0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS92518HVQPWPTQ1

TPS92518HVQPWPTQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    HTSSOP24_EP

  • 描述:

    TPS92518HVQPWPTQ1

  • 数据手册
  • 价格&库存
TPS92518HVQPWPTQ1 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TPS92518-Q1 SLUSCZ1 – MAY 2017 TPS92518-Q1 Automotive Dual Channel Buck LED Controller with SPI Interface, Analog and PWM Dimming 1 Features 3 Description • The TPS92518-Q1 family of parts are dual channel buck LED current controllers with a SPI communications interface. The serial communication interface provides a singular communication path for multichannel and platform lighting driver module (LDM) applications. 1 • • • • AEC-Q100 Qualified for Automotive Applications – Grade 1: –40°C to 125°C Ambient Operating Temperature – Device HBM Classification Level H2 – Device CDM Classification Level C5 Wide Input Voltage Range 6.5 V to 65 V Two independent Buck LED Controllers – High Bandwidth, Quasi-Hysteretic Control – Adjustable High-Side Sense – Direct PWM Dimming Input – Cycle-by-Cycle Current Limit SPI Communications Interface – Software configurable Set Points (8-bit) – Digital Calibration and Binning – Fault Monitoring and Reporting Advanced, High Precision Dimming – 10,000:1 PWM Dimming Range – 255:1 Analog Dimming Range – High Frequency Shunt FET Dimming The TPS92518-Q1 uses a quasi-hysteretic control method that supports switching frequencies ranging from 1 kHz to 2 MHz. This control method enables superior, high frequency shunt FET dimming and also handles the demanding dynamic loads of adaptive LED matrix based headlamp systems. Software programmable SPI set points (Precision Peak Current, Controlled Off-Time and Output Voltage Sense) enables designers to develop a single LED driver solution for multiple load configurations that can be quickly reconfigured for future LED driver design requirements. The TPS92518-Q1 device has an input range up to 42 V. The TPS92518HV-Q1 is a high-voltage option with an input range up to 65 V. Device Information(1) PART NUMBER 2 Applications • • • • • TPS92518-Q1 Automotive LED Lighting: High and Low Beam, DRL, Turn, Position Constant Current LED Driver Switched Matrix Headlamps AFS Headlamps LED General Lighting TPS92518HV-Q1 PACKAGE BODY SIZE (NOM) HTSSOP (24) 7.7 mm x 4.4 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic Input Voltage Battery or Boost Regulator Buck CH1 EN/UV µC PWM2 x x x x x Peak Off time Enable Faults Temp VLED1 PWM1 SPI TPS92518-Q1 Input Voltage Buck CH2 VLED2 MCU VCC 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS92518-Q1 SLUSCZ1 – MAY 2017 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 5 5 7 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information ................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. 8.5 Registers ................................................................. 29 8.6 Programming .......................................................... 41 9 9.1 Application Information............................................ 43 9.2 Typical Application ................................................. 43 9.3 Dos and Don'ts ....................................................... 45 10 Power Supply Recommendations ..................... 