SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
D
D
D
D
D
D
D
D
D
D
D
D
D
High Slew Rate . . . 10.5 V/µs Typ
High-Gain Bandwidth . . . 5.1 MHz Typ
Supply Voltage Range 2.5 V to 5.5 V
Rail-to-Rail Output
360 µV Input Offset Voltage
Low Distortion Driving 600-Ω
0.005% THD+N
1 mA Supply Current (Per Channel)
17 nV/√Hz Input Noise Voltage
2 pA Input Bias Current
Characterized From TA = −55°C to 125°C
Available in MSOP and SOT-23 Packages
Micropower Shutdown Mode . . . IDD < 1 µA
Available in Q-Temp Automotive
High Reliability Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail output
swing, high output drive, and excellent dc precision. The device provides 10.5 V/µs of slew rate and 5.1 MHz
of bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher
than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make these
devices a good choice for driving the analog input or reference of analog-to-digital converters. These devices
also have low distortion while driving a 600-Ω load for use in telecom systems.
These amplifiers have a 360-µV input offset voltage, a 17 nV/√Hz input noise voltage, and a 2-pA input bias
current for measurement, medical, and industrial applications. The TLV277x family is also specified across an
extended temperature range (−40°C to 125°C), making it useful for automotive systems, and the military
temperature range (−55°C to 125°C), for military systems.
These devices operate from a 2.5-V to 5.5-V single supply voltage and are characterized at 2.7 V and 5 V. The
single-supply operation and low power consumption make these devices a good solution for portable
applications. The following table lists the packages available.
FAMILY PACKAGE TABLE
DEVICE
NUMBER
OF
CHANNELS
PACKAGE TYPES
SHUTDOWN
PDIP
CDIP
SOIC
SOT-23
TSSOP
MSOP
LCCC
CPAK
TLV2770
1
8
—
8
—
—
8
—
—
Yes
TLV2771
1
—
—
8
5
—
—
—
—
—
TLV2772
2
8
8
8
—
8
8
20
10
—
TLV2773
2
14
—
14
—
—
10
—
—
Yes
TLV2774
4
14
—
14
—
14
—
—
—
—
TLV2775
4
16
—
16
—
16
—
—
—
Yes
UNIVERSAL
EVM BOARD
Refer to the EVM
Selection Guide
(Lit# SLOU060)
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS†
DEVICE
VDD
(V)
BW
(MHz)
SLEW RATE
(V/µs)
IDD (per channel)
(µA)
TLV277X
2.5 − 6.0
5.1
10.5
1000
O
TLV247X
2.7 − 6.0
2.8
1.5
600
I/O
TLV245X
2.7 − 6.0
0.22
0.11
23
I/O
TLV246X
2.7 − 6.0
6.4
1.6
550
I/O
RAIL-TO-RAIL
† All specifications measured at 5 V.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 1998−2004, Texas Instruments Incorporated
!"#$% $%&$ $'("&%$ $ )(!% $ "(# %&$ $# )&#
' #*#+)"#$% # %&%! ' #& #*# $&%# $ %# )&,#-.
)#'/$, % #+#%(&+ &(&%#(%
$ )(!% ")+&$% %
01202 &++ )&(&"#%#( &(# %#%#
!$+# %#(3# $%#
$ &++ %#( )(!% )(!%$
)(#$, # $% $##&(+/ $+!# %#%$, ' &++ )&(&"#%#(
WWW.TI.COM
1
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TLV2770 and TLV2771 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax AT 25°C
(mV)
0°C to 70°C
2.5
2.5
−40°C to 125°C
SMALL OUTLINE
(D)
SOT-23
(DBV)
MSOP
(DGK)
PLASTIC DIP
(P)
TLV2770CD
TLV2771CD
—
TLV2771CDBV
TLV2770CP
—
TLV2770ID
TLV2771ID
—
TLV2771IDBV
TLV2770CDGK†
—
TLV2770IDGK†
—
—
—
—
—
TLV2770AIP
—
TLV2770AID
TLV2771AID
1.6
TLV2770IP
—
† This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.
TLV2772 and TLV2773 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax AT 25°C
(mV)
0°C to 70°C
SMALL OUTLINE
(D)
MSOP
(DGK)
MSOP
(DGS)
PLASTIC DIP
(N)
PLASTIC DIP
(P)
2.5
TLV2772CD
TLV2773CD
TLV2772CDGK
—
—
TLV2773CDGS
—
TLV2773CN
TLV2772CP
—
2.5
TLV2772ID
TLV2773ID
TLV2772IDGK
—
—
TLV2773IDGS
—
TLV2773IN
TLV2772IP
—
1.6
TLV2772AID
TLV2773AID
—
—
—
—
—
TLV2773AIN
TLV2772AIP
—
−40°C to 125°C
TLV2774 and TLV2775 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax AT 25°C
(mV)
0°C to 70°C
SMALL OUTLINE
(D)
PLASTIC DIP
(N)
PLASTIC DIP
(P)
TSSOP
(PW)
2.7
TLV2774CD
TLV2775CD
—
TLV2775CN
TLV2774CP
—
TLV2774CPW
TLV2775CPW
2.7
TLV2774ID
TLV2775ID
—
TLV2775IN
TLV2774IP
—
TLV2774IPW
TLV2775IPW
2.1
TLV2774AID
TLV2775AID
—
TLV2775AIN
TLV2774AIP
—
TLV2774AIPW
TLV2775AIPW
−40°C to 125°C
TLV2772M/Q AND TLV2772AM/Q AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax AT 25°C
(mV)
SMALL
OUTLINE
(D)
2.5
−40°C to 125°C
−55°C to 125°C
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
CERAMIC
FLATPACK
(U)
—
—
—
1.6
TLV2772QD‡
TLV2772AQD‡
—
—
—
TLV2772QPW‡
TLV2772AQPW‡
2.5
TLV2772MD
TLV2772MFK
TLV2772MJG
TLV2772MU
—
1.6
TLV2772AMD
TLV2772AMFK
TLV2772AMJG
TLV2772AMU
—
‡ Available in tape and reel
2
WWW.TI.COM
TSSOP
(PW)
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
PACKAGE SYMBOLS
PACKAGE TYPE
PINS
SOT23
5 Pin
8 Pin
MSOP
10 Pin
PART NUMBER
SYMBOL†
TLV2771CDBV
VAMC
TLV2771IDBV
VAMI
TLV2770CDGK
xxTIABO
TLV2770IDGK
xxTIABP
TLV2772CDGK
xxTIAAF
TLV2772IDGK
xxTIAAG
TLV2773CDGS
xxTIABQ
TLV2773IDGS
xxTIABR
† xx represents the device date code.
TLV277x PACKAGE PINOUT
NC
1OUT
NC
VDD+
NC
TLV2772M AND TLV2772AM
FK PACKAGE
(TOP VIEW)
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN −
NC
NC
GND
NC
2IN+
NC
NC
1IN −
NC
1IN +
NC
NC − No internal connection
WWW.TI.COM
3
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TLV277x PACKAGE PINOUTS(1)
TLV2771
DBV PACKAGE
(TOP VIEW)
TLV2770
D, DGK† OR P PACKAGE
(TOP VIEW)
NC
IN −
IN +
GND
1
8
2
7
3
6
4
5
SHDN
VDD
OUT
NC
TLV2772
D, DGK, JG, P, OR PW PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
GND
1OUT
1IN −
1IN+
GND
NC
1SHDN
NC
1
8
2
7
3
6
4
5
VDD
2OUT
2IN −
2IN+
1
OUT
GND
2
IN+
3
TLV2771
D PACKAGE
(TOP VIEW)
VDD
5
4
NC
IN −
IN +
GND
IN −
1
10
2
9
3
8
4
7
5
6
8
2
7
3
6
4
5
1OUT
1IN −
1IN+
GND
1SHDN
NC
VDD +
2OUT
2IN −
2IN +
1
2
3
4
5
VDD
2OUT
2IN −
2IN+
2SHDN
10
9
8
7
6
TLV2773
D OR N PACKAGE
TLV2774
D, N, OR PW PACKAGE
TLV2775
D, N, OR PW PACKAGE
(TOP VIEW)
(TOP VIEW)
(TOP VIEW)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VDD
2OUT
2IN −
2IN+
NC
2SHDN
NC
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1/2SHDN
4OUT
4IN −
4IN+
GND
3IN+
3IN −
3OUT
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
† This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.
