0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS22962DNYR

TPS22962DNYR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WSON-8_3X3MM-EP

  • 描述:

    IC PWR SWITCH N-CHAN 1:1 8WSON

  • 数据手册
  • 价格&库存
TPS22962DNYR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 TPS22962 5.5V, ,10A, ,4.4mΩ 导通电阻负载开关 1 特性 • • • • 1 • • • • • • • • 3 说明 集成单通道负载开关 VBIAS 电压范围:2.5V 至 5.5V VIN 电压范围:0.8V 至 5.5V 超低 RON 电阻 – VIN = 5V (VBIAS = 5V) 时,RON = 4.4mΩ 10A 最大持续开关电流 低静态电流(VBIAS = 5V 时为 20µA) 低关断电流(VBIAS = 5V 时为 1µA) 低控制输入阀值允许使用 1.2V 或更高电压的通用 输入输出 (GPIO) 接口 VBIAS 和 VIN 范围内的受控和固定转换率 – VIN = 5V (VBIAS = 5V) 时,tR = 2663µs 快速输出放电 (QOD) 带有散热焊盘的小外形尺寸无引线 (SON) 8 端子封 装 静电放电 (ESD) 性能经测试符合 JESD 22 规范 – 2kV 人体模式 (HBM) – 1kV 充电器件模型 (CDM) 2 应用范围 • • • • • • 服务器 医疗 电信系统 计算 工业系统 高电流电压轨 TPS22962 是一款小型,超低 RON,单通道负载开 关,此开关具有受控接通功能。 此器件包含一个可在 0.8V 至 5.5V 输入电压范围内运行的 N 通道金属氧化 物半导体场效应晶体管 (MOSFET),并且支持最大 10A 的持续电流。 器件的超低 RON 和高电流处理能力的组合使得此器件 非常适合于驱动具有非常严格压降耐受的处理器电源 轨。 器件的受控上升时间大大减少了由大容量负载电 容导致的涌入电流,从而减少或消除了电源损耗。 此 开关可由 ON 端子单独控制,此端子能够与微控制器 或低压离散逻辑电路生成的低压控制信号直接对接。 通过集成一个在开关关闭时实现快速输出放电 (QOD) 的 224Ω 下拉电阻器,此器件进一步减少总体解决方 案尺寸。 TPS22962 采用小型 3mm x 3mm 超薄小外形尺寸无 引线 (WSON)-8 封装 (DNY)。 DNY 封装集成有一个 散热焊盘,此散热焊盘可在高电流和高温应用中实现高 功率耗散。 器件在自然通风环境下的额定运行温度范 围为 -40°C 至 85°C。 器件信息(1) 产品型号 封装 TPS22962 封装尺寸(标称值) WSON (8) 3.00mm x 3.00mm (1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。 4 简化电路原理图 VBIAS (2.5 V to 5.5 V) VIN Power Supply RON 与 VIN 之间的关系 (VBIAS = 5V, ,IOUT = -200mA) 6 VOUT Load 5.5 CL CIN ON TPS22962 RON (m ) OFF 5 GND ON 4.5 4 3.5 -40ƒC 3 25ƒC 2.5 85ƒC 2 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 VIN (V) DG007 1 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. English Data Sheet: SLVSCN3 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 目录 1 2 3 4 5 6 7 8 特性 .......................................................................... 应用范围................................................................... 说明 .......................................................................... 简化电路原理图 ........................................................ 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 1 2 3 3 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 3 4 4 4 5 6 7 9 Absolute Maximum Ratings ...................................... Handling Ratings....................................................... Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics, VBIAS = 5.0 V ................... Electrical Characteristics, VBIAS = 2.5 V ................... Switching Characteristics .......................................... Typical Characteristics .............................................. Detailed Description ............................................ 14 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 14 14 14 15 Applications and Implementation ...................... 16 9.1 Application Information............................................ 16 9.2 Typical Application .................................................. 16 10 Power Supply Recommendations ..................... 19 11 Layout................................................................... 19 11.1 Layout Guidelines ................................................. 19 11.2 Layout Example .................................................... 20 12 器件和文档支持 ..................................................... 21 12.1 Trademarks ........................................................... 