0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV2702IDGKG4

TLV2702IDGKG4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VSSOP8

  • 描述:

    Amplifier, Comparator IC Security Systems 8-VSSOP

  • 数据手册
  • 价格&库存
TLV2702IDGKG4 数据手册
TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS FEATURES D Micro-Power Operation . . . 1.4 µA D Input Common-Mode Range Exceeds the D D D D D D D D Rails . . . –0.1 V to VCC + 5 V Supply Voltage Range . . . 2.5 V to 16 V Rail-to-Rail Input/Output (Amplifier) Reverse Battery Protection Up to 18 V Gain Bandwidth Product . . . 5.5 kHz (Amplifier) Push-Pull CMOS Output Stage (Comparator) Specified Temperature Range – TA = –40°C to 125°C . . . Industrial Grade Ultrasmall Packaging – 8-Pin MSOP (TLV2702) Universal Op-Amp EVM (See the SLOU060 For More Information) The TLV270x’s low supply current is coupled with extremely low input bias currents enabling them to be used with mega-ohm resistors making them ideal for portable, long active life, applications. DC accuracy is ensured with a low typical offset voltage as low as 390µV, CMRR of 90 dB, and minimum open loop gain of 130 V/mV at 2.7 V. The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with electrical characteristics specified at 2.7 V, 5 V, and 15 V. The 2.5-V operation makes it compatible with Li-Ion battery-powered systems and many micro-power microcontrollers available today including TI’s MSP430. All members are available in PDIP and SOIC with the duals, one op-amp and one comparator, in the small MSOP package and quads, two operational amplifiers and two comparators, in the TSSOP package. APPLICATIONS D Portable Battery Monitoring D Consumer Medical Electronics D Security Detection Systems – + SUPPLY CURRENT vs SUPPLY VOLTAGE DESCRIPTION 2.5 2.25 I CC – Supply Current – µ A The TLV270x combines sub-micropower operational amplifier and comparator into a single package that produces excellent micropower signal conditioning with only 1.4 µA of supply current. This combination gives the designer more board space and reduces part counts in systems that require an operational amplifier and comparator. The low supply current makes it an ideal choice for battery powered portable applications where quiescent current is the primary concern. Reverse battery protection guards the amplifier from an over-current condition due to improper battery installation. For harsh environments, the inputs can be taken 5 V above the positive supply rail without damage to the device. 2 1.75 1.5 1.25 1 Op Amp VI = VCC/2 Comparator VID = –1 V TA = 25°C 0.75 0.5 0.25 0 0 2 4 6 8 10 12 14 16 VCC – Supply Voltage – V Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. www.ti.com 1 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 A SELECTION OF OUTPUT COMPARATORS† DEVICE VCC (V) VIO (µV) GBW (kHz) SR (V/µs) tPLH (µs) tPHL (µs) tf (µs) RAIL-TORAIL 390 ICC/Ch (µA) 1.4‡ TLV270x 2.5 – 16 TLV230x 2.5 – 16 TLV240x TLV224x OUTPUT STAGE 5.5 0.0025 56 83 8 I/O PP 390 1.4‡ 5.5 0.0025 55 30 5 I/O OD 2.5 – 16 390 880 5.5 0.0025 — — — I/O — 2.5 – 12 600 1 5.5 0.002 — — — I/O — TLV340x 2.5 – 16 250 0.47 — — 55 30 5 I OD TLV370x 2.5 – 16 250 0.56 — — 56 83 8 I PP † All specifications are typical values measured at 5 V. ‡ ICC is specified as one op-amp and one comparator. TLV2702 AVAILABLE OPTIONS PACKAGED DEVICES VIOmax AT 25°C TA SMALL OUTLINE† (D) MSOP