46 10.1 Input Source Direct from Battery........................... 46 10.2 Input Source from a Boost Stage.......................... 46 11 Layout................................................................... 47 11.1 Layout Guidelines ................................................. 47 11.2 Layout Example .................................................... 47 12 Device and Documentation Support ................. 48 Parameter Measurement Information .................. 9 12.1 12.2 12.3 12.4 12.5 7.1 CSN Pin Falling Delay (tDEL)..................................... 9 7.2 Off-Timer (tOFF) ........................................................ 9 8 Detailed Description ............................................ 10 8.1 8.2 8.3 8.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Serial Interface ........................................................ Application and Implementation ........................ 43 10 11 12 25 Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 48 48 48 48 48 13 Mechanical, Packaging, and Orderable Information ........................................................... 48 4 Revision History 2 DATE REVISION NOTES May 2017 * Initial release. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 TPS92518-Q1 www.ti.com SLUSCZ1 – MAY 2017 5 Pin Configuration and Functions PWP Package 24-Pin HTTSOP Top View VIN 1 24 EN/UV CSP1 2 23 CSP2 CSN1 3 22 CSN2 GATE1 4 21 GATE2 SW1 5 20 SW2 BOOT1 6 19 BOOT2 VCC1 7 18 VCC2 GND 8 17 GND VLED1 9 16 VLED2 PWM1 10 15 PWM2 SSN 11 14 MOSI SCK 12 13 MISO Pin Functions PINS NAME NO. I/O DESCRIPTION BOOT1 6 I Channel 1 bootstrap voltage input BOOT2 19 I Channel 2 bootstrap voltage input CSN1 3 I Channel 1 negative current sense input CSN2 22 I Channel 2 negative current sense input CSP1 2 I Channel 1 positive current sense input CSP2 23 I Channel 2 positive current sense input EN/UV 24 I Device enable. If not configured as under voltage lock out or enable, tie to VCCx. Tie to >23.6V to bypass SPI communication and enable default register values. GATE1 4 O Channel 1 gate drive output. Connect to FET gate GATE2 21 O Channel 2 gate drive output. Connect to FET gate G System ground GND 8 17 MISO 13 O SPI data output MOSI 14 I SPI data input PWM1 10 I Channel 1 PWM dimming input. Tie to VCCx if PWM pin control is not required. PWM2 15 I Channel 2 PWM dimming input. Tie to VCCx if PWM pin control is not required. SCK 12 I SPI clock input SSN 11 I SPI slave select input SW1 5 I Channel 1 switch node connection SW2 20 I Channel 2 switch node connection VCC1 7 O Channel 1 supply voltage output. May be used to power low current external circuits. See Application and Implementation section. VCC2 18 O Channel 2 supply voltage output. May be used to power low current external circuits. See Application and Implementation section. VIN 1 I Device power supply voltage input. May be common to CSP1, CSP2 or an independent supply. VLED1 9 I Channel 1 output voltage sense. VLED2 16 I Channel 2 output voltage sense. G Connect to ground. Add vias to improve thermal performance. Exposed thermal pad Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 3 TPS92518-Q1 SLUSCZ1 – MAY 2017 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) TPS92518HV-Q1 VIN, EN/UV, CSPx, CSNx, SWx, VLEDx to GND TPS92518-Q1 MIN MAX –0.3 67 -0.3 