time – µs Figure 34 Figure 33 24 125 1 –3 –200 85 INVERTING LARGE-SIGNAL PULSE RESPONSE 2000 –1500 70 Figure 32 INVERTING LARGE-SIGNAL PULSE RESPONSE –1000 25 TA – Free-Air Temperature – °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 600 1000 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2000 1000 1500 VO – Output Voltage – mV VO – Output Voltage – mV 1500 2000 VDD = 3 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C 500 0 –500 –1000 –1500 1000 500 0 –500 –1000 –1500 –2000 –1000 –600 –200 0 200 600 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C –2000 –1000 1000 –600 –200 t – Time – µs INVERTING SMALL-SIGNAL PULSE RESPONSE 300 VO – Output Voltage – mV VO – Output Voltage – mV 1000 400 VDD = 3 V RL = 10 kΩ CL = 100 pF AV = –1 TA = 25°C 100 0 –100 –200 –300 –400 –5 600 INVERTING SMALL-SIGNAL PULSE RESPONSE 400 200 200 Figure 36 Figure 35 300 0 t – Time – µs 200 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = –1 TA = 25°C 100 0 –100 –200 –300 –4 –3 –2 –1 0 1 2 3 4 5 –400 –5 –4 t – Time – µs –3 –2 –1 0 1 2 3 4 5 t – Time – µs Figure 38 Figure 37 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 400 200 300 VO – Output Voltage – mV VO – Output Voltage – mV 300 400 VDD = 3 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C 100 0 –100 –200 –300 –400 –5 200 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C 100 0 –100 –200 –300 –4 –3 –2 –1 0 1 2 3 4 –400 –5 5 –4 –3 –2 t – Time – µs 1 2 3 4 5 Figure 40 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 120 120 VDD = 3 V TA = 25°C Vn – Equivalent Input Noise Voltage – nV/ Hz Vn – Equivalent Input Noise Voltage – nV/ Hz 0 t – Time – µs Figure 39 100 80 60 40 20 0 10 102 103 104 VDD = 5 V TA = 25°C 100 80 60 40 20 0 10 f – Frequency – Hz 102 103 f – Frequency – Hz Figure 41 26 –1 Figure 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 104 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS NOISE VOLTAGE OVER A 10-SECOND PERIOD 1000 Over a 10 Second Period 800 600 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C Noise Voltage – nV 400 200 0 –200 –400 –600 –800 –1000 –1200 0 1 2 3 4 6 5 8 7 10 9 t – Time – s Figure 43 100 VDD = 3 V RL = 10 kΩ TA = 25°C 10 1 AV = 10 AV = 1 0.1 0.01 101 102 103 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY THD +N – Total Harmonic Distortion Plus Noise – % THD +N – Total Harmonic Distortion Plus Noise – % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 104 105 100 VDD = 5 V RL = 10 kΩ TA = 25°C 10 1 AV = 10 AV = 1 0.1 0.01 0.001 101 102 103 f – Frequency – Hz f – Frequency – Hz Figure 44 Figure 45 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 104 105 27 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 80 80 RL = 10 kΩ CL = 100 pF f = 10 kHz TA = 25°C Gain-Bandwidth Product – kHz Gain-Bandwidth Product – kHz 70 VDD = 5 V RL = 10 kΩ CL = 100 pF f = 10 kHz 70 60 50 40 30 60 50 40 30 20 10 20 3 5 4 6 7 0 –50 8 0 –25 25 50 Figure 46 GAIN MARGIN vs LOAD CAPACITANCE 120 40 RL = 10 kΩ TA = 25°C Rnull = 500 100 RL = 10 kΩ TA = 25°C Rnull = 500 Rnull = 1000 30 80 Gain Margin – dB φ m – Phase Margin – ° 125 Figure 47 PHASE MARGIN vs LOAD CAPACITANCE 60 40 Rnull = 1000 Rnull = 200 20 Rnull = 100 Rnull = 200 10 Rnull = 100 20 Rnull = 0 Rnull = 0 0 10 102 103 104 105 0 10 CL – Load Capacitance – pF 102 103 Figure 49 POST OFFICE BOX 655303 104 CL – Load Capacitance – pF Figure 48 28 100 75 TA – Free-Air Temperature – °C VDD – Supply Voltage – V • DALLAS, TEXAS 75265 105 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE B1 – Unity-Gain Bandwidth – kHz 60 50 40 30 20 10 0 10 102 103 104 105 CL – Load Capacitance – pF Figure 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°– 8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. B. C. D. 30 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 MECHANICAL DATA FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 MECHANICAL DATA JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0.100 (2,54) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. 