(1) SOT−23 may or may not be indicated
TYPICAL PIN 1 INDICATORS
Pin 1
Printed or
Molded Dot
4
NC
VDD
OUT
NC
TLV2773
DGS PACKAGE
(TOP VIEW)
TLV2772M AND TLV2772AM
U PACKAGE
(TOP VIEW)
NC
1OUT
1IN −
1IN +
GND
1
Pin 1
Stripe
Pin 1
Bevel Edges
WWW.TI.COM
Pin 1
Molded ”U” Shape
4OUT
4IN −
4IN+
GND
3IN +
3IN−
3OUT
3/4SHDN
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VDD
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VDD
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to GND .
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below GND − 0.3 V.
3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
25 C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
70°C
TA = 70
C
POWER RATING
85°C
TA = 85
C
POWER RATING
125°C
TA = 125
C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
DBV
437 mW
3.5 mW/°C
280 mW
227 mW
87 mW
DGK
424 mW
3.4 mW/°C
271 mW
220 mW
85 mW
DGS
424 mW
3.4 mW/°C
271 mW
220 mW
85 mW
FK
1375 mW
11.0 mW/°C
672 mW
546 mW
210 mW
JG
1050 mW
8.4 mW/°C
880 mW
714 mW
275 mW
N
1150 mW
9.2 mW/°C
736 mW
598 mW
230 mW
P
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
PW
700 mW
5.6 mW/°C
448 mW
364 mW
140 mW
U
675 mW
5.4 mW/°C
432 mW
350 mW
135 mW
recommended operating conditions
C SUFFIX
MIN
Supply voltage, VDD
2.5
Input voltage range, VI
GND
Common-mode input voltage, VIC
GND
Operating free-air temperature, TA
0
MAX
6
VDD + − 1.3
VDD + − 1.3
70
I SUFFIX
MIN
2.5
GND
GND
Q SUFFIX
MAX
6
VDD + − 1.3
VDD + − 1.3
−40
WWW.TI.COM
125
MIN
2.5
GND
GND
−40
MAX
6
VDD + − 1.3
VDD + − 1.3
125
M SUFFIX
MIN
2.5
GND
GND
−55
MAX
6
UNIT
V
VDD + − 1.3
VDD + − 1.3
V
125
°C
V
5
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV2770/1/2
VIO
Input offset voltage
TLV2773/4/5
αVIO
Temperature coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VIC = 0,
RS = 50 Ω,
No load
VO = 0,
VDD = ±1.35 V,
VIC = 0,
RS = 50 Ω
VO = 0,
VDD = ±1.35
1.35 V
IOH = − 0.675 mA
VOH
High-level output voltage
IOH = − 2.2 mA
VIC = 1.35 V,
VOL
IOL = 0.675 mA
Low-level output voltage
VIC = 1.35 V,
VIC = 1.35 V,
VO = 0.6 V to 2.1 V
IOL = 2.2 mA
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode rejection ratio
VIC = 0 to 1.5 V,
RS = 50 Ω
VO = VDD/2,
kSVR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = VDD/2,
No load
IDD(SHDN)
Supply current in shutdown (per
channel)
V(ON)
Turnon voltage
level
RL = 10 kΩ,
TA†
V(OFF)
Turnoff voltage
level
TYP
MAX
25°C
0.48
2.5
0.53
2.7
25°C
0.8
2.7
Full range
0.86
2.9
25°C
25
C to
125°C
2
25°C
1
60
2
100
25°C
2
60
Full range
6
100
25°C
2.6
2.5
25°C
2.4
Full range
2.1
25°C
0.1
Full range
0.2
25°C
0.21
Full range
pA
pA
V
V
0.6
25°C
20
Full range
13
380
V/mV
25°C
1012
Ω
25°C
8
pF
25°C
25
Ω
25°C
60
84
Full range
60
82
25°C
70
89
Full range
70
84
25°C
1
Full range
dB
dB
2
2
25°C
0.8
1.5
Full range
1.3
2
AV = 5
25°C
25
C
1.43
TLV2775
1.40
TLV2770
1.27
TLV2773
mV
V/°C
µV/°C
Full range
Full range
UNIT
mA
µA
1.47
AV = 5
25°C
25
C
TLV2775
1.21
1.20
† Full range is 0°C to 70°C.
6
MIN
Full range
TLV2770
TLV2773
TLV277xC
WWW.TI.COM
V
V
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
TEST CONDITIONS
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 100 pF,
MIN
TYP
25°C
5
9
Full
range
4.7
6
f = 1 kHz
25°C
21
f = 10 kHz
25°C
17
f = 0.1 Hz to 1 Hz
THD + N
Total harmonic distortion plus noise
0.33
25°C
f = 0.1 Hz to 10 Hz
f = 100 Hz
RL = 600 Ω,
f = 1 kHz
25°C
AV = 1
AV = 10
φm
0.86
0.6
25°C
25
C
V/µs
nV/√Hz
µV
V
fA /√Hz
0.12%
f = 10 kHz,
CL = 100 pF
RL = 600 Ω,
25°C
4.8
0.1%
25°C
0.186
Settling time
AV = − 1,
Step = 1 V,
RL = 600 Ω,
CL = 100 pF
0.01%
25°C
0.3
RL = 600 Ω,
25°C
46°
CL = 100 pF
25°C
12
Gain margin
UNIT
0.025%
Gain-bandwidth product
Phase margin at unity gain
MAX
0.0085%
AV = 100
ts
TLV277xC
TA†
MHz
µss
dB
† Full range is 0°C to 70°C.
WWW.TI.COM
7
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV2770/1/2
VIO
Input offset voltage
TLV2773/4/5
αVIO
Temperature coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VIC = 0,
RS = 50 Ω
Ω,
No load
VIC = 0,
RS = 50 Ω
VO = 0,
VDD = ±2.5 V,
VO = 0,
VDD = ±2.5
2.5 V
IOH = − 1.3 mA
VOH
High-level output voltage
IOH = − 4.2 mA
VIC = 2.5 V,
VOL
IOL = 1.3 mA
Low-level output voltage
VIC = 2.5 V,
IOL = 4.2 mA
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 10 kΩ,
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode rejection ratio
VIC = 0 to 3.7 V,
RS = 50 Ω
VO = VDD /2,
kSVR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = VDD /2,
No load
IDD(SHDN)
Supply current in shutdown (per
channel)
V(ON)
Turnon voltage level
TA†
0.5
2.5
0.6
2.7
25°C
0.7
2.5
Full range
0.78
2.7
25 C to
25°C
125°C
2
25°C
1
60
Full range
2
100
25°C
2
60
Full range
6
100
25°C
4.9
Full range
4.8
25°C
4.7
Full range
4.4
25°C
0.1
Full range
0.2
25°C
0.21
Full range
0.6
25°C
20
Full range
13
TLV2773
mV
µV/°C
V/°C
pA
pA
V
V
450
V/mV
Ω
25°C
8
pF
25°C
20
Ω
25°C
70
96
Full range
70
93
25°C
70
89
Full range
70
84
25°C
1
Full range
dB
dB
2
2
25°C
0.8
1.5
Full range
1.3
2
mA
A
µA
2.59
AV = 5
25°C
25
C
2.47
V
2.48
2.41
AV = 5
25°C
25
C
TLV2775
2.32
2.29
† Full range is 0°C to 70°C.