21 12.2 Electrostatic Discharge Caution ............................ 21 12.3 术语表 ................................................................... 21 13 机械封装和可订购信息 .......................................... 21 5 修订历史记录 Changes from Original (June 2014) to Revision A Page • 完整版的最初发布版本。 ....................................................................................................................................................... 1 2 Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 6 Pin Configuration and Functions WSON (DNY) PACKAGE 8 PIN VIN 1 VIN 2 VIN 8 VOUT VOUT 8 7 VOUT VOUT 7 (Exposed thermal VBIAS 3 ON 4 pad) VIN 1 VIN 2 VIN 3 VBIAS 4 ON (Exposed thermal 6 VOUT VOUT 6 5 GND GND 5 Top View pad) Bottom View Pin Functions PIN I/O DESCRIPTION NAME NO. VIN 1, 2 I Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. VIN Exposed thermal Pad I Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. VBIAS 3 I Bias voltage. Power supply to the device. ON 4 I Active high switch control input. Do not leave floating. GND 5 – Ground. VOUT 6, 7, 8 O Switch output. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. 7 Specifications 7.1 Absolute Maximum Ratings Over operating free-air temperature range (unless otherwise noted) (1) MIN MAX VIN Input voltage range –0.3 6 V VBIAS Bias voltage range –0.3 6 V VOUT Output voltage range –0.3 6 V VON ON pin voltage range –0.3 6 V IMAX Maximum Continuous Switch Current, TA = 70°C 10 A IPLS Maximum Pulsed Switch Current, pulse < 300 µs, 2% duty cycle TJ Maximum junction temperature (1) UNIT 12 A 125 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Copyright © 2014, Texas Instruments Incorporated 3 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 7.2 Handling Ratings MIN Tstg Storage temperature range V(ESD) (1) (2) Electrostatic discharge MAX UNIT –65 150 Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) 0 2 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) 0 1 °C kV JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions Over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VIN Input voltage range 0.8 VBIAS V VBIAS Bias voltage range 2.5 5.5 V VON ON voltage range 0 5.5 V VOUT Output voltage range VIN V VIH, V ON High-level voltage, ON VBIAS = 2.5 V to 5.5 V 1.2 5.5 VIL, ON Low-level voltage, ON VBIAS = 2.5 V to 5.5 V 0 0.5 V TA Operating free-air temperature range –40 85 °C CIN Input Capacitor 1 (1) (1) µF Refer to Detailed Description section. 7.4 Thermal Information TPS22962 THERMAL METRIC (1) DNY 8 PINS RθJA Junction-to-ambient thermal resistance 44.6 RθJCtop Junction-to-case (top) thermal resistance 44.4 RθJB Junction-to-board thermal resistance 17.6 ψJT Junction-to-top characterization parameter 0.4 ψJB Junction-to-board characterization parameter 17.4 RθJCbot Junction-to-case (bottom) thermal resistance 1.1 (1) 4 UNIT °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 7.5 Electrical Characteristics, VBIAS = 5.0 V Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40°C ≤ TA ≤ 85°C (Full) and VBIAS = 5.0 V. Typical values are for TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT CURRENTS AND THRESHOLDS IQ, VBIAS VBIAS quiescent current IOUT = 0, VIN = VBIAS, VON = 5.0 V Full 20.4 26.0 µA ISD, VBIAS VBIAS shutdown current VON = 0 V, VOUT = 0 V Full 1.1 1.5 µA VIN = 5.0 V ISD, VIN VIN shutdown current VON = 0 V, VOUT = 