MSOP† (DGK) SYMBOLS PLASTIC DIP (P) 4000 µV TLV2702ID TLV2702IDGK xxTIAQF TLV2702IP - 40°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2702IDR). TLV2704 AVAILABLE OPTIONS VIOmax AT 25°C TA PACKAGED DEVICES † SMALL OUTLINE TSSOP (PW) (D) PLASTIC DIP (N) 4000 µV TLV2704ID TLV2704IPW TLV2704IN – 40°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2704IDR). TLV270x PACKAGE PINOUTS TLV2704 D, N, OR PW PACKAGE (TOP VIEW) TLV2702 D, DGK, OR P PACKAGE (TOP VIEW) AOUT AIN – AIN + GND 2 1 8 2 7 3 6 4 5 C1OUT C1IN – C1IN+ VCC C2IN+ C2IN – C2OUT VCC COUT CIN – CIN+ www.ti.com 1 14 2 13 3 12 4 11 5 10 6 9 7 8 A2OUT A2IN – A2IN+ GND A1IN+ A1IN – A1OUT TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC Input voltage range, VI (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to VCC + 5 V Input current range, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to GND 2. Input voltage range is limited to 20 V max or VCC + 5 V, whichever is smaller. DISSIPATION RATING TABLE PACKAGE ΘJC (°C/W) ΘJA (°C/W) TA ≤ 25 25°C C POWER RATING D (8) 38.3 176 710 mW 142 mW D (14) 26.9 122.3 1022 mW 204.4 mW DGK (8) 54.2 259.9 481 mW 96.2 mW N (14) 32 78 1600 mW 320.5 mW TA = 125 125°C C POWER RATING P (8) 41 104 1200 mW 240.4 mW PW (14) 29.3 173.6 720 mW 144 mW recommended operating conditions Single supply Supply voltage voltage, VCC Split supply Common-mode input voltage range, VICR Amplifier and comparator Operating free-air temperature, TA MIN MAX 2.5 16 ±1.25 ±8 V –0.1 VCC+5 125 V – 40 www.ti.com UNIT °C 3 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless otherwise noted) amplifier dc performance PARAMETER TEST CONDITIONS TA† MIN 25°C VIO Input offset voltage αVIO Offset voltage draft CMRR Common-mode Common mode rejection ratio VO = VCC/2 V, VIC = VCC/2 V, RS = 50 Ω AVD PSRR Large signal differential voltage Large-signal amplification VCC = 2.7 27V Full range 52 25°C 60 VCC = 5 V Full range 55 25°C 66 Power su supply ly rejection ratio (∆VCC/∆VIO) Full range 60 25°C 130 Full range 30 25°C 300 VCC = 5 V V, VO(pp) = 3 V V, RL = 500 kΩ Full range 100 25°C 400 VCC = 15 V V, VO(pp) = 8 V V, RL = 500 kΩ Full range 120 25°C 90 Full range 85 25°C 94 Full range 90 VCC = 2.7 2 7 to 5 V VIC = VCC/2 V V, No load VCC = 5 to 15 V 4000 UNIT µV V µV/°C 3 55 7V 5V VCC = 2 2.7 V, VO(pp) = 1 1.5 V, RL = 500 kΩ 390 6000 25°C VCC = 15 V MAX Full range 25°C VIC = 0 to VCC, RS = 50 Ω TYP 73 80 dB 90 400 1000 V/mV 1800 120 dB 120 † Full range is –40°C to 125°C. amplifier and comparator input characteristics PARAMETER IIO TEST CONDITIONS Input In ut offset current VO = VCC/2 V, VIC = VCC/2 V RS = 50 Ω IIB ri(d) Input In ut bias current Differential input resistance Ci(c) Common-mode input capacitance † Full range is –40°C to 125°C. 4 f = 100 kHz www.ti.com TA† 25°C MIN TYP MAX 25 250 0 to 70°C 300 Full range 700 25°C 100 UNIT pA A 500 0 to 70°C 550 Full range 1700 pA A 25°C 300 MΩ 25°C 3 pF TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless otherwise noted) (continued) amplifier output characteristics PARAMETER VOH TA† 25°C MIN TYP 2.55 2.65 VCC = 2.7 27V Full range 2.5 25°C 4.85 VCC = 5 V Full range 4.8 25°C 14.8 Full range 14.8 TEST CONDITIONS VIC = VCC/2, IOH = –50 µA High level output voltage High-level VCC = 15 V VOL VIC = VCC/2, /2 IOL = 50 µA A Low level output voltage Low-level IO Output current ZO Closed-loop output impedance † Full