32 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 MECHANICAL DATA PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 0,15 0,05 1,20 MAX 0,10 PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / E 08/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001 MECHANICAL DATA U (S-GDFP-F10) CERAMIC DUAL FLATPACK 0.250 (6,35) 0.246 (6,10) 0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.045 (1,14) 0.026 (0,66) 0.300 (7,62) 0.350 (8,89) 0.250 (6,35) 1 0.350 (8,89) 0.250 (6,35) 10 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.250 (6,35) 5 6 0.025 (0,64) 0.005 (0,13) 1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E. 34 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 5962-9751401Q2A ACTIVE LCCC FK 20 1 TBD 5962-9751401QHA ACTIVE CFP U 10 1 TBD 5962-9751401QPA ACTIVE CDIP JG 8 1 TBD 5962-9751402Q2A ACTIVE LCCC FK 20 1 TBD 5962-9751402QHA ACTIVE CFP U 10 1 TBD 5962-9751402QPA ACTIVE CDIP JG 8 1 TLV2422AID ACTIVE SOIC D 8 75 TLV2422AIDG4 ACTIVE SOIC D 8 75 TLV2422AIDR ACTIVE SOIC D TLV2422AIDRG4 ACTIVE SOIC TLV2422AIPWLE OBSOLETE TLV2422AIPWR Lead/Ball Finish MSL Peak Temp (3) POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type A42 SNPB N / A for Pkg Type POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type TBD A42 SNPB N / A for Pkg Type Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TSSOP PW 8 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422AMFKB ACTIVE LCCC FK 20 1 TBD TLV2422AMJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type TLV2422AMUB ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type TBD Call TI Call TI POST-PLATE N / A for Pkg Type TLV2422AQD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM TLV2422AQDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TBD CU NIPDAU Level-1-220C-UNLIM CU NIPDAU Level-1-260C-UNLIM TLV2422AQDR ACTIVE SOIC D 8 2500 TLV2422AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) TLV2422CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2422IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 Orderable Device Status (1) Package Type Package Drawing TLV2422IPW OBSOLETE TSSOP PW Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) no Sb/Br) 8 TBD TLV2422IPWR OBSOLETE TSSOP PW 8 TLV2422MFKB ACTIVE LCCC FK 20 1 TBD TBD TLV2422MJGB ACTIVE CDIP JG 8 1 TBD TLV2422MUB ACTIVE CFP U 10 1 TLV2422QD ACTIVE SOIC D 8 75 TLV2422QDG4 ACTIVE SOIC D 8 TLV2422QDR ACTIVE SOIC D TLV2422QDRG4 ACTIVE SOIC D Call TI Call TI Call TI Call TI POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type TBD A42 SNPB N / A for Pkg Type TBD CU NIPDAU Level-1-220C-UNLIM 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV2422, TLV2422A, TLV2422AM, TLV2422M : • Automotive: TLV2422-Q1, TLV2422A-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel Diameter Width (mm) W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TLV2422AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2422AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLV2422CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2422CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLV2422IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV2422AIDR SOIC D 8 2500 346.0 346.0 29.0 TLV2422AIPWR TSSOP PW 8 2000 346.0 346.0 29.0 TLV2422CDR SOIC D 8 2500 346.0 346.0 29.0 TLV2422CPWR TSSOP PW 8 2000 346.0 346.0 29.0 TLV2422IDR SOIC D 8 2500 346.0 346.0 29.0 Pack Materials-Page 2 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated
TLV2422MJGB 价格&库存

很抱歉,暂时无法提供与“TLV2422MJGB”相匹配的价格&库存,您可以联系我们找货

免费人工找货