0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS543B20EVM-054

TPS543B20EVM-054

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    TPS543B20 SWIFT™ DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
TPS543B20EVM-054 数据手册
www.ti.com Table of Contents User’s Guide TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide ABSTRACT This user's guide describes the characteristics, operation, and use of the TPS543B20EVM-054 evaluation module (EVM). The user's guide includes test information, descriptions, and results. A complete schematic diagram, printed-circuit board layouts, and bill of materials are also included in this document. Throughout this user's guide, the abbreviations EVM, TPS543B20EVM-054, and the term evaluation module are synonymous with the TPS543B20EVM-054, unless otherwise noted. Table of Contents 1 Introduction.............................................................................................................................................................................3 1.1 Before You Begin............................................................................................................................................................... 3 2 Description.............................................................................................................................................................................. 3 2.1 Typical End-User Applications........................................................................................................................................... 3 2.2 EVM Features.................................................................................................................................................................... 3 3 EVM Electrical Performance Specifications.........................................................................................................................4 4 Schematic................................................................................................................................................................................5 5 Test Equipment....................................................................................................................................................................... 6 6 BSR054EVM............................................................................................................................................................................ 7 7 List of Test Points, Jumpers, and Switch............................................................................................................................. 8 8 Test Procedure........................................................................................................................................................................ 9 8.1 Line and Load Regulation Measurement Procedure..........................................................................................................9 8.2 Efficiency............................................................................................................................................................................9 8.3 Equipment Shutdown....................................................................................................................................................... 10 9 Performance Data and Typical Characteristic Curves...................................................................................................... 10 9.1 Efficiency..........................................................................................................................................................................10 9.2 Power Loss...................................................................................................................................................................... 10 9.3 Load Regulation............................................................................................................................................................... 11 9.4 Transient Response......................................................................................................................................................... 11 9.5 Output Ripple................................................................................................................................................................... 