range is –40°C to 125°C. VO = 0.5 V from rail f = 100 Hz, AV = 10 25°C MAX UNIT 4.95 V 14.95 180 Full range 260 300 mV 25°C ±200 µA 25°C 1.2 kΩ amplifier dynamic performance PARAMETER TEST CONDITIONS UGBW Unity gain bandwidth RL = 500 kΩ, SR Slew rate at unity gain VO(pp) = 0.8 V, RL = 500 kΩ, φM Phase margin RL = 500 kΩ, kΩ CL = 100 pF Gain margin ts Settling time Vn input Equivalent in ut noise voltage In Equivalent input noise current CL = 100 pF TA 25°C CL = 100 pF 25°C MIN TYP MAX UNIT 5.5 kHz 2.5 V/ms 60° VCC = 2.7 or 5 V, V(STEP)PP = 1 V, CL = 100 pF, AV = –1, RL = 100 kΩ VCC = 15 V, V(STEP)PP = 1 V, V CL = 100 pF pF, AV = –1, RL = 100 kΩ 25°C 15 0.1% dB 1.84 25°C ms 0.1% 6.1 0.01% 32 f = 0.1 to 10 Hz 25°C f = 100 Hz f = 100 Hz 25°C 5.3 µVpp 500 nV/√Hz 8 fA/√Hz supply current PARAMETER ICC Supply S l currentt ((one op-amp and d one comparator) Reverse supply current † Full range is –40°C to 125°C. TEST CONDITIONS VCC = 2.7 V or 5 V VO = VCC/2 VCC = 15 V VCC = –18 V, VI = 0 V, VO = open www.ti.com TA† MIN TYP 25°C 1.4 25°C 1.4 Full range 25°C MAX 1.9 UNIT µA 3.7 50 nA 5 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless otherwise noted) (continued) comparator dc performance TA† TEST CONDITIONS† PARAMETER MIN 25°C VIO Input offset voltage αVIO Offset voltage drift CMRR Common mode rejection ratio Common-mode RS = 50 Ω VIC= VCC/2, PSRR 27V VCC = 2.7 Full range 50 25°C 60 VCC = 5 V Full range 55 25°C 65 Full range 60 VCC = 2.7 2 7 to 5 V VCC = 5 to 15 V 25°C 75 Full range 70 25°C 85 Full range 80 UNIT µV V µV/°C 72 76 dB 88 1000 25°C VIC = VCC/2 V, No load 5000 3 55 Large-signal differential voltage amplification Power su supply ly rejection ratio (∆VCC/∆VIO) 250 7000 25°C VCC = 15 V AVD MAX Full range 25°C VIC= 0 to VCC, RS = 50 Ω TYP V/mV 100 dB 105 † Full range is –40°C to 125°C. comparator output characteristics TEST CONDITIONS† PARAMETER ri(d) Differential input resistance VOH High level output voltage High-level VIC = VCC/2, VID = 1 V IOL = –50 50 µA, VOL Low level output voltage Low-level VIC = VCC/2, VID = –1 V IOL = 50 µA, TA† MIN TYP MAX 300 25°C 25°C Full range MΩ VCC–320 VCC–450 mV 80 25°C UNIT Full range 200 300 mV † Full range is –40°C to 125°C. switching characteristics at recommended operating conditions, VCC = 2.7 V, 5 V, 15 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA Overdrive = 2 mV t(PLH) t(PHL) Propagation P ti response titime, llow-tot high-level output Propagation P ti response titime, hi high-toht low-level output kHz f = 10 kHz, VSTEP = 100 mV, CL = 10 pF, VCC = 2.7 27V Overdrive = 10 mV Rise time CL = 10 pF, TYP 25°C 25 C 36 Overdrive = 2 mV 167 VCC = 2.7 V UNIT 64 Overdrive = 50 mV Overdrive = 10 mV MAX 240 25°C 25 C Overdrive = 50 mV tr MIN µss 67 37 25°C 7 µs tf Fall time CL = 10 pF, VCC = 2.7 V 25°C 9 µs NOTE: The propagation response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. Propagation responses are longer at higher supply voltages, refer to Figure 18 through Figure 36 for further details. 