44 MOSI, MISO, SCK, SSN to GND –0.3 5.5 PWMx, VCCx to GND –0.3 8.8 GATEx, BOOTx to SWx GATEx, BOOTx to GND –0.3 8.8 TPS92518HV-Q1 –0.3 75 TPS92518-Q1 -0.3 52 –0.3 5.5 CSPx to CSNx SWx to GND, 10ns transient –2 Junction temperature, TJ –40 150 Storage temperature , Tstg –65 165 (1) UNIT V °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 (1) ±2000 Charged-device model (CDM), per V AEC Q100-011 ±750 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VIN Input Voltage TA Operating ambient temperature TJ Operating junction temperature (1) 4 MIN MAX TPS92518HV-Q1 6.5 65 TPS92518-Q1 6.5 42 V -40 125 °C -40 150 °C (1) UNIT V The TPS92518-Q1 can operate at an ambient temperature of up to +125ºC as long as the junction temperature maximum of +150ºC is not exceeded. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 TPS92518-Q1 www.ti.com SLUSCZ1 – MAY 2017 6.4 Thermal Information TPS92518-Q1 THERMAL METRIC (1) PWP (HTSSOP) UNIT 24 PINS RθJA Junction-to-ambient thermal resistance 32.5 °C/W RθJC(top) Junction-to-case (top) thermal resistance 17.9 °C/W RθJB Junction-to-board thermal resistance 15.7 °C/W ψJT Junction-to-top characterization parameter 0.4 °C/W ψJB Junction-to-board characterization parameter 15.5 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 1.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Electrical Characteristics VVIN = 14 V, -40 °C ≤ TJ ≤ 150 °C, unless otherwise specified PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 6.9 7.5 8.25 V VCCx, VIN VCCx VCCx Voltage VVIN = 40 V or VVIN = 65 V, 0 A ≤ External Load ≤ 500 µA VCCx2 VCCx Voltage with External Load External Load = 500 µA 6.9 7.5 8.25 V VCCx_UVLO VCCx undervoltage lockout Falling threshold, VVIN = 10 V 5.65 5.9 6.1 V VCCx_UVHYS VCCx undervoltage lockout Hysteresis IVCCx-LIM VCCx regulator current limit VCC shorted to GND. 48 mA IVIN Operating Current Not Switching 3 4 mA VDO LDO drop-out voltage IVCC = 5 mA, VVIN = 5 V 90 225 mV 0.25 25 38 V Peak Current Comparator (CSPx, CSNx) VCSTx VCSPx-VCSNx peak current threshold LEDx_PKTH_DAC = 255 245 255 265 mV LEDx_PKTH_DAC = 127 118.5 127 135.5 mV LEDx_PKTH_DAC = 10 ICSN 10 CSN input bias current tDEL CSN pin falling delay CSNx fall to GATEx fall (1V/us stimulus) tLEB Leading edge blanking (minimum ontime) Minimum Pulse Width CSPUVLO CSPx UVLO Falling Threshold CSPUVLO-H CSPx UVLO Hysteresis mV 0.4 1.5 µA 58 110 ns 165 200 235 ns 4.65 4.90 5.15 V 520 mV Ω Gate Drivers (GATEx, SWx and BOOTx) RDSP GATEx PFET ( RDS High ) 7.3 RDSN GATEx NFET ( RDS Low ) 2.8 VBOOT-UVLO Voltage where gate drive is disabled VBOOT to VSW , VBOOT falling VBOOT-UVLO-HYS Hysteresis on BOOTx UVLO VBOOTx to VSWx 200 IPD PWMx Pull down from SWx when PWMx Low PWMx low, (BOOTx to SWx) = 5V, VSWx= 8V 200 260 µA IPD BOOTx VBOOTx -VSWx < VBOOT-UVLO PWMx high, (BOOTx to SWx) < BOOT_UVLO, VSWx = 8 V 5 7 mA BOOTx quiescent current (BOOTx to SWx) = 5.5 V, 0 V ≤ VSWx ≤ 65 V 100 200 µA tOFF Off-time VLEDx = 30 V, tOFFXDAC = 255 4.1 4.8 µs tD-OFF COFF threshold to gate rising delay Specified by design 50 ns tOFF-MAX Maximum off-time tOFF-MAXDAC = 255 65 µs IBOOT_Q 3.6 4.4 Ω 5.2 V mV OFF-TIMER 3.2 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 5 TPS92518-Q1 SLUSCZ1 – MAY 2017 www.ti.com Electrical Characteristics (continued) VVIN = 14 