0 V 0.1 VIN = 3.3 V VIN = 1.8 V 0.1 Full 0.1 VIN = 1.05 V 0.1 VIN = 0.8 V 0.1 ION ON pin leakage current VON = 5.5 V Full VHYS, ON pin hysteresis VBIAS = VIN 25°C 113 25°C 4.4 ON µA 0.1 µA mV RESISTANCE CHARACTERISTICS VIN = 5.0 V VIN = 3.3 V RON On-state resistance IOUT = –200 mA, VBIAS = 5.0 V VIN = 2.5 V VIN = 1.8 V VIN = 1.05 V VIN = 0.8 V RPD Output pulldown resistance Copyright © 2014, Texas Instruments Incorporated VIN = 5.0 V, VON = 0 V, VOUT = 1 V Full 25°C 5.6 4.4 Full 25°C 4.4 4.4 4.4 5.0 5.6 4.4 Full Full 5.0 5.6 Full 25°C 5.0 5.6 Full 25°C 5.0 5.6 Full 25°C 5.0 5.0 5.6 224 233 mΩ mΩ mΩ mΩ mΩ mΩ Ω 5 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 7.6 Electrical Characteristics, VBIAS = 2.5 V Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40°C ≤ TA ≤ 85°C (Full) and VBIAS = 2.5 V. Typical values are for TA = 25°C unless otherwise noted. PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT CURRENTS AND THRESHOLDS IQ, VBIAS VBIAS quiescent current IOUT = 0, VIN = VBIAS, VON = 5.0 V Full 9.9 12.5 µA ISD, VBIAS VBIAS shutdown current VON = 0 V, VOUT = 0 V Full 0.5 0.65 µA ISD, VIN VIN shutdown current VON = 0 V, VOUT = 0 V ION ON pin input leakage current VON = 5.5 V Full VHYS, ON pin hysteresis VBIAS = VIN 25°C 83 25°C 4.7 VIN = 2.5 V VIN = 1.8 V VIN = 1.05 V 0.1 0.1 Full 0.1 VIN = 0.8 V ON µA 0.1 0.1 µA mV RESISTANCE CHARACTERISTICS VIN =2.5 V RON On-state resistance IOUT = –200 mA, VBIAS = 2.5 V VIN =1.8 V VIN =1.05 V VIN = 0.8 V RPD 6 Output pulldown resistance VIN = 2.5 V, VON = 0 V, VOUT = 1 V Full 25°C 6.0 4.6 Full 25°C 4.5 5.1 5.7 4.5 Full Full 5.2 5.8 Full 25°C 5.3 5.1 5.7 224 233 mΩ mΩ mΩ mΩ Ω Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 7.7 Switching Characteristics Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up sequence where VIN and VBIAS are already in steady state condition before the ON pin is asserted high. PARAMETER TEST CONDITION MIN TYP MAX UNIT VIN = 5 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time tOFF Turn-off time tR VOUT rise time tF VOUT fall time tD Delay time 2397 4 RL = 10 Ω, CL = 0.1 µF 2663 µs 2 1009 VIN = 3.3 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time 1811 tOFF Turn-off time 4 tR VOUT rise time tF VOUT fall time tD Delay time RL = 10 Ω, CL = 0.1 µF 1756 µs 2 897 VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time 981 tOFF Turn-off time 4 tR VOUT rise time tF VOUT fall time tD Delay time RL = 10 Ω, CL = 0.1 µF 500 µs 2 714 VIN = 2.5 V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time tOFF Turn-off time tR VOUT rise time tF VOUT fall time tD Delay time 1576 8 RL = 10Ω, CL = 0.1 µF 1372 µs 2 865 VIN = 1.8V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time tOFF Turn-off time tR VOUT rise time tF VOUT fall time tD Delay time 1343 7 RL = 10 Ω, CL = 0.1 µF 1006 µs 2 815 VIN = 0.8 V, VON = 5V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) tON Turn-on time tOFF Turn-off time tR VOUT rise time tF VOUT fall time tD Delay time Copyright © 2014, Texas Instruments Incorporated 994 8 RL = 10 Ω, CL = 0.1 µF 502 µs 2 723 7 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn VIN VOUT CIN = 1µF CL + - ON (A) RL ON GND TPS22962 OFF GND GND (1) Rise and fall times of the control signal is 100ns. Figure 1. Test Circuit VON 50% 50% t OFF t ON VOUT 50% 50% tF tR 90% VOUT 10% 10% 90% 10% tD Figure 2. Timing Waveforms 8 Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 7.8 Typical Characteristics 25 1.6 1.4 20 ISD,VBIAS (A) IQ,VBIAS (A) 1.2 15 10 -40ƒC 5 1 0.8 0.6 -40ƒC 0.4 25ƒC 25ƒC 0.2 85ƒC 85ƒC 0 0 2.5 3 3.5 4 4.5 5 5.5 VBIAS (V) VIN = VBIAS 2.5 3 VON = 5 V 4 4.5 5 5.5 VBIAS (V) IOUT = 0 A VIN = VBIAS Figure 3. IQ,VBIAS vs VBIAS DG002 VON = 0 V VOUT = 0 V Figure 4. ISD,VBIAS vs VBIAS 0.03 6.0 0.025 5.5 0.02 5.0 RON (m ISD,VIN (A) 3.5 DG001 0.015 4.5 4.0 0.01 -40ƒC 0.005 3.5 25ƒC 85ƒC 3.0 0 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 VIN (V) VBIAS = 5 V ±40 4.8 VIN = 1.05V VIN =1.2V VIN =1.5V VIN =1.8V VIN =2.5V 10 ±15 35 60 85 110 Junction Temperature (ƒC) DG003_5V VON = 0 V VIN = 0.8V VOUT = 0 V VBIAS = 2.5 V Figure 5. ISD,VIN vs VIN VON = 5 V C006 IOUT = –200 mA Figure 6. RON vs Junction Temperature 6.0 6 5.5 5.5 5 RON (m ) RON (m 5.0 4.5 4.0 VIN = 0.8V VIN = 1.2V VIN = 2.5V VIN = 4.2V 3.5 3.0 ±40 ±15 10 35 60 85 VBIAS = 5 V VON = 5 V 3.5 -40ƒC 25ƒC 2.5 85ƒC 2 110 0.8 1 IOUT = –200 mA 1.2 1.4 1.6 1.8 VIN (V) C006 Figure 7. RON vs Junction Temperature Copyright © 2014, Texas Instruments Incorporated 4 3 VIN = 1.05V VIN = 1.8V VIN = 3.3V VIN =5V Junction Temperature (ƒC) 4.5 VBIAS = 2.5 V VON = 5 V 2 2.2 2.4 DG006 IOUT = –200 mA Figure 8. RON vs VIN 9 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 6 6 5.5 5.5 5 5 4.5 4.5 4 3.5 -40ƒC 3 RON (m ) RON (m ) Typical Characteristics (continued) 4 3.5 3 25ƒC 2.5 VBIAS = 2.5V 2.5 85ƒC 2 VBIAS = 5V 2 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 VIN (V) VBIAS = 5 V 0.8 1.2 1.6 2 2.4 VON = 5 V 2.8 3.2 3.6 4 4.4 4.8 VIN (V) DG007 IOUT = –200 mA TA = 25°C DG012 VON = 5 V Figure 9. RON vs VIN IOUT = –200 mA Figure 10. RON vs VIN 7 240 235 6 225 RON (m RPD ( ) 230 220 215 4 -40°C -40ƒC 210 5 3 25°C 25ƒC 205 85°C 85ƒC 2 200 0.8 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 VBIAS (V) VON = 0 V 1.0 1.4 DG016 VIN = 1.05 V 1.6 1.8 2.0 2.2 2.4 VIN (V) VBIAS = 2.5 V VOUT = 1 V C002 VON = 5 V IOUT = –10 A Figure 12. RON vs VIN at 10A load Figure 11. RPD vs VBIAS 6.0 7.0 5.5 6.5 5.0 VIN = 0.8V VIN = 1.05V VIN =1.2V VIN =1.5V VIN =1.8V VIN =2.5V 6.0 RON (m RON (m ) 1.2 4.5 4.0 5.5 5.0 3.5 -40°C 3.0 25°C 4.5 85°C 2.5 4.0 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 VIN (V) VBIAS = 5 V VON = 5 V Figure 13. RON vs VIN at 10A load 10 4.4 4.8 1 2 4 5 6 7 IOUT (A) C001 IOUT = –10 A 3 VBIAS = 2.5 V VON = 5 V 8 9 10 C002 TA = 25°C Figure 14. RON vs IOUT Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 Typical Characteristics (continued) 6.5 VIN = 0.8V VIN = 1.2V VIN = 1.8V VIN = 3.3V VIN =5V 6.0 0.12 0.1 VHYS (V) RON (m ) 5.5 0.14 VIN = 1.05V VIN = 1.5V VIN = 2.5V VIN = 4.2V 5.0 4.5 4.0 3.5 0.08 0.06 0.04 -40ƒC 0.02 25ƒC 85ƒC 3.0 1 2 3 4 5 6 7 8 9 IOUT (A) VBIAS = 5 V 0 10 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 VBIAS (V) C001 VON = 5 V TA = 25°C VIN = VBIAS Figure 15. RON vs IOUT Figure 16. VHYS vs VBIAS 1.2 1.2 1.1 1.1 1 1 VIH,ON (V) VIL,ON (V) DG017HYS 0.9 0.8 0.7 -40ƒC 0.6 25ƒC 0.9 0.8 0.7 -40ƒC 0.6 25ƒC 85ƒC 85ƒC 0.5 0.5 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 VBIAS (V) VIN = VBIAS 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 VBIAS (V) DG098 IOUT = 0 A VIN = VBIAS Figure 17. VIL,ON vs VBIAS DG017H IOUT = 0 A Figure 18. VIH,ON vs VBIAS 1000 1200 1100 900 1000 900 tD (…s) tD (…s) 800 700 800 700 600 -40ƒC 500 25ƒC -40ƒC 600 25ƒC 500 85ƒC 