6 www.ti.com TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage vs Common-mode input voltage vs Free-air temperature IIB Input bias current IIO Input offset current vs Common-mode input voltage vs Free-air temperature ICC vs Common-mode input voltage Supply current 1, 2 3, 5, 7 4, 6 3, 5, 7 4, 6 vs Supply voltage 8 vs Free-air temperature 9 Amplifier CMRR Common-mode rejection ratio vs Frequency VOH VOL High-level output voltage vs High-level output current 11, 13 Low-level output voltage vs Low-level output current 12, 14 VO(PP) PSRR Output voltage, peak-to-peak vs Frequency 15 Power supply rejection ratio vs Frequency 16 Voltage noise over a 10 Second Period φm AVD SR 10 17 Phase margin vs Capacitive load 18 Differential voltage gain vs Frequency 19 Phase vs Frequency 19 Gain-bandwidth product vs Supply voltage 20 Slew rate vs Free-air temperature 21 Large-signal follower pulse response 22 Small-signal follower pulse response 23 Large-signal inverting pulse response 24 Small-signal inverting pulse response 25 Comparator VOH VOL High-level output voltage vs High-level output current 26, 28 Low-level output voltage vs Low-level output current 27, 29 Output rise/fall time vs Supply voltage 30 Low-to-high level output response for various input overdrives 31, 33, 35 High-to-low level output response for various input overdrives 32, 34, 36 www.ti.com 7 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 AMPLIFIER AND COMPARATOR TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1000 800 600 400 200 0 –200 –0.2 0.2 –0.1 0.6 1.0 1.4 1.8 2.2 0 –100 –200 –300 VCC = 5 V TA = 25 °C –400 –0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2 2.6 2.9 Figure 1 200 150 100 IIO 0 –50 IIB –100 –150 –0.2 –0.1 0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9 400 300 200 100 IIO 0 IIB –100 –200 –40 –25 –10 5 20 35 50 65 80 95 110 125 0 I CC – Supply Current – µ A IIO Figure 7 100 50 IIO 0 –50 IIB –100 –150 –0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2 Figure 6 SUPPLY CURRENT vs FREE-AIR TEMPERATURE TA = 125°C 2 TA = 70°C 1.75 1.5 1.25 TA = 0°C 1 TA = –40°C 0.75 Op Amp VI = VCC/2 Comparator VID = –1 V TA = 25°C 0.5 0.25 –200 –40 –25 –10 5 20 35 50 65 80 95 110 125 TA – Free-Air Temperature – °C VCC = 5 V TA = 25 °C 2 2.25 200 20 35 50 65 80 95 110 125 VICR – Common Mode Input Voltage – V 2.5 VCC = 15 V 400 150 SUPPLY CURRENT vs SUPPLY VOLTAGE 1200 IIB –200 –40 –25 –10 5 Figure 5 INPUT BIAS/OFFSET CURRENT vs FREE-AIR TEMPERATURE 600 IIB –100 TA – Free-Air Temperature – °C Figure 4 800 IIO 0 200 VCC = 5 V VIC = 2.5 V 500 VICR – Common Mode Input Voltage – V 1000 100 INPUT BIAS/OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE I CC – Supply Current – µ A 50 200 Figure 3 I IB / I IO – Input Bias / Offset Current – pA I IB / I IO – Input Bias / Offset Current – pA I IB / I IO – Input Bias / Offset Current – pA 250 300 TA – Free-Air Temperature – °C 600 300 400 INPUT BIAS/OFFSET CURRENT vs FREE-AIR TEMPERATURE 400 VCC = 2.7 V TA = 25 °C VCC = 2.7 V VIC = 1.35 V Figure 2 INPUT BIAS/OFFSET CURRENT vs COMMON MODE INPUT VOLTAGE 350 500 VICR – Common-Mode Input Voltage – V VICR – Common-Mode Input Voltage – V I IB / I IO – Input Bias/Offset Current – pA I IB / I IO – Input Bias / Offset Current – pA VCC = 2.7 V TA = 25°C 1200 V IO – Input Offset Voltage – µV V IO – Input Offset Voltage – µV 600 100 1400 8 INPUT BIAS / OFFSET CURRENT vs FREE-AIR TEMPERATURE 0 0 2 4 6 8 10 12 VCC – Supply Voltage – V Figure 8 www.ti.com 14 1.75 1.5 1.25 1 0.75 0.5 0.25 16 VCC = 2.7, 5, & 15 V Op Amp VI = VCC/2 AV = 1 Comparator VID = –1 V 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 TA – Free-Air Temperature – °C Figure 9 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 AMPLIFIER TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.50 100 RF=100 kΩ RI=1 kΩ 80 60 40 20 VCC = 2.7 V 2.4 TA = –40°C 2.1 TA = –0°C TA = 25 °C TA = 70 °C TA = 125 °C 1.8 1.5 1.2 0 10 100 1k f – Frequency – Hz 50 100 150 3.5 3.0 1.25 TA = 0 °C TA = –40°C 0.75 TA = 25 °C TA = 70 °C TA = 125 °C 0.50 150 0.25 200 0 IOH – High-Level Output Current – µA 50 100 150 80 70 60 50 Figure 16 8 6 4 10k RL = 100 kΩ CL = 100 pF TA = 25°C VCC = 5 V 2 VCC = 2.7 V 0 –2 100 f – Frequency – Hz 1k Figure 15 PHASE MARGIN vs CAPACITIVE LOAD 80 VCC = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 3 70 60 2 1 0 –1 50 40 30 20 –2 10 –3 40 100 1k f – Frequency – Hz 10 10 Phase Margin – ° Input Referred Voltage Noise – µV 90 VCC = 15 V 12 VOLTAGE NOISE OVER A 10 SECOND PERIOD 4 100 10 14 200 120 VCC = 2.7, 5, & 15 V TA = 25°C 200 16 Figure 14 POWER SUPPLY REJECTION RATIO vs FREQUENCY 150 OUTPUT VOLTAGE PEAK-TO-PEAK vs FREQUENCY IOL – Low-Level Output Current – µA Figure 13 100 Figure 12 VCC = 5 V 1.00 50 IOL – Low-Level Output Current – µA 0.00 110 0.25 0 V O(PP) – Output voltage Peak–to–Peak – V TA = –0°C TA = 25 °C TA = 70 °C TA = 125 °C 100 TA = 70 °C TA = 125 °C 0.50 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL – Low-Level Output Voltage – V TA = –40°C 4.5 50 0.75 200 1.50 0 1.00 Figure 11 5.0 4.0 TA =25 °C TA = 0 °C TA = –40°C 1.25 IOH – High-Level Output Current – µA HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT VCC = 5 V VCC = 2.7 V 0.00 0 10k Figure 10 V OH – High-Level Output Voltage – V VOL – Low-Level Output Voltage – V VCC=2.7, 5, 15 V 1 PSRR – Power Supply Rejection Ratio – dB LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 2.7 120 V OH – High-Level Output Voltage – V CMRR – Common-Mode Rejection Ratio – dB COMMON-MODE REJECTION RATIO vs FREQUENCY VCC = 2.7, 5, & 15 V RL= 500 kΩ TA = 25°C 0 –4 0 1 2 3 4 5 6 t – Time – s Figure 17 www.ti.com 7 8 9 10 10 100 1k CL – Capacitive Load – pF 10k Figure 18 9 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 AMPLIFIER TYPICAL CHARACTERISTICS DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 30 45 20 10 0 VCC=2.7, 5, 15 V RL=500 kΩ CL=100 pF TA=25°C –45 10k –20 10 100 1k f – Frequency – Hz 5 3.0 4 3 2 1.5 SR– 1.0 0 2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0 0.0 –40 –25 –10 5 VCC – Supply Voltage –V Figure 21 180 3 160 V – Output Voltage – mV O 5 4 2 – Input Voltage – V VIN 1 4 0 3 –1 IN VO V 1 0 300 VIN 150 140 0 VCC = 2.7, 5, & 15 V AV = 1 RL = 100 kΩ CL = 100 pF TA = 25°C 120 100 80 60 VO –150 40 20 0 –1 –1 0 1 2 3 4 5 –20 –50 0 6 50 100 150 200 250 300 350 400 450 500 t – Time – µs t – Time – ms Figure 22 Figure 23 LARGE-SIGNAL INVERTING PULSE RESPONSE SMALL-SIGNAL INVERTING PULSE RESPONSE 4 2.0 3 VIN 0.0 –0.5 –1.0 IN –1.5 –1 V – Output Voltage – mV O 0 VCC = 5 V AV = –1 RL = 100 kΩ CL = 100 pF TA = 25°C – Input Voltage – V 1 V –2.0 –2.5 200 VIN 150 2 1.0 0.5 200 VO 100 VCC = 2.7, 5, & 15 V AV = –1 RL = 100 kΩ CL = 100 pF TA = 25°C 100 50 0 0 –100 –50 IN 2.5 1.5 V – Output Voltage – V O 20 35 50 65 80 95 110 125 SMALL-SIGNAL FOLLOWER PULSE RESPONSE VCC = 5 V AV = 1 RL = 100 kΩ CL = 100 pF TA = 25°C 7 VCC = 2.7, 5, 15 V TA – Free-Air Temperature – °C Figure 20 8 V – Output Voltage – V O VCC = 2.7 V 2.0 0.5 LARGE-SIGNAL FOLLOWER PULSE RESPONSE 2 2.5 1 Figure 19 6 SR+ VCC = 5, 15 V VO –100 –3.0 –3.5 –1 0 1 2 3 4 5 6 –150 –200 7 Figure 24 10 0 200 