8
UNIT
1012
25°C
TLV2770
Turnoff voltage level
MAX
25°C
TLV2775
V(OFF)
TYP
Full range
TLV2770
TLV2773
TLV277xC
MIN
WWW.TI.COM
V
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VO(PP) = 2 V,
RL = 10 kΩ
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
CL = 100 pF,
MIN
TYP
25°C
5
10.5
Full
range
4.7
6
f = 1 kHz
25°C
17
f = 10 kHz
25°C
12
f = 0.1 Hz to 1 Hz
THD + N
0.33
25°C
f = 0.1 Hz to 10 Hz
f = 100 Hz
RL = 600 Ω,
f = 1 kHz
Total harmonic distortion plus noise
25°C
AV = 1
AV = 10
φm
25°C
25
C
RL = 600 Ω,
25°C
5.1
0.1%
25°C
0.335
Settling time
AV = −1,
Step = 2 V,
RL = 600 Ω,
CL = 100 pF
0.01%
25°C
0.6
RL = 600 Ω,
25°C
46°
CL = 100 pF
Amplifier turnon time
TLV2773
TLV2775
TLV2773
TLV2775
nV/√Hz
µV
V
fA /√Hz
MHz
µss
25°C
12
dB
1.2
AV = 5,
RL = Open,
Measured to 50% point
25°C
25
C
AV = 5
RL = Open,
Measured to 50% point
25°C
25
C
2.4
µs
1.9
TLV2770
Amplifier turnoff time
V/µs
0.016%
f = 10 kHz,
CL = 100 pF
Phase margin at unity gain
UNIT
0.095%
TLV2770
t(OFF)
0.6
Gain-bandwidth product
Gain margin
t(ON)
0.86
MAX
0.005%
AV = 100
ts
TLV277xC
TA†
335
444
ns
345
† Full range is 0°C to 70°C.
WWW.TI.COM
9
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
TLV2770/1/2
VIO
Input offset
voltage
TLV2773/4/5
αVIO
Temperature coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VIC = 0, VO = 0,
RS = 50 Ω
VDD = ±1.35
1.35 V,
No load
VIC = 0, VO = 0,
RS = 50 Ω
IOH = − 0.675 mA
VOH
Low-level output voltage
VIC = 1.35 V,
IOL = 0.675 mA
VIC = 1.35 V,
IOL = 2.2 mA
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
ci(c)
Common-mode input
capacitance
zo
CMRR
VIC = 1.35 V,
RL = 10 kΩ,
kΩ
VO = 0.6 V to 2.1 V
TLV277xI
MIN
TLV277xAI
TYP
MAX
MIN
TYP
MAX
25°C
0.48
2.5
0.48
1.6
Full range
0.53
2.7
0.53
1.9
25°C
0.8
2.7
0.8
2.1
Full range
0.86
2.9
0.86
2.2
25 C to
25°C
125°C
2
25°C
1
60
1
60
Full range
2
125
2
125
25°C
2
60
2
60
Full range
6
350
6
350
25°C
2.6
2.6
2.5
2.5
25°C
2.4
2.4
Full range
2.1
2.1
25°C
0.1
0.1
Full range
0.2
0.2
25°C
0.21
0.21
Full range
0.6
0.6
25°C
20
Full range
13
380
20
mV
pA
pA
V
V
380
V/mV
13
25°C
1012
1012
Ω
f = 10 kHz,
25°C
8
8
pF
Closed-loop output impedance
f = 100 kHz,
AV = 10
25°C
25
25
Ω
Common-mode rejection ratio
VIC = 0 to 1.5 V,
VO = VDD /2,
RS = 50 Ω
25°C
60
84
60
84
Full range
60
82
60
82
dB
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
VIC = VDD /2,
No load
25°C
70
89
70
89
kSVR
Full range
70
84
70
84
IDD
Supply current (per channel)
VO = VDD /2,
No load
Full range
IDD(SHDN)
Supply current in shutdown (per
channel)
dB
25°C
1
2
1
2
2
2
25°C
0.8
1.5
0.8
1.5
Full range
1.3
2
1.3
2
† Full range is − 40°C to 125°C.
10
UNIT
µV/°C
V/°C
2
Full range
High-level output voltage
IOH = − 2.2 mA
VOL
TA†
TEST CONDITIONS
WWW.TI.COM
mA
µA
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
(continued)
TEST
CONDITIONS
PARAMETER
TLV277xI
TA†
MIN
TLV2770
V(ON)
V(OFF)
Turnon voltage level
Turnoff voltage level
TLV2773
TYP
TLV277xAI
MAX
MIN
TYP
1.47
1.47
1.43
1.43
TLV2775
1.40
1.4
TLV2770
1.27
1.27
1.21
1.21
1.20
1.2
AV = 5
TLV2773
25°C
25
C
AV = 5
25°C
25
C
TLV2775
MAX
UNIT
V
V
† Full range is − 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
equivalent input noise
voltage
In
THD + N
TEST CONDITIONS
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 100 pF,
MIN
TYP
25°C
5
Full
range
4.7
φm
TLV277xAI
MAX
MIN
TYP
9
5
9
6
4.7
6
MAX
UNIT
V/µs
f = 1 kHz
25°C
21
21
f = 10 kHz
25°C
17
17
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
Equivalent input noise
current
f = 100 Hz
25°C
0.6
0.6
fA /√Hz
RL = 600 Ω,
f = 1 kHz
0.0085%
0.0085%
Total harmonic
distortion plus noise
0.025%
0.025%
0.12%
0.12%
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = −1,
Step = 0.85 V to
1.85 V,
RL = 600 Ω,
CL = 100 pF
AV = 1
AV = 10
25°C
25
C
AV = 100
ts
TLV277xI
TA†
Phase margin at unity
gain
Gain margin
† Full range is − 40°C to 125°C.
RL = 600 Ω,
RL = 600 Ω,
25°C
4.8
4.8
0.1%
25°C
0.186
0.186
nV/√Hz
MHz
µss
0.01%
CL = 100 pF
25°C
3.92
3.92
25°C
46°
46°
25°C
12
12
WWW.TI.COM
dB
11
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
TLV2770/1/2
VIO
Input offset voltage
TLV2773/4/5
αVIO
Temperature coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VIC = 0, No load
VO = 0,
RS = 50 Ω,,
VDD = ±2.5
2.5 V
VIC = 0,
VO = 0,
RS = 50 Ω,,
VDD = ±2.5
2.5 V
IOH = − 1.3 mA
VOH
Low-level output voltage
VIC = 2.5 V,
IOL = 1.3 mA
VIC = 2.5 V,
IOL = 4.2 mA
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
ci(c)
Common-mode input capacitance
zo
CMRR
VIC = 2.5 V,
RL = 10 kΩ,
kΩ
VO = 1 V to 4 V
TLV277xAI
TYP
MAX
MIN
TYP
MAX
25°C
0.5
2.5
0.5
1.6
0.6
2.7
0.6
1.9
25°C
0.7
2.5
0.7
2.1
Full range
0.78
2.7
0.78
2.2
25 C to
25°C
125°C
2
25°C
1
60
1
60
Full range
2
125
2
125
25°C
2
60
2
60
Full range
6
350
6
350
25°C
4.9
4.9
4.8
4.8
25°C
4.7
4.7
Full range
4.4
4.4
25°C
0.1
0.1
Full range
0.2
0.2
25°C
0.21
0.21
Full range
0.6
0.6
25°C
20
Full range
13
450
20
mV
µV/°C
V/°C
2
Full range
UNIT
pA
pA
V
V
450
V/mV
13
25°C
1012
1012
Ω
f = 10 kHz
25°C
8
8
pF
Closed-loop output impedance
f = 100 kHz,
AV = 10
25°C
20
20
Ω
Common-mode rejection ratio
VIC = 0 to 3.7 V,
VO = VDD /2,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
VIC = VDD /2,
No load
IDD
Supply current (per channel)
VO = VDD /2,
No load
IDD(SHDN)
Supply current shutdown (per
channel)
25°C
60
96
70
96
Full range
60
93
70
93
25°C
70
89
70
89
Full range
70
84
70
84
dB
dB
25°C
1
Full range
2
1
2
2
2
25°C
0.8
1.5
0.8
1.5
Full range
1.3
2
1.3
2
† Full range is − 40°C to 125°C.