12 9.6 Control On........................................................................................................................................................................13 9.7 Control On and Off........................................................................................................................................................... 14 9.8 Thermal Image................................................................................................................................................................. 14 10 EVM Assembly Drawing and PCB Layout........................................................................................................................ 15 11 List of Materials...................................................................................................................................................................25 12 Revision History................................................................................................................................................................. 27 List of Figures Figure 4-1. BSR054EVM Schematic........................................................................................................................................... 5 Figure 6-1. BSR054EVM Overview............................................................................................................................................. 7 Figure 6-2. Tip and Barrel Measurement..................................................................................................................................... 7 Figure 9-1. Efficiency of 0.9-V Output vs Load.......................................................................................................................... 10 Figure 9-2. Power Loss of 0.9-V Output vs Load.......................................................................................................................10 Figure 9-3. Load Regulation of 0.9-V Output............................................................................................................................. 11 Figure 9-4. Transient Response of 0.9-V Output at 12-VIN, Transient is 10 A to 20 A to 10 A, at 40 A/µs................................ 11 Figure 9-5. Output Ripple and SW Node of 0.9-V Output at 12-VIN, 20-A Output..................................................................... 12 Figure 9-6. Output Ripple and SW Node of 0.9-V Output at 12-VIN, 0-A Output....................................................................... 12 Figure 9-7. Start up from Enable, 0.9-V Output at 12-VIN, 50-mA Output................................................................................. 13 Figure 9-8. Start up from Enable, 0.9-V Output at 12-VIN, 20-A Output.................................................................................... 13 SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 9-9. Output Voltage Start-up and Shutdown, 0.9-V Output at 12-VIN, 0.5-A Output.......................................................14 Figure 9-10. Thermal Image at 0.9-V Output at 12 VIN, 25-A Output, at 25°C Ambient............................................................ 14 Figure 10-1. BSR054EVM Top Layer Assembly Drawing (Top View)........................................................................................15 Figure 10-2. BSR054EVM Top Solder Mask (Top View)............................................................................................................16 Figure 10-3. BSR054EVM Top Layer (Top View).......................................................................................................................17 Figure 10-4. BSR054EVM Inner Layer 1 (Top View)................................................................................................................. 18 Figure 10-5. BSR054EVM Inner Layer 2 (Top View)................................................................................................................. 19 Figure 10-6. BSR054EVM Inner Layer 3 (Top View)................................................................................................................. 20 Figure 10-7. BSR054EVM Inner Layer 4 (Top View)................................................................................................................. 21 Figure 10-8. BSR054EVM Bottom Layer (Top View)................................................................................................................. 22 Figure 10-9. BSR054EVM Bottom Solder Mask (Top View)...................................................................................................... 23 Figure 10-10. BSR054EVM Bottom Overlay Layer (Top View)..................................................................................................24 List of Tables Table 3-1. BSR054EVM Electrical Performance Specifications.................................................................................................. 