400 600 t – Time – ms t – Time – ms Figure 25 www.ti.com – Input Voltage – mV –10 6 V 0 3.5 TA = 25°C RL = 100 kΩ CL = 100 pF f = 1kHz SR – Slew Rate – V/ ms GBWP –Gain Bandwidth Product – kHz 7 90 40 SLEW RATE vs FREE-AIR TEMPERATURE V IN – Input Voltage – mV 135 50 Phase – ° AVD – Differential Voltage Gain – dB 60 GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 800 1000 1200 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 COMPARATOR TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 2.1 TA = –40°C TA = 0°C 1.8 1.5 2.7 VCC = 2.7 V VID = –1 V 2.4 VOL – Low-Level Output Voltage – V VOH – High-Level Output Voltage – V 2.7 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT TA = 25°C 1.2 0.9 0.6 TA = 70°C 0.3 TA = 125°C 0.0 VCC = 2.7 V VID = –1 V 2.4 TA = 125°C 2.1 TA = 70°C 1.8 TA = 25°C 1.5 1.2 TA = 0°C 0.9 0.6 TA = –40°C 0.3 0.0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 IOH – High-Level Output Current – mA Figure 26 VOL – Low-Level Output Voltage – V TA = 0°C TA = 25°C 2.5 2 TA = 70°C 1.5 1 TA = 125°C 0.5 0 0 0.2 0.4 0.6 0.8 0.5 0.6 0.7 0.8 VCC = 5 V VID = –1 V 4.5 4 TA = 125°C 3.5 TA = 70°C 3 2.5 2 TA = 25°C 1.5 TA = 0°C 1 TA = –40°C 0.5 0 1.0 1.2 1.4 1.6 1.8 0 IOH – High-Level Output Current – mA 0.4 0.8 1.2 1.6 2.0 2.4 2.8 IOL – Low-Level Output Current – mA Figure 28 Figure 29 OUTPUT RISE/FALL TIME vs SUPPLY VOLTAGE 120 t r(f) – Output Rise/Fall Time – µ s VOH – High-Level Output Voltage – V TA = –40°C 3 0.4 5 VCC = 5 V VID = –1 V 4 0.3 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 3.5 0.2 Figure 27 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 4.5 0.1 IOL – Low-Level Output Current – mA VID= 1 V to –1 V Input Rise/Fall Time = 4 µs CL = 10 pF TA = 25°C 100 80 60 Fall Time 40 20 Rise Time 0 0 2.5 5 7.5 10 12.5 VCC – Supply Voltage – V 15 Figure 30 www.ti.com 11 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 TYPICAL CHARACTERISTICS 2 mV 10 mV 0 VCC = 2.7 V CL = 10 pF TA = 25°C –0.10 –0.15 25 50 75 100125150175200225250275300 VCC = 2.7 V CL = 10 pF TA = 25°C 0.05 0 –0.05 0 25 50 75 100125150175200225250275 300 Figure 31 Figure 32 LOW-TO-HIGH LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES HIGH-TO-LOW LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 6 5 4 50 mV 3 2 mV 10 mV 2 1 –0.05 –0.10 –0.15 0 25 50 75 100125150175200225250275300 5 4 50 mV 3 2 mV 10 mV 2 1 0 Input Voltage – V 0 VCC = 5 V CL = 10 pF TA = 25°C VID – Differential 0 6 VCC = 5 V CL = 10 pF TA = 25°C 0.10 0.05 0 –0.05 0 25 50 75 100125150175 200225250275 300 t – Time – µs VID – Differential Input Voltage – V V O – Output Voltage – V t – Time – µs V O – Output Voltage – V t – Time – µs 0.05 t – Time – µs LOW-TO-HIGH LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES HIGH-TO-LOW LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 16 14 12 10 8 6 V O – Output Voltage – V Figure 34 50 mV 2 mV 10 mV 0.04 0 –0.04 –0.08 –0.12 0 25 50 75 100125150175200225 250275300 16 14 12 10 8 6 4 2 0 50 mV 10 mV 2 mV Input Voltage – V 4 2 0 V ID – Differential V O – Output Voltage – V Figure 33 VCC = 15 V CL = 10 pF TA = 25°C 0.12 0.08 0.04 0 –0.04 100 150 200 250 300 350 400 VCC = 15 V CL = 10 pF TA = 25°C 0 t – Time – µs 50 t – Time – µs Figure 35 12 0.10 Figure 36 www.ti.com Input Voltage – V 0 –0.05 2 mV 10 mV 0.15 VID – Differential Input Voltage – V 0.05 50 mV VID – Differential Input Voltage – V 