12
TLV277xI
MIN
Full range
High-level output voltage
IOH = − 4.2 mA
VOL
TA†
WWW.TI.COM
mA
A
µA
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
TEST
CONDITIONS
PARAMETER
TLV277xI
TA†
MIN
TLV2770
V(ON)
V(OFF)
Turnon voltage level
Turnoff voltage level
TLV2773
TYP
TLV277xAI
MAX
MIN
TYP
2.59
2.59
2.47
2.47
TLV2775
2.48
2.48
TLV2770
2.41
2.41
2.32
2.32
2.29
2.29
AV = 5
TLV2773
25°C
25
C
AV = 5
25°C
25
C
TLV2775
MAX
UNIT
V
V
† Full range is − 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
equivalent input
noise voltage
In
THD + N
TEST CONDITIONS
VO(PP) = 1.5 V,
RL = 10 kΩ
CL = 100 pF,
MIN
TYP
25°C
5
Full
range
4.7
φm
t(OFF)
MAX
MIN
TYP
10.5
5
10.5
6
4.7
6
MAX
UNIT
V/µs
f = 1 kHz
25°C
17
17
25°C
12
12
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
Equivalent input noise
current
f = 100 Hz
25°C
0.6
0.6
fA /√Hz
RL = 600 Ω,
f = 1 kHz
0.005%
0.005%
Total harmonic
distortion plus noise
0.016%
0.016%
0.095%
0.095%
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = −1,
Step = 1.5 V to
3.5 V,
RL = 600 Ω,
CL = 100 pF
AV = 1
AV = 10
25°C
25
C
Phase margin at unity
gain
RL = 600 Ω,
RL = 600 Ω,
25°C
5.1
5.1
0.1%
25°C
0.134
0.134
Amplifier
turnon
time
Amplifier
turnoff
time
TLV2770
TLV2773
TLV2775
TLV2770
TLV2773
TLV2775
nV/√Hz
MHz
µss
0.01%
CL = 100 pF
Gain margin
t(ON)
TLV277xAI
f = 10 kHz
AV = 100
ts
TLV277xI
TA†
25°C
1.97
1.97
25°C
46°
46°
25°C
AV = 5,
RL = Open,
Measured to 50% point
AV = 5,
RL = Open,
Measured to 50% point
25°C
25
C
25°C
25
C
12
12
1.2
1.2
2.4
2.4
1.9
1.9
335
335
444
444
345
345
dB
µs
ns
† Full range is − 40°C to 125°C.
WWW.TI.COM
13
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
TLV2772Q
TLV2772M
MIN
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode
input voltage range
VDD = ± 1.35 V,
VIC = 0,
RS = 50 Ω
CMRR > 60 dB,
TYP
MAX
25°C
0.44
Full range
0.47
VO = 0,
25°C
to
125°C
2
High-level output
voltage
Low-level output
voltage
VIC = 1.35 V,
IOL = 2.2 mA
VIC = 1.35 V,
VO = 0.6 V to 2.1 V
RL = 10 kΩ,‡
Large-signal
differential voltage
amplification
ri(d)
Differential input
resistance
ci(c)
Common-mode
input capacitance
f = 10 kHz,
zo
Closed-loop
output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode
rejection ratio
VIC = VICR (min),
RS = 50 Ω
VO = 1.5 V,
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current
(per channel)
VO = 1.5 V,
No load
0.47
1.9
60
125
25°C
2
60
2
60
Full range
6
350
6
350
25°C
25
C
0
to
1.4
−0.3
to
1.7
0
to
1.4
−0.3
to
1.7
Full range
0
to
1.4
−0.3
to
1.7
0
to
1.4
−0.3
to
1.7
2.6
V
2.1
0.1
Full range
0.1
0.2
0.2
0.21
Full range
V
0.21
0.6
13
V
2.4
2.1
Full range
pA
2.45
2.4
20
pA
2.6
2.45
25°C
mV
µV/°C
V/°C
2
2
380
0.6
20
380
V/mV
13
25°C
1012
1012
Ω
25°C
8
8
pF
25°C
25
25
Ω
25°C
60
84
60
84
Full range
60
82
60
82
25°C
70
89
70
89
Full range
70
84
70
84
dB
dB
25°C
Full range
† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
‡ Referenced to 1.35 V
14
2.7
1
25°C
AVD
1.6
60
25°C
VOL
0.44
125
Full range
IOL = 0.675 mA
2.5
2
25°C
VIC = 1.35 V,
MAX
1
Full range
IOH = − 2.2 mA
UNIT
TYP
25°C
25°C
VOH
MIN
Full range
RS = 50 Ω
IOH = − 0.675 mA
TLV2772AQ
TLV2772AM
WWW.TI.COM
1
2
2
1
2
2
mA
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input
noise voltage
VN(PP)
Peak-to-peak
equivalent input
noise voltage
In
THD + N
VO(PP) = 0.8 V,
RL = 10 kΩ
CL = 100 pF,
MIN
TYP
25°C
5
Full
range
4.7
φm
TLV2772AQ
TLV2772AM
MAX
MIN
TYP
9
5
9
6
4.7
6
UNIT
MAX
V/µs
f = 1 kHz
25°C
21
21
f = 10 kHz
25°C
17
17
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
Equivalent input
noise current
f = 100 Hz
25°C
0.6
0.6
fA /√Hz
RL = 600 Ω,
f = 1 kHz
0.0085%
0.0085%
Total harmonic
distortion plus noise
0.025%
0.025%
0.12%
0.12%
AV = 1
AV = 10
25°C
25
C
AV = 100
ts
TLV2772Q
TLV2772M
TA†
TEST CONDITIONS
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = −1,
Step = 0.85 V to
1.85 V,
RL = 600 Ω,
CL = 100 pF
Phase margin at
unity gain
RL = 600 Ω,
RL = 600 Ω,
25°C
4.8
4.8
0.1%
25°C
0.186
0.186
0.01%
25°C
3.92
3.92
25°C
46°
46°
12
12
nV/√Hz
MHz
µss
CL = 100 pF
Gain margin
25°C
† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
WWW.TI.COM
dB
15
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
TLV2772Q
TLV2772M
MIN
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode
input voltage range
VDD = ± 2.5 V,
VIC = 0,
CMRR > 60 dB,
TYP
MAX
25°C
0.36
Full range
0.4
VO = 0,
RS = 50 Ω
25°C
to
125°C
2
High-level output
voltage
Low-level output
voltage
VIC = 2.5 V,
IOL = 4.2 mA
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 10 kΩ,‡
Large-signal
differential voltage
amplification
ri(d)
Differential input
resistance
ci(c)
Common-mode
input capacitance
f = 10 kHz,
zo
Closed-loop
output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode
rejection ratio
VIC = VICR (min),
RS = 50 Ω
VO = 3.7 V,
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current
(per channel)
VO = 1.5 V,
No load
0.4
1.9
60
125
25°C
2
60
2
60
Full range
6
350
6
350
25°C
25
C
0
to
3.7
−0.3
to
3.8
0
to
3.7
−0.3
to
3.8
Full range
0
to
3.7
−0.3
to
3.8
0
to
3.7
−0.3
to
3.8
4.9
V
4.4
0.1
Full range
0.1
0.2
0.2
0.21
Full range
V
0.21
0.6
13
V
4.7
4.4
Full range
pA
4.8
4.7
20
pA
4.9
4.8
25°C
mV
µV/°C
V/°C
2
2
450
0.6
20
450
V/mV
13
25°C
1012
1012
Ω
25°C
8
8
pF
25°C
20
20
Ω
25°C
60
96
60
96
Full range
60
93
60
93
25°C
70
89
70
89
Full range
70
84
70
84
dB
dB
25°C
Full range
† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
‡ Referenced to 2.5 V
16
2.7
1
25°C
AVD
1.6
60
25°C
VOL
0.36
125
Full range
IOL = 1.3 mA
2.5
2
25°C
VIC = 2.5 V,
MAX
1
Full range
IOH = − 4.2 mA
UNIT
TYP
25°C
25°C
VOH
MIN
Full range
RS = 50 Ω
IOH = − 1.3 mA
TLV2772AQ
TLV2772AM
WWW.TI.COM
1
2
2
1
2
2
mA
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input
noise voltage
VN(PP)
Peak-to-peak
equivalent input
noise voltage
In
THD + N
VO(PP) = 1.5 V,
RL = 10 kΩ
CL = 100 pF,
MIN
TYP
25°C
5
Full
range
4.7
φm
TLV2772AQ
TLV2772AM
MAX
MIN
TYP
10.5
5
10.5
6
4.7
6
UNIT
MAX
V/µs
f = 1 kHz
25°C
17
17
f = 10 kHz
25°C
12
12
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
Equivalent input
noise current
f = 100 Hz
25°C
0.6
0.6
fA /√Hz
RL = 600 Ω,
f = 1 kHz
0.005%
0.005%
Total harmonic
distortion plus noise
0.016%
0.016%
0.095%
0.095%
AV = 1
AV = 10
25°C
25
C
AV = 100
ts
TLV2772Q
TLV2772M
TA†
TEST CONDITIONS
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = −1,
Step = 1.5 V to
3.5 V,
RL = 600 Ω,
CL = 100 pF
Phase margin at unity
gain
RL = 600 Ω,
RL = 600 Ω,
25°C
5.1
5.1
0.1%
25°C
0.134