85ƒC 400 400 0.8 1.05 1.3 1.55 1.8 VIN (V) VBIAS = 2.5 V RL = 10 Ω Figure 19. tD vs VIN Copyright © 2014, Texas Instruments Incorporated 2.05 2.3 0.8 1.2 1.6 CL = 0.1 µF 2 2.4 2.8 3.2 3.6 VIN (V) DG018 VBIAS = 5 V RL = 10 Ω 4 4.4 4.8 DG019 CL = 0.1 µF Figure 20. tD vs VIN 11 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 4 4 3 3 tF (…s) tF (…s) Typical Characteristics (continued) 2 -40ƒC 1 2 -40ƒC 1 25ƒC 25ƒC 85ƒC 85ƒC 0 0 0.8 1.05 1.3 1.55 1.8 2.05 2.3 VIN (V) RL = 10 Ω VBIAS = 2.5 V 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 VIN (V) DG020 CL = 0.1 µF RL = 10 Ω VBIAS = 5 V Figure 21. tF vs VIN DG021 CL = 0.1 µF Figure 22. tF vs VIN 12 6 11 5 9 tOFF (…s) tOFF (…s) 10 8 7 -40ƒC 6 4 -40ƒC 3 25ƒC 5 25ƒC 85ƒC 85ƒC 4 2 0.8 1.05 1.3 1.55 1.8 2.05 2.3 VIN (V) 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 VIN (V) DG022 RL = 10 Ω VBIAS = 2.5 V 0.8 CL = 0.1 µF Figure 23. tOFF vs VIN DG024 RL = 10 Ω VBIAS = 5 V CL = 0.1 µF Figure 24. tOFF vs VIN 1800 3000 1600 2500 tON (…s) tON (…s) 1400 1200 2000 1500 1000 -40ƒC 800 -40ƒC 1000 25ƒC 25ƒC 85ƒC 85ƒC 600 500 0.8 1.05 1.3 1.55 1.8 VIN (V) VBIAS = 2.5 V RL = 10 Ω Figure 25. tON vs VIN 12 2.05 2.3 0.8 1.2 1.6 CL = 0.1 µF 2 2.4 2.8 3.2 3.6 VIN (V) DG025 VBIAS = 5 V RL = 10 Ω 4 4.4 4.8 DG026 CL = 0.1 µF Figure 26. tON vs VIN Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 1600 3000 1400 2500 1200 2000 tR (…s) tR (…s) Typical Characteristics (continued) 1000 800 1500 1000 -40ƒC 600 -40ƒC 500 25ƒC 25ƒC 85ƒC 85ƒC 400 0 0.8 1.05 1.3 1.55 1.8 2.05 2.3 VIN (V) RL = 10 Ω VBIAS = 2.5 V 0.8 CL = 0.1 µF 3750 3000 3250 2750 2750 2250 tR (…s) tR (…s) 2500 2000 1750 VBIAS = 2.5V VBIAS = 3.3V VBIAS = 3.6V VBIAS = 4.2V VBIAS = 5.0V VBIAS = 5.5V 1500 1250 1000 750 500 4 RL = 10 Ω 3.2 3.6 4 4.4 4.8 DG028 RL = 10 Ω VIN = 0.8V VIN =1.2V VIN =1.8V VIN =3.3V VIN =4.2V CL = 0.1 µF CL = 0.1 µF VIN = 1.05V VIN =1.5V VIN =2.5V VIN =3.6V VIN =5.0V 1750 1250 750 250 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 VBIAS (V) DG023 Figure 29. tR vs VIN for Various VBIAS Copyright © 2014, Texas Instruments Incorporated 2.8 2250 4.4 4.8 5.2 VIN (V) TA = 25°C 2.4 Figure 28. tR vs VIN 3250 2.4 2.8 3.2 3.6 2 VBIAS = 5 V 3500 2 1.6 VIN (V) Figure 27. tR vs VIN 0.8 1.2 1.6 1.2 DG027 TA = 25°C RL = 10 Ω DG030 CL = 0.1 µF Figure 30. tR vs VBIAS for Various VIN 13 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 8 Detailed Description 8.1 Overview The device is a 5.5 V, 10 A load switch in a 8-pin SON package. To reduce voltage drop for low voltage and high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out voltage through the device. The device has a controlled and fixed slew rate which helps reduce or eliminate power supply droop due to large inrush currents. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components, which reduces solution size and bill of materials (BOM) count. 8.2 Functional Block Diagram VIN Charge Pump VBIAS ON Control Logic Driver VOUT GND 8.3 Feature Description 8.3.1 On/off Control The ON pin controls the state of the load switch, and asserting the pin high (active high) enables the switch. The ON pin is compatible with standard GPIO logic threshold and can be used with any microcontroller or discrete logic with 1.2-V or higher GPIO voltage. This pin cannot be left floating and must be tied either high or low for proper functionality. 