V, -40 °C ≤ TJ ≤ 150 °C, unless otherwise specified PARAMETER TEST CONDITIONS MIN TYP 1.18 1.24 MAX UNIT Enable and Input UVLO VEN/UV1 EN/UV pin threshold EN/UV pin rising VEN/UV-HYS1 EN/UV pin hysteresis Difference between rising and falling threshold 100 mV tEN/UV1 EN/UV pin delay EN/UV pin rising to GATEx pin rising. LEDx_MAXOFF_DAC = 0 300 ns IEN/UV-HYST1 EN/UV Hysteresis Current EN/UV = 2 V VEN/UV2 EN/UV LED1_EN and LED2_EN override threshold EN/UV pin rising writes LED1_EN and LED2_EN = 1 VEN/UV-HYS2 EN/UV pin hysteresis tEN/UV2 EN/UV pin delay 2 EN/UV pin falling to GATEx pin falling 1.30 470 12 16 V ns 28 µA 23.4 V Difference between rising and falling threshold 3 V EN/UV pin rising to GATEx pin rising. LEDx_MAXOFF_DAC = 0 520 ns PWM, MOSI, SCK, SSN ILKG Leakage current VIL Low level input voltage threshold VIH High level input voltage threshold tPWM PWM pin delay 1 0.8 µA V 1.8 V PWM pin rising to GATE pin rising 68 105 ns PWM pin falling to GATE pin falling 55 100 ns 0.51 MISO VOL MISO low, IMISO applied IMISO = 10 mA 0.26 RDS MISO Pull-down resistance IMISO = 10 mA 26 Ω V ADC Reading T = –40°C 104 Code ADC Reading T = 25°C 130 Code ADC Reading T= 150°C 171 ADC ADCTEMP ADCLEDx Code ADC Reading VLEDx= 60 V 226 230 240 Code ADC Reading VLEDx = 10 V 37 38 39 Code ADC Reading VLEDx = 1 V 2 3 4 Code SPI Interface tSS_SU SSN Setup Time Falling edge of SSN to 1st SCK rising edge 500 ns tSS_H SSN Hold Time Falling edge of 16th SCK to SSN rising edge 250 ns tSCK SCK Period Clock period 500 DSCK SCK Duty Cycle Clock duty cycle 40 tSU MOSI Setup Time MOSI valid to rising edge SCK 250 ns tH MOSI Hold Time MOSI valid after rising edge SCK 275 ns tHI_Z MISO Tri-State Time Time to tri-state (deactivate low-side switch) MISO after SSN rising edge 110 tMISO_HL MISO Valid High-to-Low Time to place valid "0" on MISO after falling SCK edge tMISO_LH MISO Valid Low-to-High Time to tri-state (deactivate the internal low-side switch) MISO after falling SCK edge. tRC is the time added by the application total capacitance and resistance. tZO_HL MISO Drive Time High-to-Low SSN Falling Edge to MISO Falling SSN High Time How long SSN must remain high between transactions tSS ns 60 1000 % 320 ns 320 ns 320+tRC ns 320 ns ns THERMAL SHUTDOWN TSD Thermal shutdown temperature 175 TSD HYST Thermal shutdown hysteresis 10 6 Submit Documentation Feedback °C Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 TPS92518-Q1 www.ti.com SLUSCZ1 – MAY 2017 6.6 Typical Characteristics VVIN = 14 V unless otherwise specified. Temperature = Junction Temperature. Note: Any difference between channels does not necessarily illustrate a systematic difference between them. 127 -0.36 126.9 -0.39 4.8 -0.42 CSP1 UVLO Falling Threshold CSP2 UVLO Falling Threshold CSP1 UVLO Hysteresis CSP2 UVLO Hysteresis 4.65 4.5 -0.45 -0.48 4.35 -0.51 126.8 VCST Threshold (mV) 4.95 CSPx UVLO Hysteresis (V) 126.7 126.6 126.5 126.4 VCST1 (CSP1-CSN1) VCST2 (CSP2-CSN2) 126.3 126.2 126.1 4.2 -40 -0.54 -20 0 20 40 60 80 Temperature (qC) 100 120 126 -40 140 -20 0 20 D001 40 60 80 Temperature (qC) VVIN = 42 V 256 255.5 10.4 10.2 10 9.8 D002 LEDx_PKTH_DAC = 127 254.5 254 253.5 253 252.5 9.6 VCST1 VCST2 VCST1 VCST2 252 251.5 VCST2 (CSP2-CSN2) VCST1 (CSP1-CSN1) 9.4 9.2 -20 0 20 40 60 80 Temperature (qC) VVIN = 42 V 