50 mV 3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 –0.3 V ID – Differential 3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 HIGH-TO-LOW LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES V O – Output Voltage – V VO – Output Voltage – V LOW-TO-HIGH OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 APPLICATION INFORMATION reverse battery protection The TLV2702/4 are protected against reverse battery voltage up to 18 V. When subjected to reverse battery condition the supply current is typically less than 100 nA at 25°C (inputs grounded and outputs open). This current is determined by the leakage of 6 Schottky diodes and will therefore increase as the ambient temperature increases. When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input ESD structure will turn on—this current should be limited to less than 10 mA. If the inputs or outputs are referred to ground, rather than midrail, no extra precautions need be taken. common-mode input range The TLV2702/4 has rail-rail input and outputs. For common-mode inputs from –0.1 V to VCC – 0.8 V a PNP differential pair will provide the gain. For inputs between VCC – 0.8 V and VCC, two NPN emitter followers buffering a second PNP differential pair provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above the rails; because as the inputs go above VCC, the NPNs switch from functioning as transistors to functioning as diodes. This will lead to an increase in input bias current. The second PNP differential pair continues to function normally as the inputs exceed VCC. The TLV2702/4 has a negative common-input range that exceeds ground by 100 mV. If the inputs are taken much below this, reduced open loop gain will be observed with the ultimate possibility of phase inversion. offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage. RF IIB– RG + – VI IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F G VO + RS "I IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– R F Figure 37. Output Offset Voltage Model www.ti.com 13 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 38). RG RF – VO + VI R1 C1 f V O + V I ǒ 1) R R F G –3dB Ǔǒ + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 38. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF RG = Figure 39. 2-Pole Low-Pass Sallen-Key Filter 14 www.ti.com –3dB + ( 1 2pRC RF 1 2– Q ) TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 APPLICATION INFORMATION circuit layout considerations To achieve the levels of high performance of the TLV270x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes—It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components—Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. www.ti.com 15 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 general power dissipation considerations For a given θJA, the maximum power dissipation is shown in Figure 40 and is calculated by the following formula: P D + ǒ T Ǔ –T MAX A q JA Where: PD = Maximum power dissipation of TLV270x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation – W 1.75 1.5 1.25 TJ = 150°C PDIP Package Low-K Test PCB θJA = 104°C/W SOIC Package Low-K Test PCB θJA = 176°C/W MSOP Package Low-K Test PCB θJA = 260°C/W 1 0.75 0.5 0.25 0 –55 –40 –25 –10 5 20 35 50 65 80 95 110 125 TA – Free-Air Temperature – °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 40. Maximum Power Dissipation