4 Table 7-1. Test Point Functions....................................................................................................................................................8 Table 8-1. List of Test Points for Line and Load Measurements.................................................................................................. 9 Table 8-2. List of Test Points for Efficiency Measurements..........................................................................................................9 Table 11-1. BSR054EVM List of Materials................................................................................................................................. 25 Trademarks All trademarks are the property of their respective owners. 2 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Introduction 1 Introduction The BSR054EVM evaluation module uses the TPS543B20EVM-054 device. The TPS543B20EVM-054 is a highly integrated synchronous buck converter that is designed for up to 25-A current output. 1.1 Before You Begin The following warnings and cautions are noted for the safety of anyone using or working close to the TPS543B20EVM-054. Observe all safety precautions. Warning The TPS543B20EVM-054 circuit module can become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory. Caution Do not leave the EVM powered when unattended. ! WARNING The circuit module has signal traces, components, and component leads on the bottom of the board. This can result in exposed voltages, hot surfaces or sharp edges. Do not reach under the board during operation. CAUTION The circuit module can be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for the system environment. CAUTION Some power supplies can be damaged by application of external voltages. If using more than one power supply, check the equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to the equipment. CAUTION The communication interface is not isolated on the EVM. Be sure no ground potential exists between the computer and the EVM. Also be aware that the computer is referenced to the Battery- potential of the EVM. 2 Description The BSR054EVM is designed as a single output DC-DC converter that demonstrates the TPS543B20EVM-054 in a typical low-voltage application while providing a number of test points to evaluate the performance. It uses a nominal 12-V input bus to produce a regulated 0.9-V output at up to 25-A load current. 2.1 Typical End-User Applications • • • • • Enterprise storage, SSD, NAS Wireless and wired communication infrastructure Industrial PCs, automation, ATE, PLC, video surveillance Enterprise server, switches, routers ASIC, SoC, FPGA, DSP core, and I/O rails 2.2 EVM Features • Regulated 0.9-V output up to 25-A, steady-state output current SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 3 EVM Electrical Performance Specifications • www.ti.com Convenient test points for probing critical waveforms 3 EVM Electrical Performance Specifications Table 3-1. BSR054EVM Electrical Performance Specifications Parameter Test Conditions Min Typ Max 5 12 19 Units Input Characteristics Voltage range VIN tied to VDD V Maximum input current VIN = 12 V, IO = 25 A, VOUT = 0.9 V, FSW = 500 kHz 3.0 A No load input current VIN = 12 V, IO = 0 A 40 mA 0.9 V Output Characteristics VOUT Output voltage Output current = 0 A to 25 A IOUT Output load current IOUT(min) to IOUT(max) Output voltage regulation VOUT Output voltage ripple VOUT Output overcurrent 0 25 Line regulation: input voltage = 5 V to 19 V 0.5% Load regulation: output current = 0 A to IOUT(max) 0.5% VIN = 12 V, IOUT = 25 A A 10 mVPP 30 A 500 kHz Systems Characteristics VOUT 4 Switching frequency FSW Peak efficiency VIN = 5 V, IO = 7 A, FSW = 500 kHz Operating temperature Toper 93.7% 0 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide 85 °C SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Schematic www.ti.com 4 Schematic J1 4 3 2 1 TP7 TP1 TP4 TP5 J3 C4 C5 22uF TP14 R11 DNP 0 R6 DNP 0 C1 22uF BP_5V Input: 4.5V to 15V 330uF GND GND TP8 GND R4 1.00 1 2 BP_5V R16 100k SYNC TP18 DNPC6 22uF VIN C2 22uF C20 1uF GND C7 22uF C3 22uF TP6 C8 0.1uF R10 DNP 0 R7 R8 51.1k 63.4k GND R1 0 C25 0.01uF R14 40.2k R15 DNP 8.66k TP19 SYNC TP20 TP21 32 31 21 22 23 24 25 26 33 36 34 30 35 37 38 39 3 4 5 6 NC NC U1 BOOT RSP RAMP SW SW SW SW SW VDD RSN PVIN PVIN PVIN PVIN PVIN EN TP16 PAD PGND PGND PGND PGND PGND PGND PGND PGND GND AGND BP PGD VSEL ILIM SYNC SS RT MODE NC NC NC NC TP15 TPS543B20RVFT TP22 GND 7 8 9 10 11 12 40 2 1 28 27 29 41 13 14 15 16 17 18 19 20 R17 0 C18 DNP 22pF C21 4.7uF TP24 BP_5V TP17 0.1uF C23 R2 187k C19 DNP 22pF TP9 R3 DNP 0 R5 DNP 0 TP23 GND