0.134
0.01%
25°C
1.97
1.97
25°C
46°
46°
12
12
nV/√Hz
MHz
µss
CL = 100 pF
Gain margin
25°C
† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
WWW.TI.COM
dB
17
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode input voltage
Distribution
IIB/IIO
VOH
Input bias and input offset currents
vs Free-air temperature
High-level output voltage
vs High-level output current
8,9
VOL
VO(PP)
Low-level output voltage
vs Low-level output current
10,11
Maximum peak-to-peak output voltage
vs Frequency
12,13
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
VO
AVD
Output voltage
vs Differential input voltage
Large-signal differential voltage amplification and phase margin
vs Frequency
17,18
AVD
Differential voltage amplification
vs Load resistance
vs Free-air temperature
19
20,21
zo
Output impedance
vs Frequency
22,23
CMRR
Common-mode rejection ratio
vs Frequency
vs Free-air temperature
kSVR
Supply-voltage rejection ratio
vs Frequency
IDD
Supply current (per channel)
vs Supply voltage
28
SR
Slew rate
vs Load capacitance
vs Free-air temperature
29
30
VO
VO
Voltage-follower small-signal pulse response
31,32
Voltage-follower large-signal pulse response
33,34
VO
VO
Inverting small-signal pulse response
35,36
Inverting large-signal pulse response
37,38
Vn
Equivalent input noise voltage
vs Frequency
Noise voltage (referred to input)
Over a 10-second period
Total harmonic distortion plus noise
vs Frequency
THD + N
7
14
15
16
24
25
26,27
39,40
41
42,43
Gain-bandwidth product
vs Supply voltage
44
B1
Unity-gain bandwidth
vs Load capacitance
45
φm
Phase margin
vs Load capacitance
46
Gain margin
vs Load capacitance
47
Amplifier with shutdown pulse turnon/off characteristics
48 − 50
Supply current with shutdown pulse turnon/off characteristics
18
1,2
3,4
5,6
51 − 53
Shutdown supply current
vs Free-air temperature
Shutdown forward/reverse isolation
vs Frequency
WWW.TI.COM
54
55, 56
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
40
40
VDD = 2.7 V
RL = 10 kΩ
TA = 25°C
35
Percentage of Amplifiers − %
Percentage of Amplifiers − %
35
30
25
20
15
10
VDD = 5 V
RL = 10 kΩ
TA = 25°C
30
25
20
15
10
5
5
0
−2.5 −2 −1.5 −1 −0.5 0
0.5
1
1.5
2
0
2.5
−2.5 −2 −1.5 −1 −0.5 0
VIO − Input Offset Voltage − mV
Figure 1
2
2.5
4
4.5
2
VDD = 2.7 V
TA = 25°C
1.5
VIO − Input Offset Voltage − mV
VIO − Input Offset Voltage − mV
1.5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1
0.5
0
−0.5
−1
VDD = 5 V
TA = 25°C
1
0.5
0
−0.5
−1
−1.5
−1.5
−2
−1
1
Figure 2
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1.5
0.5
VIO − Input Offset Voltage − mV
−0.5
0
0.5
1
1.5
2
2.5
3
VIC − Common-Mode Input Voltage − V
−2
−1 −0.5
0
0.5
1
1.5
2
2.5
3
3.5
VIC − Common-Mode Input Voltage − V
Figure 3
Figure 4
WWW.TI.COM
19
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
35
35
VDD = 2.7 V
TA = 25°C to 125°C
25
20
15
10
5
0
VDD = 5 V
TA = 25°C to 125°C
30
Percentage of Amplifiers − %
Percentage of Amplifiers − %
30
25
20
15
10
5
−6
−3
0
3
6
9
0
12
−6
αVIO − Temperature Coefficient − µV/°C
−3
0
Figure 5
9
12
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0.20
3
VDD = 5 V
VIC = 0
VO = 0
RS = 50 Ω
VDD = 2.7 V
VOH − High-Level Output Voltage − V
I IB and I IO − Input Bias and Input Offset Currents − nA
6
Figure 6
INPUT BIAS AND OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
0.15
IIB
0.10
0.05
IIO
2.5
2
TA = −40°C
1.5
TA = 125°C
1
TA = 25°C
0.5
TA = 85°C
0
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
0
0
5
10
15
20
IOH − High-Level Output Current − mA
Figure 7
20
3
αVIO − Temperature Coefficient − µV/°C
Figure 8
WWW.TI.COM
25
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
3
VDD = 5 V
TA = 25°C
4
VDD = 2.7 V
VOL − Low-Level Output Voltage − V
VOH − High-Level Output Voltage − V
4.5
TA = −40°C
3.5
TA = 25°C
3
2.5
TA = 125°C
2
1.5
TA = 85°C
1
0.5
0
0
5
10
15
20 25
30
35 40 45
50
2.5
TA = 125°C
1.5
TA = 25°C
1
TA = −40°C
0.5
0
55
TA = 85°C
2
0
5
IOH − High-Level Output Current − mA
10
Figure 9
TA = 85°C
2
1.5
TA = 25°C
1
TA = −40°C
0.5
0
20
30
40
50
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
VOL − Low-Level Output Voltage − V
TA = 125°C
2.5
10
25
30
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
3
0
20
Figure 10
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 5 V
15
IOL − Low-Level Output Current − mA
IOL − Low-Level Output Current − mA
5
RL = 10 kΩ
VDD = 5 V
1% THD
4
3
2
VDD = 2.7 V
2% THD
1
0
100
1000
10000
f − Frequency − kHz
Figure 11
Figure 12
WWW.TI.COM
21
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
5
60
THD = 5%
RL = 600 Ω
TA = 25°C
4.5
4
I OS − Short-Circuit Output Current − mA
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
3.5
VDD = 5 V
3
2.5
VDD = 2.7 V
2
1.5
1
0.5
0
100
1000
45
15
0
−15
−30
VID = 100 mV
−45
3
f − Frequency − kHz
VID = −100 mV
20
VDD = 5 V
VO = 2.5 V
0
−20
VID = 100 mV
−25
RL = 600 Ω
TA = 25°C
VDD = 5 V
3
VDD = 2.7 V
2
1
0
25
50
75
100
125
TA − Free-Air Temperature − °C
0
−1000 −750 −500 −250
0
250
500
750
VID − Differential Input Voltage − µV
Figure 15
22
7
4
VO − Output Voltage − V
I OS − Short-Circuit Output Current − mA
5
−50
6
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
60
−60
−75
5
Figure 14
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
−40
4
VDD − Supply Voltage − V
Figure 13
40
VID = −100 mV
30
−60
2
10000
VO = VDD /2
VIC = VDD /2
TA = 25°C
Figure 16
WWW.TI.COM
1000
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
VDD = 2.7 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
80
AVD
300
240
60
180
40
120
Phase
20
60
0
0
−60
−20
−40
100
φ m − Phase Margin − degrees
A VD − Large-Signal Differential Amplification − dB
100
1k
10k
100k
1M
−90
10M
f − Frequency − Hz
Figure 17
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
VDD = 5 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
80
AVD
60
240
180
40
120
Phase
20
60
0
0
−20
−40
100
300
φ m − Phase Margin − degrees
A VD − Large-Signal Differential Amplification − dB
100
−60
1k
10k
100k
1M
−90
10M
f − Frequency − Hz
Figure 18
WWW.TI.COM
23
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
TA = 25°C
A VD − Differential Voltage Amplification − V/mV
A VD − Differential Voltage Amplification − V/mV
250
200
VDD = 2.7 V
VDD = 5 V
150
100
50
0
0.1
1
100
10
1000
RL = 10 kΩ
RL = 1 MΩ
100
RL = 600 Ω
10
1
VDD = 2.7 V
VIC = 1.35 V
VO = 0.6 V to 2.1 V
0.1
−75
RL − Load Resistance − kΩ
−50
−25
0
100
125
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