14 Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 Feature Description (continued) 8.3.2 Input Capacitor (CIN) To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop; however, a 10 to 1 ratio for capacitance is not required for proper functionality of the device, but a ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance. 8.3.3 Output Capacitor (CL) Due to the integrated body diode in the N-channel MOSFET, a CIN greater than CL is highly recommended. A CL greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance. 8.3.4 VIN and VBIAS Voltage Range For optimal RON performance, make sure VIN ≤ VBIAS. The device may still be functional if VIN > VBIAS but it will exhibit RON greater than what is listed in the Electrical Characteristics table. See Figure 31 for an example of a typical device. Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating for VIN and VBIAS. Performance of the device is not guaranteed for VIN > VBIAS. 10 9 RON (m ) 8 VBIAS = 2.5V VBIAS = 3.0V VBIAS = 3.3V VBIAS = 3.6V VBIAS = 4.2V VBIAS =5.0V VBIAS =5.5V 7 6 5 4 3 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 VIN (V) DG055 Figure 31. RON vs VIN (VIN > VBIAS) 8.4 Device Functional Modes Table 1 shows the connection of VOUT depending on the state of the ON pin. Table 1. VOUT Connection ON VOUT L GND H VIN Copyright © 2014, Texas Instruments Incorporated 15 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 9 Applications and Implementation 9.1 Application Information This section will highlight some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com for further aid. 9.2 Typical Application This application demonstrates how the TPS22962 can be used to power downstream modules with large capacitances. The example below is powering a 100-µF capacitive output load. VIN VIN VIN (exposed pad) CIN ON ON VOUT VOUT VBIAS VBIAS CL = 100µF GND Figure 32. Typical Application Schematic for Powering a Downstream Module 9.2.1 Design Requirements For this design example, use the following as the input parameters. Table 2. Design Parameters DESIGN PARAMETER EXAMPLE VALUE VIN 5.0 V VBIAS 5.0 V Load current 10 A 9.2.2 Detailed Design Procedure To • • • begin the design process, the designer needs to know the following: VIN voltage VBIAS voltage Load current 9.2.2.1 VIN to VOUT Voltage Drop The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the device in the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the VIN and VBIAS conditions, use Equation 1 to calculate the VIN to VOUT voltage drop: DV = ILOAD ´ RON (1) where • ΔV = voltage drop from VIN to VOUT • ILOAD = load current • RON = On-resistance of the device for a specific VIN and VBIAS combination An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated. 16 Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 9.2.2.2 Inrush Current To determine how much inrush current will be caused by the CL capacitor, use Equation 2: dV IINRUSH = CL ´ OUT dt (2) where • IINRUSH = amount of inrush caused by CL • CL = capacitance on VOUT • dt = time it takes for change in VOUT during the ramp up of VOUT when the device is enabled • dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specficiations of the device are not violated. Figure 33. Inrush Current (VBIAS = 5 V, VIN = 5 V, CL = 100 µF) 9.2.2.3 Thermal Considerations The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use Equation 3. PD(MAX) = TJ(MAX) - TA