C22 DNP 22pF R12 0 L1 TP11 470nH C24 1000pF R18 3.0 GND R9 DNP 0 R13 0 GND TP2 VOUT C12 0.1uF DNPC15 100uF TP12 C9 100uF DNPC16 100uF TP13 DNPC10 100uF C17 100uF C11 100uF 330uF C13 330uF C14 GND TP3 J2 1V@35A DC 1 2 3 4 TP10 Figure 4-1. BSR054EVM Schematic 5 SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Test Equipment www.ti.com 5 Test Equipment Voltage Source: The input voltage source VIN must be a 0-V to 20-V variable DC source capable of supplying at least 10 ADC. Also, the output impedance of the external voltage source must be much less than 100 kΩ. Multimeters: It is recommended to use two separate multimeters Figure 6-1. One meter is used to measure VIN and one to measure VOUT. Output Load: A variable electronic load is recommended for testing Figure 6-1. It must be capable of 25 A at voltages as low as 0.6 V. Oscilloscope: An oscilloscope is recommended for measuring output noise and ripple. Output ripple must be measured using a tip-and-barrel method or better as shown in Figure 6-2. The scope must be adjusted to 20-MHz bandwidth, AC coupling at 50 mV/division, and must be set to 1-µs/division. Fan: During prolonged operation at high loads, it may be necessary to provide forced air cooling with a small fan aimed at the EVM. Temperature of the devices on the EVM must be maintained below 105°C. Recommended Wire Gauge: The voltage drop in the load wires must be kept as low as possible in order to keep the working voltage at the load within its operating range. Use the AWG 14 wire (2 wires parallel for VOUT positive and 2 wires parallel for the VOUT negative) of no more than 1.98 feet between the EVM and the load. This recommended wire gauge and length should achieve a voltage drop of no more than 0.2 V at the maximum 25-A load. 6 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com BSR054EVM 6 BSR054EVM Figure 6-1. BSR054EVM Overview Spacer Metal Ground Barrel Probe Tip Figure 6-2. Tip and Barrel Measurement SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 7 List of Test Points, Jumpers, and Switch www.ti.com 7 List of Test Points, Jumpers, and Switch Table 7-1. Test Point Functions 8 Item Type Name Description TP23 T-H loop SW TP11 T-H loop CH-A Measure loop stability TP12 T-H loop CH-B Measure loop stability TP3 T-H loop LocS+ Sense VOUT + locally across C11. Use for efficiency and ripple measurements TP10 T-H loop LocS- Sense VOUT– locally across C11. Use for efficiency and ripple measurements TP1 T-H loop PVIN Sense VIN + across C8 TP4 T-H loop PGND Sense VIN – across C8 TP6 T-H loop VDD Power supply Switch node Supplies the internal circuitry TP9 T-H loop BP LDO output TP14 T-H loop PG Power good TP7, TP15, TP16, TP17 T-H loop PGND TP19, TP20, TP21, TP22 T-H loop TP18 T-H loop SYNC JP3 2-pin jumper EN Common GND Not used Synchronize with external switching frequency Enable or disable TPS543B20EVM-054 IC TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Procedure 8 Test Procedure 8.1 Line and Load Regulation Measurement Procedure 1. 2. 3. 4. 5. 6. 7. Connect VOUT to J2 and VOUT_GND to J2 Figure 6-1. Ensure that the electronic load is set to draw 0 ADC. Ensure the jumper provided on the EVM shorts on J3 before VIN is applied Connect VIN to J1 and VIN_GND to J1 Figure 6-1. Increase VIN from 0 V to 12 V using the digital multimeter to measure input voltage. Remove the jumper on J3 to enable the controller. Use the other digital multimeter or the oscilloscope to measure output voltage VOUT at TP3 and TP10. Table 8-1. List of Test Points for Line and Load Measurements Test Point Node Name Description TP3 LocS+ Sense VOUT + locally across C11. Use for efficiency and ripple measurements TP10 LocS- Sense VOUT - locally across C11. Use for efficiency and ripple measurements TP1 PVIN Sense VIN + across C8 TP4 PGND Sense VIN - across C8 8. Vary the load from 0 ADC to maximum rated output 25 ADC. VOUT must remain in regulation as defined in Table 3-1. 9. Vary VIN from 5 V to 19 V. VOUT must remain in regulation as defined in Table 3-1. 10. Decrease the load to 0 A. 11. Put the jumper back on JP3 to disable the converter. 12. Decrease VIN to 0 V or turn off the supply. 