RL = 10 kΩ
VDD = 2.7 V
TA = 25°C
RL = 1 MΩ
ZO − Output Impedance − Ω
A VD − Differential Voltage Amplification − V/mV
75
Figure 20
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
RL = 600 Ω
10
1
10
AV = 100
1
AV = 10
0.10
AV = 1
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
0.1
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
0.01
100
1k
10k
f − Frequency − Hz
Figure 21
24
50
TA − Free-Air Temperature − °C
Figure 19
100
25
Figure 22
WWW.TI.COM
100k
1M
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
90
CMRR − Common-Mode Rejection Ratio − dB
Zo − Output Impedance − Ω
VDD = ±2.5 V
TA = 25°C
10
Av = 100
1
Av = 10
0.1
Av = 1
0.01
100
1k
10k
100k
VDD = 5 V
80
70
60
50
40
10
1M
100
f − Frequency − Hz
100k
1M
10M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
120
120
k SVR − Supply-Voltage Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
10k
Figure 24
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
115
110
105
VDD = 2.7 V
95
90
VDD = 5 V
85
80
−40 −20
1k
f − Frequency − Hz
Figure 23
100
VIC = 1.35 V
and 2.5 V
TA = 25°C
VDD = 2.7 V
0
20
40
60
80
100 120 140
TA − Free-Air Temperature − °C
VDD = 2.7 V
TA = 25°C
kSVR+
100
kSVR−
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
f − Frequency − Hz
Figure 25
Figure 26
WWW.TI.COM
25
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY CURRENT (PER CHANNEL)
vs
SUPPLY VOLTAGE
100
1.6
VDD = 5 V
TA = 25°C
kSVR+
I DD − Supply Current (Per Channel) − mA
k SVR − Supply Voltage Rejection Ratio − dB
120
kSVR−
80
60
40
20
0
10
100
1k
10 k
100 k
1M
TA = 125°C
1.4
1.2
TA = 25°C
1
TA = 0°C
TA = − 40°C
0.8
0.6
0.4
0.2
0
2.5
10 M
TA = 85°C
3
f − Frequency − Hz
3.5
4
Figure 27
5
5.5
6
6.5
7
Figure 28
SLEW RATE
vs
LOAD CAPACITANCE
SLEW RATE
vs
FREE-AIR TEMPERATURE
16
14
VDD = 5 V
AV = −1
TA = 25°C
SR+
14
13
SR−
12
SR − Slew Rate − µs
SR − Slew Rate − V/ µs
4.5
VDD − Supply Voltage − V
10
8
6
VDD = 2.7 V
RL = 10 kΩ
CL = 100 pF
AV = 1
12
11
10
4
9
2
0
10
100
1k
10k
100k
CL − Load Capacitance − pF
−50
−25
0
25
50
75
TA − Free-Air Temperature − °C
Figure 29
26
8
−75
Figure 30
WWW.TI.COM
100
125
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
100
60
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
80
VO − Output Voltage − mV
80
VO − Output Voltage − mV
100
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
40
20
0
−20
−40
60
40
20
0
−20
−40
−60
0
0.5
1
1.5
2
2.5
3 3.5
4
4.5
−60
5
0
0.5
1
1.5
t − Time − µs
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
3.5
4
4.5
5
6
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
5
VO − Output Voltage − V
VO − Output Voltage − V
3
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
3
2
2.5
Figure 32
Figure 31
2.5
2
t − Time − µs
1.5
1
0.5
0
−0.5
4
3
2
1
0
−1
−1
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
t − Time − µs
−2
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
t − Time − µs
Figure 34
Figure 33
WWW.TI.COM
27
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
INVERTING SMALL-SIGNAL
PULSE RESPONSE
INVERTING SMALL-SIGNAL
PULSE RESPONSE
100
60
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = −1
TA = 25°C
80
VO − Output Voltage − mV
80
VO − Output Voltage − mV
100
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = −1
TA = 25°C
40
20
0
−20
−40
60
40
20
0
−20
−40
−60
0
0.5
1
1.5
2
2.5
3 3.5
4
4.5
−60
5
0
0.5
1
1.5
t − Time − µs
3
4
2.5
3.5
2
3
1.5
1
0.5
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = −1
TA = 25°C
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
t − Time − µs
5
2
1.5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = −1
TA = 25°C
1
1
0
0.5
1
1.5
2 2.5
3
t − Time − µs
Figure 38
Figure 37
28
4.5
2.5
0.5
−1
0
4
INVERTING LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO − Output Voltage − V
INVERTING LARGE-SIGNAL
PULSE RESPONSE
−0.5
3.5
Figure 36
Figure 35
0
2
2.5
3
t − Time − µs
WWW.TI.COM
3.5
4
4.5
5
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
160
140
120
100
80
60
40
VDD = 5 V
RS = 20 Ω
TA = 25°C
120
100
80
60
40
20
20
0
10
1k
100
0
10k
10
100
f − Frequency − Hz
1k
10k
f − Frequency − Hz
Figure 39
Figure 40
NOISE VOLTAGE
OVER A 10 SECOND PERIOD
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
300
200
Noise Voltage − nV
Vn − Input Noise Voltage − nV/ Hz
140
Vn − Input Noise Voltage − nV Hz
VDD = 2.7 V
RS = 20 Ω
TA = 25°C
100
GND
−100
−200
−300
0
1
2
3
4
5
6
7
8
9
10
t − Time − s
Figure 41
WWW.TI.COM
29
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10
VDD = 2.7 V
RL = 600 Ω
TA = 25°C
1
Av = 100
0.1
Av = 10
0.01
Av = 1
0.001
10
10
THD+N − Total Harmonic Distortion Plus Noise − %
THD+N − Total Harmonic Distortion Plus Noise − %
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
100
1k
10k
VDD = 5 V
RL = 600 Ω
TA = 25°C
1
0.1
Av = 100
Av = 10
0.01
Av = 1
0.001
10
100k
100
f − Frequency − Hz
Figure 42
Unity-Gain Bandwidth − MHz
Gain-Bandwidth Product − MHz
5
4.8
4.6
4.4
4.2
VDD = 5 V
RL = 600 Ω
TA = 25°C
4
3
Rnull = 100
2
Rnull = 50
Rnull = 20
1
Rnull = 0
4
2
2.5
3
3.5
4
4.5
5
5.5
6
VDD − Supply Voltage − V
0
10
100
1k
10k
CL − Load Capacitance − pF
Figure 44
30
100k
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
RL = 600 Ω
CL = 100 pF
f = 10 kHz
TA = 25°C
5
10k
Figure 43
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
5.2
1k
f − Frequency − Hz
Figure 45
WWW.TI.COM
100k
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
PHASE MARGIN
vs
LOAD CAPACITANCE
GAIN MARGIN
vs
LOAD CAPACITANCE
90
70
10
Rnull = 50 Ω
60
50
Rnull = 20 Ω
40
30
20
Rnull = 0
Rnull = 50 Ω
10k
40
10
100K
100
10k
1k
CL − Load Capacitance − pF
CL − Load Capacitance − pF
Figure 46
Figure 47
TLV2770
TLV2773
AMPLIFIER WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
AMPLIFIER WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
2
8
7
6
6
4
VO − Output Voltage − V
5
0
SHDN = GND
4
VDD = 5 V
AV = 5
TA = 25°C
3
2
−6
1
−8
8
7
SHDN = VDD
6
2
VDD = 5 V
SHDN = GND
AV = 5
TA = 25°C
Channel 1 Switched
Channel 2 SHDN MODE
0
−2
4
3
2
Channel 1
−4
5
1
−6
VO
VO
0
−10
−2
Shutdown Signal − V
SHDN = VDD
8
100K
VO − Output Voltage − V
1k
100
4
Shutdown Signal − V
Rnull = 100 Ω
25
Rnull = 20 Ω
6
−12
−4
20
35
0
10
−4
Rnull = 0
15
30
10
−2
VDD = 5 V
RL = 600 Ω
TA = 25°C
5
Rnull = 100 Ω
Gain Margin − dB
φ m − Phase Margin − degrees
80
0
VDD = 5 V
RL = 600 Ω
TA = 25°C
0
2
4
6
8
10
12
0
−8
−1
14
−10
−2.5
t − Time − µs
0
2.5
5
7.5
10
12.5
−1
15
t − Time − µs
Figure 48
Figure 49
WWW.TI.COM
31