100 120 251 -40 140 20 40 60 80 Temperature (qC) 100 VVIN=42 VVIN=42 VVIN=65 VVIN=65 120 140 D004 LEDx_PKTH_DAC = 255 D003 Figure 4. Current Sense Threshold Voltage BOOTx Under Voltage Falling Threshold (V) 76 72 68 64 60 56 52 48 44 0 0 (CSP1-CSN1) (CSP2-CSN2) (CSP1-CSN1) (CSP2-CSN2) LEDx_PKTH_DAC = 10 80 -20 -20 VVIN = 42 V and 65 V Figure 3. Current Sense Threshold Voltage tDEL - CSN Pin Falling Delay (ns) 140 255 10.6 VCSTx Threshold (mV) VCSTx Threshold (mV) 11 10.8 40 -40 120 Figure 2. Current Sense Threshold Voltage Figure 1. CSPx UVLO Falling Level and Hysteresis 9 -40 100 20 40 60 80 Temperature (qC) 100 120 140 4.8 0.6 BOOT1 UV FALL 0.55 BOOT2 UV FALL BOOT1 HYST 0.5 BOOT2 HYST 0.45 4.72 4.64 4.56 4.48 0.4 4.4 0.35 4.32 0.3 4.24 0.25 4.16 0.2 4.08 4 -40 BOOTx Hysteresis (V) CSPx UVLO Falling Threshold (V) 5.1 0.15 0.1 -20 0 D005 20 40 60 80 Temperature (qC) 100 120 140 D006 VVIN = 42 V Figure 5. CSN Pin Falling Delay (tDEL ) Figure 6. BOOT Undervoltage Lock-out Falling Threshold and Hysteresis Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 7 TPS92518-Q1 SLUSCZ1 – MAY 2017 www.ti.com Typical Characteristics (continued) VVIN = 14 V unless otherwise specified. Temperature = Junction Temperature. Note: Any difference between channels does not necessarily illustrate a systematic difference between them. 1.244 MAXOFF_TIME1 MAXOFF_TIME2 1.243 64.2 64 VUV/EN1 Maximum Off-Time (Ps) 64.4 0.108 EN_THRES1_RISING EN_THRES1_HYS 63.8 63.6 0.1065 1.242 0.105 1.241 0.1035 1.24 0.102 1.239 0.1005 1.238 0.099 63.4 1.237 0.0975 63.2 1.236 0.096 63 1.235 0.0945 62.8 -40 -20 0 20 40 60 80 100 Temperature (qC) 120 140 1.234 -40 160 VUV/EN1-HYST1 64.6 0.093 -20 0 20 40 60 80 Temperature (qC) 100 120 140 D008 D007 LEDx_MAXOFF_DAC = 255 Figure 8. Enable/UV Threshold Figure 7. Maximum Off-Time 39 158 38 157 37 156 36 155 35 154 34 153 33 152 ADC LED1 40V ADC LED1 10V 32 151 31 150 -40 30 -20 0 20 40 60 80 Temperature (qC) 100 120 140 tPWM - PWM RISE or FALL DELAY (ns) 159 90 2.8 PWM RISE DELAY PWM FALL DELAY PWM FALL THRESH PWM RISE THRESH 80 2.4 70 2 60 1.6 50 1.2 40 -40 -21 -2 17 D009 36 55 74 Temperature (qC) 93 112 131 VINPUT-RISE or FALL (V) 40 LED1_MOST_RECENT (10V) LED1_MOST_RECENT (40V) 160 0.8 150 D010 Readings shown are TPS92518-Q1 register values Figure 10. PWM Input Characteristics 24 21 21 18 18 VTHERM Register Value (Decimal) TJ = -40°C 6 5 13 13 4 13 3 13 2 1 VTHERM Register Value (Decimal) D024 TJ = 25°C Figure 11. VTHERM Performance 8 13 D022 12 8 0 11 9 10 8 7 10 10 10 10 10 10 6 0 5 0 4 3 3 3 2 6 0 9 6 13 9 12 13 12 15 9 15 12 Number of Units 27 24 10 Number of Units Figure 9. ADC (Analog to Digital) LED Readings 27 Submit Documentation Feedback Figure 12. VTHERM Performance Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 TPS92518-Q1 www.ti.com SLUSCZ1 – MAY 2017 Typical Characteristics (continued) 25 25 22.5 22.5 20 17.5 10 VTHERM Register Value 18 5 VTHERM Register Value (Decimal) D025 TJ = 125°C D021 TJ = 150°C Figure 13. VTHERM Performance Figure 14. VTHERM Performance 93 .7 .4 93 .1 93 .5 .2 .8 92 92 92 .9 .6 91 91 91 .3 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 91 Number of Units 18 4 17 7 17 5 17 4 17 3 17 0 17 2 0 17 1 0 16 9 5 2.5 16 8 5 2.5 18 3 7.5 18 2 7.5 12.5 18 1 10 18 0 12.5 15 17 9 15 17 8 Number of Units 20 17.5 16 7 Number of Units VVIN = 14 V unless otherwise specified. Temperature = Junction Temperature. Note: Any difference between channels does not necessarily illustrate a systematic difference between them. EVM - Two Channel Efficiency (%) 25 x TPS92518EVM-878 EVM's Tested LEDx_PKTH_DAC = 88 VVIN= VCSPx= 50 V LEDx_TOFF_DAC=70 D017 22.3 V VBOOT-UVLO) and Full Drop-Out (Boot Capacitor Voltage reaching VBOOT-UVLO) . 