8.2 Efficiency To measure the efficiency of the power train on the EVM, it is important to measure the voltages at the correct location. This is necessary because otherwise the measurements will include losses in efficiency that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and in the input and output connectors are not related to the efficiency of the power train, and they must not be included in efficiency measurements. Table 8-2. List of Test Points for Efficiency Measurements Test Point Node Name TP3 LocS+ Sense VOUT + locally across C11. Use for efficiency and ripple measurements Description TP10 LocS- Sense VOUT - locally across C11. Use for efficiency and ripple measurements TP1 PVIN Sense VIN + across C8 TP4 PGND Sense VIN - across C8 Input current can be measured at any point in the input wires, and output current can be measured anywhere in the output wires of the output being measured. Using these measurement points result in efficiency measurements that do not include losses due to the connectors and PCB traces. SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 9 Test Procedure www.ti.com 8.3 Equipment Shutdown 1. 2. 3. 4. Reduce the load current to 0 A. Reduce input voltage to 0 V. Shut down the external fan if in use. Shut down equipment. 9 Performance Data and Typical Characteristic Curves Figure 9-1 through Figure 9-10 present typical performance curves for the BSR054EVM. SPACE 9.1 Efficiency 100% Efficiency ( ) 90% 80% 5.0 Vin 9.0 Vin 12.0 Vin 16.0 Vin 18.0 Vin 70% 0 5 10 15 20 Iout (A) 25 D004 Figure 9-1. Efficiency of 0.9-V Output vs Load 9.2 Power Loss 5 5.0 Vin 9.0 Vin 12.0 Vin 16.0 Vin 18.0 Vin 4.5 Power Loss (W) 4 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 Iout (A) 20 25 D005 Figure 9-2. Power Loss of 0.9-V Output vs Load 10 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 9.3 Load Regulation 0.91 Vout (V) 5.0 Vin 9.0 Vin 12.0 Vin 16.0 Vin 18.0 Vin 0.9 0.89 0 5 10 15 20 25 Iout (A) D006 Figure 9-3. Load Regulation of 0.9-V Output 9.4 Transient Response Figure 9-4. Transient Response of 0.9-V Output at 12-VIN, Transient is 10 A to 20 A to 10 A, at 40 A/µs SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 11 Performance Data and Typical Characteristic Curves www.ti.com 9.5 Output Ripple Figure 9-5. Output Ripple and SW Node of 0.9-V Output at 12-VIN, 20-A Output Figure 9-6. Output Ripple and SW Node of 0.9-V Output at 12-VIN, 0-A Output 12 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 9.6 Control On Figure 9-7. Start up from Enable, 0.9-V Output at 12-VIN, 50-mA Output Figure 9-8. Start up from Enable, 0.9-V Output at 12-VIN, 20-A Output SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 13 Performance Data and Typical Characteristic Curves www.ti.com 9.7 Control On and Off Figure 9-9. Output Voltage Start-up and Shutdown, 0.9-V Output at 12-VIN, 0.5-A Output 9.8 Thermal Image Figure 9-10. Thermal Image at 0.9-V Output at 12 VIN, 25-A Output, at 25°C Ambient 14 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout 10 EVM Assembly Drawing and PCB Layout Figure 10-1 through Figure 10-8 show the design of the BSR054EVM printed-circuit board (PCB). The BSR054EVM has a 2-oz. copper finish for all layers. Spacer Figure 10-1. BSR054EVM Top Layer Assembly Drawing (Top View) spacer SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 15 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-2. BSR054EVM Top Solder Mask (Top View) 16 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-3. BSR054EVM Top Layer (Top View) spacer SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 17 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-4. BSR054EVM Inner Layer 1 (Top View) 18 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-5. BSR054EVM Inner Layer 2 (Top View) spacer SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 19 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-6. BSR054EVM Inner Layer 3 (Top View) 20 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-7. BSR054EVM Inner Layer 4 (Top View) spacer SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 21 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-8. BSR054EVM Bottom Layer (Top View) 22 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-9. BSR054EVM Bottom Solder Mask (Top View) spacer SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 23 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-10. BSR054EVM Bottom Overlay Layer (Top View) 24 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com List of Materials 11 List of Materials The EVM components list, according to the schematic, is shown in Table 11-1. Table 11-1. BSR054EVM List of Materials Designator Quantity Value Description !PCB 1 C1, C2, C3, C5, C7 5 22 μF CAP, CERM, 22 µF, 25 V, ±20%, X5R, 1206_190 C4 1 330 μF C8 1 0.1 μF C9, C11, C17 3 C12 Package Reference Part Number Alternate Part Number(1) Manufacturer BSR054 Any C3216X5R1E226M160AB TDK CAP, AL, 330 µF, 25 V, ±20%, 0.15 Ω, SMD SMT Radial G EEE-FC1E331P CAP, CERM, 0.1 µF, 25 V, ±10%, X7R, 0603 0603 GRM188R71E104KA01D 100 μF CAP, CERM, 100 µF, 6.3 V, ±20%, X5R, 1206 1206 1 0.1 μF CAP, CERM, 0.1 µF, 10 V, ±10%, X7R, 0603 0603 C13 1 330 μF C14 1 C20 C21 Alternate