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
TLV2775 − CHANNEL 1
TLV2770
AMPLIFIER WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
SUPPLY CURRENT WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
2
VDD = 5 V
SHDN = GND
AV = 5
TA = 25°C
Channel 1/2 Switched
Channel 3/4 SHDN MODE
0
−2
−10
−2.5
2
5
0
4
3
1
−6
−8
6
2
Channel 1
−4
4
VO
2.5
5
7.5
10
12.5
18
15
SHDN = GND
12
−2
VDD = 5 V
AV = 5
TA = 25°C
−4
−6
−10
−1
15
−12
−4
−2
0
2
6
8
10
12
Figure 51
TLV2773
TLV2775
SUPPLY CURRENT WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
6
60
3
50
0
SHDN = GND
40
−3
VDD = 5 V
AV = 5
TA = 25°C
Channel 1 Switched
Channel 2 SHDN MODE
30
20
10
−12
IDD
0
−15
−18
−5
−2.5
0
2.5
5
7.5
10
12.5
70
SHDN = VDD
60
50
SHDN = GND
Shutdown Signal − V
0
70
I DD − Supply Current − mA
SHDN = VDD
−9
−3
14
t − Time − µs
6
Shutdown Signal − V
4
SUPPLY CURRENT WITH SHUTDOWN PULSE
TURNON/OFF CHARACTERISTICS
−6
6
0
Figure 50
3
9
3
IDD
t − Time − µs
−3
15
t − Time − µs
40
−3
VDD = 5 V
AV = 5
TA = 25°C
Channel 1/2 Switched
Channel 3/4 SHDN MODE
−6
−9
20
IDD
−15
−18
−5
0
−2.5
0
2.5
5
7.5
Figure 53
WWW.TI.COM
30
10
−12
t − Time − µs
Figure 52
32
21
−8
0
0
SHDN = VDD
10
12.5
−3
15
I DD − Supply Current − mA
Shutdown Signal − V
4
7
24
I DD − Supply Current − mA
SHDN = VDD
6
Shutdown Signal − V
6
8
VO − Output Voltage − V
8
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
TLV2770
5
4
VDD 5 V
3
2
VDD 2.7 V
1
100
−50
−25
0
25
50
75
100
125
60
40
20
−20
10
TA − Free-Air Temperature − °C
VI(PP) = 0.1 V
80
0
0
−75
VI(PP) = 2.7 V
120
Shutdown Forward Isolation − dB
6
140
AV = 5
RL = OPEN
SHDN = GND
SHDN MODE
AV = 1
VDD = 2.7 V
RL = 10 kΩ
CL = 20 pF
TA = 25°C
102
Figure 54
103
104
f − Frequency − Hz
105
106
Figure 55
TLV2770
140
SHUTDOWN REVERSE ISOLATION
vs
FREQUENCY
VI(PP) = 2.7 V
120
Shutdown Reverse Isolation − dB
I DD − Shutdown Supply Current − µ A
7
SHUTDOWN FORWARD ISOLATION
vs
FREQUENCY
100
80
60
40
20
0
−20
10
VI(PP) = 0.1 V
SHDN MODE
AV = 1
VDD = 2.7 V
RL = 10 kΩ
CL = 20 pF
TA = 25°C
102
103
104
f − Frequency − Hz
105
106
Figure 56
WWW.TI.COM
33
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
PARAMETER MEASUREMENT INFORMATION
_
Rnull
+
RL
CL
Figure 57
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 58. A minimum value of 20 Ω should work well for most applications.
RF
RG
Input
RNULL
_
Output
+
CLOAD
Figure 58. Driving a Capacitive Load
34
WWW.TI.COM
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB−
RG
V
+
−
VI
IO
ǒ ǒ ǓǓ
1)
R
R
F
"I
G
IB)
R
S
ǒ ǒ ǓǓ
1)
R
R
F
G
"I
IB–
R
F
VO
+
RS
+V
OO
IIB+
Figure 59. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 60).
RG
RF
f
–3dB
−
VO
+
VI
R1
C1
V
O +
V
I
1
2pR1C1
+
ǒ
1)
R
R
F
G
Ǔǒ
Ǔ
1
1 ) sR1C1
Figure 60. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
–3dB
RG =
+
(
1
2pRC
RF
1
2−
Q
)
Figure 61. 2-Pole Low-Pass Sallen-Key Filter
WWW.TI.COM
35
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
using the TLV2772 as an accelerometer interface
The schematic, shown in Figure 62, shows the ACH04-08-05 interfaced to the TLV1544 10-bit analog-to-digital
converter (ADC).
The ACH04-08-05 is a shock sensor designed to convert mechanical acceleration into electrical signals. The
sensor contains three piezoelectric sensing elements oriented to simultaneously measure acceleration in three
orthogonal, linear axes (x, y, z). The operating frequency is 0.5 Hz to 5 kHz. The output is buffered with an
internal JFET and has a typical output voltage of 1.80 mV/g for the x and y axis and 1.35 mV/g for the z axis.
Amplification and frequency shaping of the shock sensor output is done by the TLV2772 rail-to-rail operational
amplifier. The TLV2772 is ideal for this application as it offers high input impedance, good slew rate, and
excellent dc precision. The rail-to-rail output swing and high output drive are perfect for driving the analog input
of the TLV1544 ADC.
1.23 V
C2
2.2 nF
R3
10 kΩ
R4
100 kΩ
3V
R2
1 MΩ
1 Axis ACH04−08−05
3V
C1
0.22 µF
+
3 _
1
4
R1
100 kΩ
R5
1 kΩ
8
2
1/2
TLV2772
C3
0.22 µF
Signal Conditioning
3V
R6
2.2 kΩ
1.23 V
Shock Sensor
Output to
TLV1544 (ADC)
1.23 V
C
R
TLV431
A
Voltage Reference
Figure 62. Accelerometer Interface Schematic
The sensor signal must be amplified and frequency-shaped to provide a signal the ADC can properly convert
into the digital domain. Figure 62 shows the topology used in this application for one axis of the sensor. This
system is powered from a single 3-V supply. Configuring the TLV431 with a 2.2-kΩ resistor produces a reference
voltage of 1.23 V. This voltage is used to bias the operational amplifier and the internal JFETs in the shock
sensor.
36
WWW.TI.COM
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
gain calculation
Since the TLV2772 is capable of rail-to-rail output using a 3-V supply, VO = 0 (min) to 3 V (max). With no signal
from the sensor, nominal VO = reference voltage = 1.23 V. Therefore, the maximum negative swing from nominal
is 0 V − 1.23 V = −1.23 V and the maximum positive swing is 3 V − 1.23 V = 1.77 V. By modeling the shock sensor
as a low impedance voltage source with output of 2.25 mV/g (max) in the x and y axis and 1.70 mV/g (max) in
the z axis, the gain of the circuit is calculated by equation 1.
Gain +
Output Swing
Sensor Signal Acceleration
(1)
To avoid saturation of the operational amplifier, the gain calculations are based on the maximum negative swing
of −1.23 V and the maximum sensor output of 2.25 mV/g (x and y axis) and 1.70 mV/g (z axis).
Gain (x, y) +
* 1.23 V
+ 10.9
2.25 mVńg * 50 g
(2)
and
Gain (z) +
–1.23 V
+ 14.5
1.70 mVńg –50 g
(3)
By selecting R3 = 10 kΩ and R4 = 100 kΩ, in the x and y channels, a gain of 11 is realized. By selecting
R3 = 7.5 kΩ and R4 = 100 kΩ, in the z channel, a gain of 14.3 is realized. The schematic shows the configuration
for either the x- or y-axis.
bandwidth calculation
To calculate the component values for the frequency shaping characteristics of the signal conditioning circuit,
1 Hz and 500 Hz are selected as the minimum required 3-dB bandwidth.
To minimize the value of the input capacitor (C1) required to set the lower cutoff frequency requires a large value
resistor for R2 is required. A 1-MΩ resistor is used in this example. To set the lower cutoff frequency, the required
capacitor value for C1 is:
C1 +
1
+ 0.159 µF
2p f LOW R 2
(4)
Using a value of 0.22 µF, a more common value of capacitor, the lower cutoff frequency is 0.724 Hz.