vs Free-Air Temperature 16 www.ti.com TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 APPLICATION INFORMATION amplifier macromodel information Macromodel information provided was derived using Microsim Parts Release 8, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 41 are generated using the TLV270x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 3: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 99 VCC+ + egnd ree ro2 cee fb rp rc1 rc2 – c1 7 11 12 + 1 c2 vlim IN+ r2 + 9 6 – vc 2 8 + q1 q2 IN– – vb ga – ro1 gcm ioff 53 dp 13 14 re1 VOUT re2 91 10 iee VCC– 4 dc – dlp 90 + hlim – + vlp – ve + 54 dln 5 92 – vln + de .subckt 270X_5V–X 1 2 3 4 5 * c1 11 12 9.8944E–12 c2 6 7 30.000E–12 cee 10 99 8.8738E–12 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 61.404E6 –1E3 1E3 61E6 –61E6 ga 6 0 11 12 1.0216E–6 gcm 0 6 10 99 10.216E–12 iee 10 4 dc 54.540E–9 ioff 0 6 dc 5e–12 hlim 90 0 vlim 1K q1 11 2 13 qx1 q2 12 1 14 qx2 r2 6 9 100.00E3 rc1 rc2 re1 re2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .model .model .ends 3 3 13 14 10 8 7 3 9 3 54 7 91 0 dx dy qx1 qx2 11 978.81E3 12 978.81E3 10 30.364E3 10 30.364E3 99 3.6670E9 5 10 99 10 4 1.4183E6 0 dc 0 53 dc .88315 4 dc .88315 8 dc 0 0 dc 540 92 dc 540 D(Is=800.00E–18) D(Is=800.00E–18 Rs=1m Cjo=10p) NPN(Is=800.00E–18 Bf=27.270E21) NPN(Is=800.0000E–18 Bf=27.270E21) Figure 41. Boyle Macromodels and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. www.ti.com 17 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°–ā8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). 18 www.ti.com TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 MECHANICAL INFORMATION DGK (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE 0,38 0,25 0,65 8 0,25 M 5 0,15 NOM 3,05 2,95 4,98 4,78 Gage Plane 0,25 1 0°–ā6° 4 3,05 2,95 0,69 0,41 Seating Plane 1,07 MAX 0,15 0,05 0,10 4073329/B 04/98 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-187 www.ti.com 19 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 MECHANICAL INFORMATION N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN PINS ** 14 16 18 20 A MAX 0.775 (19,69) 0.775 (19,69) 0.920 (23,37) 0.975 (24,77) A MIN 0.745 (18,92) 0.745 (18,92) 0.850 (21,59) 0.940 (23,88) DIM A 16 9 0.260 (6,60) 0.240 (6,10) 1 8 0.070 (1,78) MAX 0.035 (0,89) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gauge Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 14/18 PIN ONLY 4040049/D 02/00 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001). 20 www.ti.com TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°–ā15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 www.ti.com 21 TLV2702 TLV2704 SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°–ā8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. 22 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 www.ti.com PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2702ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2702I Samples TLV2702IDGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 AQF Samples TLV2702IDGKG4 ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 AQF Samples TLV2702IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2702I Samples TLV2704ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2704I Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV2702IDGKG4 价格&库存

很抱歉,暂时无法提供与“TLV2702IDGKG4”相匹配的价格&库存,您可以联系我们找货

免费人工找货