Manufacturer(1) - - Panasonic 865230457008 Wurth Elektronik MuRata 885012206071 Wurth Elektronik GRM31CR60J107ME39L MuRata 885012108005 C0603X104K8RACTU Kemet 885012206020 Wurth Elektronik CAP, Tantalum Polymer, 330 µF, 2 V, ±20%, 7343-20 0.006 Ω, 7343-20 SMD 2TPF330M6 Panasonic EEFGX0D331R Panasonic 330 μF CAP, Aluminum Polymer, 330 µF, 2 V, ±20%, 3 mΩ, 7.3 × 1.8 × 4.3 mm SMD 7.3x1.8x4.3mm EEFGX0D331R Panasonic 1 1 μF CAP, CERM, 1 µF, 25 V, ±10%, X5R, 0402 0402 GRM155R61E105KA12D MuRata 1 4.7 μF CAP, CERM, 4.7 µF, 16 V, ±10%, X5R, 0603 0603 GRM188R61C475KAAJ MuRata C23 1 0.1 μF CAP, CERM, 0.1 µF, 50 V, ±10%, X7R, 0603 0603 06035C104KAT2A AVX 885012206095 Wurth Elektronik C24 1 1000 pF CAP, CERM, 1000 pF, 50 V, ±10%, C0G/ NP0, 0603 0603 06035A102KAT2A AVX 885012006062 Wurth Elektronik C25 1 0.01 μF CAP, CERM, 0.01 μF, 50 V, ±5%, X7R, 0402 0402 C0402C103J5RACTU Kemet H9, H10, H11, H12 4 Bumpon, Hemisphere, 0.44 × 0.20, Clear Transparent Bumpon SJ-5303 (CLEAR) 3M J1, J2 2 Terminal Block, 5.08 mm, 4 × 1, Brass, TH 4x1 5.08 mm Terminal Block ED120/4DS On-Shore Technology 61300211121 Wurth Elektronik J3 1 Header, 100 mil, 2 × 1, TH Header, 2x1, 100mil, TH 800-10-002-10-001000 Mill-Max 691242510004 Wurth Elektronik L1 1 Inductor, Shielded Drum Core, Ferrite, 470 nH, 40.5 A, 0.000165 Ω, SMD 12.5x13mm 744309047 Wurth Elektronik LBL1 1 Thermal Transfer Printable Labels, 0.650" W × 0.200" H - 10,000 per roll PCB Label 0.650"H x 0.200"W THT-14-423-10 Brady R1 1 0 RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale R2 1 187 k RES, 187 k, 1%, 0.063 W, 0402 0402 CRCW0402187KFKED Vishay-Dale R4 1 1.00 RES, 1.00, 1%, 0.1 W, 0603 0603 CRCW06031R00FKEA Vishay-Dale R7 1 51.1 k RES, 51.1 k, 1%, 0.063 W, 0402 0402 CRCW040251K1FKED Vishay-Dale R8 1 69.8 k RES, 69.8 k, 1%, 0.063 W, 0402 0402 CRCW040269K8FKED Vishay-Dale R12, R13, R17 3 0 RES, 0, 5%, 0.063 W, 0402 0402 CRCW04020000Z0ED Vishay-Dale R14 1 40.2 k RES, 40.2 k, 1%, 0.063 W, 0402 0402 CRCW040240K2FKED Vishay-Dale R16 1 100 k RES, 100 k, 5%, 0.063 W, 0402 0402 CRCW0402100KJNED Vishay-Dale R18 1 3.0 RES, 3.0 Ω, 5%, 0.125W, 0805 0805 RC0805JR-073RL Yageo America Red Test Point, Miniature, Red, TH Red Miniature Testpoint 5000 Keystone TP1, TP3, TP5, TP6, 14 TP8, TP9, TP11, TP12, TP14, TP18, TP19, TP20, TP21, TP22 Printed Circuit Board 470 nH SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback 1206_190 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2022 Texas Instruments Incorporated 25 List of Materials www.ti.com Table 11-1. BSR054EVM List of Materials (continued) Designator Quantity Value Description Package Reference Part Number Alternate Part Number(1) Manufacturer Alternate Manufacturer(1) TP2, TP13 2 PCB Pin, 0.04" DIA, TH PCB Pin, 0.04" DIA, TH 3102-2-00-21-00-00-08-0 Mill-Max TP4, TP7, TP10, TP15, TP16, TP17 6 Black Test Point, Miniature, Black, TH Black Miniature Testpoint 5001 Keystone TP23, TP24 2 SMT Test Point, Miniature, SMT Testpoint_Keystone_Miniatu 5015 re Keystone U1 1 25A FIXED FREQUENCY NON-COMPENSATON STACKABLE SYNCHRONOUS BUCK CONVERTER, RVF0040A (LQFN-CLIP-40) RVF0040A TPS543B20EVM-054RVFT Texas Instruments C6 0 22 μF CAP, CERM, 22 µF, 25 V, ±20%, X5R, 1206_190 1206_190 C3216X5R1E226M160AB TDK C10, C15, C16 0 100 μF CAP, CERM, 100 µF, 6.3 V, ±20%, X5R, 1206 1206 GRM31CR60J107ME39L MuRata 885012108005 Wurth Elektronik C18, C19, C22 0 22 pF CAP, CERM, 22 pF, 50 V, ±5%, C0G/NP0, 0402 0402 C1005C0G1H220J050BA TDK 885012005057 Wurth Elektronik FID1, FID2, FID3, FID4, FID5, FID6 0 Fiducial mark. There is nothing to buy or mount. Fiducial N/A N/A R3, R5, R9, R10 0 0 RES, 0, 5%, 0.063 W, 0402 0402 ERJ-2GE0R00X Panasonic R6, R11 0 0 RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale R15 0 8.66 k RES, 8.66 k, 1%, 0.063 W, 0402 0402 CRCW04028K66FKED Vishay-Dale (1) 26 Texas Instruments Unless otherwise noted in the Alternate PartNumber, Alternate Manufacturer columns, or both, all parts may be substituted with equivalents. TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2022 Texas Instruments Incorporated SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 Submit Document Feedback www.ti.com Revision History 12 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (July 2018) to Revision A (December 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 • Updated the user's guide title............................................................................................................................. 3 SLUUBW9A – JULY 2018 – REVISED DECEMBER 2021 TPS543B20 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 27 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS543B20EVM-054 价格&库存

很抱歉,暂时无法提供与“TPS543B20EVM-054”相匹配的价格&库存,您可以联系我们找货

免费人工找货