To minimize the phase shift in the feedback loop caused by the input capacitance of the TLV2772, it is best to
minimize the value of the feedback resistor R4. However, to reduce the required capacitance in the feedback
loop a large value for R4 is required. Therefore, a compromise for the value of R4 must be made. In this circuit,
a value of 100 kΩ has been selected. To set the upper cutoff frequency, the required capacitor value for C2 is:
C2 +
1
+ 3.18 µF
2p f HIGH R 4
(5)
Using a 2.2-nF capacitor, the upper cutoff frequency is 724 Hz.
R5 and C3 also cause the signal response to roll off. Therefore, it is beneficial to design this roll-off point to begin
at the upper cutoff frequency. Assuming a value of 1 kΩ for R5, the value for C3 is calculated to be
0.22 µF.
WWW.TI.COM
37
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
circuit layout considerations
To achieve the levels of high performance of the TLV277x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D Ground planes—It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
D Short trace runs/compact part placements—Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
D Surface-mount passive components—Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
38
WWW.TI.COM
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general power dissipation considerations
For a given θJA, the maximum power dissipation is shown in Figure 63 and is calculated by the following formula:
P
D
+
Where:
ǒ
T
Ǔ
–T
MAX A
q
JA
PD = Maximum power dissipation of TLV277x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
Maximum Power Dissipation − W
1.75
1.5
1.25
TJ = 150°C
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
−55 −40 −25 −10 5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 63. Maximum Power Dissipation vs Free-Air Temperature
WWW.TI.COM
39
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
shutdown function
Three members of the TLV277x family (TLV2770/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.8 µA/channel,
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care
needs to be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2.
Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to
be pulled to VDD− (not GND) to disable the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figures 48, 49, and 50. The amplifier is powered with
a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and
turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform.
The times for the single, dual, and quad are listed in the data tables. The bump on the rising edge of the TLV2770
output waveform is due to the start-up circuit on the bias generator. For the dual and quad (TLV2773/5), this
bump is attributed to the bias generator’s start-up circuit as well as the crosstalk between the other channel(s),
which are in shutdown.
Figures 55 and 56 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is
powered by ±1.35-V supplies and configured as a voltage follower (AV = 1). The isolation performance is plotted
across frequency for both 0.1 VPP and 2.7 VPP input signals. During normal operation, the amplifier would not
be able to handle a 2.7-VPP input signal with a supply voltage of ±1.35 V since it exceeds the common-mode
input voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown even under
a worst case scenario.
40
WWW.TI.COM
SLOS209G − JANUARY 1998 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts Release 8, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 64 are
generated using the TLV2772 typical electrical and operating characteristics at TA = 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D Maximum positive output voltage swing
D Unity-gain frequency
D Maximum negative output voltage swing
D Common-mode rejection ratio
D Slew rate
D Phase margin
D Quiescent power dissipation
D DC output resistance
D Input bias current
D AC output resistance
D Open-loop voltage amplification
D Short-circuit output current limit
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VDD +
css
egnd
9
rss
2
+
10
IN −
j1
dp
vc
j2
IN+
11
r2
−
53
dc
12
hlim
−
C2
6
GND
−
−
−
+
vln
+
gcm
vlim
ga
8
−
ro1
rd2
54
4
−
91
+
vlp
7
C1
rd1
+ dlp
90
ro2
vb
rp
1
92
fb
−
+
iss
dln
+
de
5
+
ve
* TLV2772 operational amplifier macromodel subcircuit
* created using Parts release 8.0 on 12/12/97 at 10:08
* Parts is a MicroSim product.
*
* connections: noninverting input
*
| inverting input
*
| | positive power supply
*
| | | negative power supply
*
| | | | output
*
| | | | |
.subckt TLV2772
12345
*
c1
11
12
2.8868E-12
c2
6
7
10.000E−12
css
10
99
2.6302E−12
dc
5
53
dy
de
54
5
dy
dlp
90
91
dx
dln
92
90
dx
dp
4
3
dx
egnd
99
0
poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99
poly(5) vb vc ve vlp vln 0
15.513E6 −1E3 1E3 16E6 −16E6
ga
6
0
11 12 188.50E−6
gcm
0
6
10 99 9.4472E−9
iss
hlim
j1
j2
r2
rd1
rd2
ro1
ro2
rp
rss
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
3
90
11
12
6
4
4
8
7
3
10
9
3
54
7
91
0
dx
dy
jx1
.model
jx2
OUT
10
dc
145.50E−6
0
vlim 1K
2
10 jx1
1
10 jx2
9
100.00E3
11
5.3052E3
12
5.3052E3
5
17.140
99
17.140
4
4.5455E3
99
1.3746E6
0
dc 0
53
dc .82001
4
dc .82001
8
dc 0
0
dc 47
92
dc 47
D(Is=800.00E−18)
D(Is=800.00E−18 Rs=1m Cjo=10p)
PJF(Is=2.2500E−12 Beta=244.20E−6
+ Vto=−.99765)
PJF(Is=1.7500E−12 Beta=244.20E−6
+ Vto=−1.002350)
.ends
*$
Figure 64. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
WWW.TI.COM
41
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
5962-9858802QPA
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
9858802QPA
TLV2772AM
Samples
TLV2770AID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2770AI
Samples
TLV2770AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2770AI
Samples
TLV2770CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2770C
Samples
TLV2770CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2770C
Samples
TLV2770CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2770C
Samples
TLV2770IDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
ABP
Samples
TLV2770IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2770I
Samples
TLV2770IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2770I
Samples
TLV2771AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2771AI
Samples
TLV2771CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2771C
Samples
TLV2771CDBVR
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VAMC
Samples
TLV2771CDBVT
ACTIVE
SOT-23
DBV
5
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VAMC
Samples
TLV2771CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2771C
Samples
TLV2771ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2771I
Samples
TLV2771IDBVR
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VAMI
Samples
TLV2771IDBVT
ACTIVE
SOT-23
DBV
5
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VAMI
Samples
TLV2771IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2771I
Samples
TLV2772AID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772AI
Samples
TLV2772AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772AI
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLV2772AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2772AI
Samples
TLV2772AMD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
2772AM
Samples
TLV2772AMDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2772AM
Samples
TLV2772AMJGB
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
9858802QPA
TLV2772AM
Samples
TLV2772AQPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772AQ
Samples
TLV2772CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2772C
Samples
TLV2772CDGK
ACTIVE
VSSOP
DGK
8
80
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
0 to 70
AAF
Samples
TLV2772CDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
0 to 70
AAF
Samples
TLV2772CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2772C
Samples
TLV2772CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2772C
Samples
TLV2772ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772I
Samples
TLV2772IDGK
ACTIVE
VSSOP
DGK
8
80
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
AAG
Samples
TLV2772IDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
AAG
Samples
TLV2772IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772I
Samples
TLV2772IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2772IP
Samples
TLV2772MD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
2772M
Samples
TLV2772QD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772Q
Samples
TLV2772QPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772Q
Samples
TLV2772QPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2772Q
Samples
TLV2772QPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
2772Q
Samples
TLV2773AIN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
TLV2773AI
Samples
Addendum-Page 2
-40 to 125
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLV2773CDGS
ACTIVE
VSSOP
DGS
10
80
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
ABQ
Samples
TLV2773CDGSG4
ACTIVE
VSSOP
DGS
10
80
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
ABQ
Samples
TLV2773IDGSR
ACTIVE
VSSOP
DGS
10
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
ABR
Samples
TLV2774AID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2774A
Samples
TLV2774AIDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2774A
Samples
TLV2774AIN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2774A
Samples
TLV2774AIPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2774A
Samples
TLV2774CD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV2774C
Samples
TLV2774CDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV2774C
Samples
TLV2774CDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV2774C
Samples
TLV2774CN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2774C
Samples
TLV2774CPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2774C
Samples
TLV2774CPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TV2774
Samples
TLV2774ID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2774I
Samples
TLV2774IDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2774I
Samples
TLV2774IDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2774I
Samples
TLV2774IN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2774I
Samples
TLV2774IPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2774
Samples
TLV2774IPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2774
Samples
TLV2775AIN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2775A
Samples
TLV2775AIPW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2775AI
Samples
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLV2775ID
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2775I
Samples
TLV2775IDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2775I
Samples
TLV2775IPWR
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2775I
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of