θJA (3) where • PD(max) = maximum allowable power dissipation • TJ(max) = maximum allowable junction temperature (125°C for the TPS22962) • TA = ambient temperature of the device • θJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly dependent upon board layout. Copyright © 2014, Texas Instruments Incorporated 17 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 9.2.3 Application Curves VBIAS = 5 V CL = 0.1 µF VIN = 5 V CIN = 1 µF VBIAS = 5 V CL = 0.1 µF VIN = 1.05 V Figure 34. tR at VBIAS = 5 V VBIAS = 2.5 V CL = 0.1 µF VIN = 2.5 V Figure 35. tR at VBIAS = 5 V CIN = 1 µF Figure 36. tR at VBIAS = 2.5 V VBIAS = 5 V CL = 0.1 µF VIN = 5 V Figure 38. tF at VBIAS = 5 V 18 CIN = 1 µF VBIAS = 2.5 V CL = 0.1 µF VIN = 1.05 V CIN = 1 µF Figure 37. tR at VBIAS = 2.5 V CIN = 1 µF VBIAS = 5 V CL = 0.1 µF VIN = 2.5 V CIN = 1 µF Figure 39. tF at VBIAS = 5 V Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn VBIAS = 2.5 V CL = 0.1 µF ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 VIN = 2.5 V CIN = 1 µF Figure 40. tF at VBIAS = 2.5 V VBIAS = 2.5 V CL = 0.1 µF VIN = 0.8 V CIN = 1 µF Figure 41. tF at VBIAS = 2.5 V 10 Power Supply Recommendations The device is designed to operate from a VBIAS range of 2.5 V to 5.5 V and VIN range of 0.8 V to 5.5 V. This supply must be well regulated and placed as close to the device pin as possible with the recommended 1µF bypass capacitor. If the supply is located more than a few inches from the device pins, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 µF may be sufficient. 11 Layout 11.1 Layout Guidelines • • • • • VIN and VOUT traces should be as short and wide as possible to accommodate for high current. Use vias under the exposed thermal pad for thermal relief for high current operation. The VIN pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device pins as possible. The VOUT pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device pins as possible. The VBIAS pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric. Copyright © 2014, Texas Instruments Incorporated 19 TPS22962 ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 www.ti.com.cn 11.2 Layout Example VIA to Power Ground Plane VIA to VIN Plane VIN VOUT VIN Bypass Capacitor VIN VIN To Bias Supply VOUT Bypass Capacitor VBIAS GND ON To GPIO control Exposed Thermal Pad Area Figure 42. Recommended Board Layout 20 Copyright © 2014, Texas Instruments Incorporated TPS22962 www.ti.com.cn ZHCSCL1A – JUNE 2014 – REVISED JUNE 2014 12 器件和文档支持 12.1 Trademarks All trademarks are the property of their respective owners. 12.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.3 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、首字母缩略词和定义。 13 机械封装和可订购信息 以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对 本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 Copyright © 2014, Texas Instruments Incorporated 21 重要声明 德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP - 数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID 系统 www.ti.com.cn/rfidsys OMAP应用处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS22962DNYR ACTIVE WSON DNY 8 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 962A0 TPS22962DNYT ACTIVE WSON DNY 8 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 962A0 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS22962DNYR 价格&库存

很抱歉,暂时无法提供与“TPS22962DNYR”相匹配的价格&库存,您可以联系我们找货

免费人工找货