8.3.7.1 Early Drop-Out (Boot Capacitor Voltage >> VBOOT-UVLO) the first effects of drop-out can be seen when the input voltage approaches a few volts above the output voltage. Unless there is sufficient output capacitance, the change in the LED voltage during the ramp up of the inductor and output current can cause a non-linearity in the ramp. 18 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 TPS92518-Q1 www.ti.com SLUSCZ1 – MAY 2017 (1) 'IL (VIN PP (2) VLED ) * t OFF L 'IL (VIN PP 'VLED ) * t OFF L ILED A VLED tON tOFF tON t tOFF Figure 24. Inductor on-time Current Non-linearity In case (1) shown in , VIN-VLED is sufficiently large that variations in VLED are not relevant and/or not present because of sufficient output capacitance. In case (2), VIN and VLED are closer in value making the difference lower and more easily affected by variations in VLED. ΔVLED is the total variation in the voltage across the inductor and includes the ILED x RL-DCR voltage drop which also changes with IL and impacts the inductor current linearity. The combination of factors leads to an inductor current on-time non-linearity which increases the average value of the inductor current, and hence the LED current. This means the first affect of approaching drop-out is always an increase in LED current. It is important to note that the output current is always limited to the peak limit set by the internal programmed reference and the sense resistor. (The peak current threshold) This means a design having a smaller overall inductor current ripple (smaller ΔIL-PP) will have less error when a drop-out condition occurs. 8.3.7.2 Full Drop-Out (Boot Capacitor Voltage reaching VBOOT-UVLO) If VIN and VLED are sufficiently close the duty cycle demand increases. Because of the TPS92518-Q1 hysteretic control method, the high-side FET attempts to remain ON until the programmed peak current is reached. Keeping the high-side FET ON requires energy from the BOOT capacitor which depletes the BOOT capacitor voltage. If the high-side FET is ON for sufficient duration, the BOOT capacitor voltage eventually reaches VBOOTUVLO level at which point the high-side FET is turned off. This allows for long on-times and duty cycles >99.5%, since the time the high-side FET can remain ON is long (>1 ms) compared to the time required the recharge the BOOT capacitor (approximately 100 ns). The typical maximum on-time can be estimated by Equation 18 C dv CBOOT x (VCC VBOOT UVLO ) 0.1PF x (7.5 4.6) tON MAX(TYP) | | 2.9ms i IBOOT Q 100P A (18) 8.3.7.3 Minimum BOOT Voltage and FET Control The minimum VBOOT-UVLO is also the minimum voltage available to drive the external FET. Check the FET Output Characteristics (ID versus VDS) at the minimum BOOT voltage and ensure the FET is sufficiently enhanced under this condition. If the turn-on is marginal, the FET may operate in the linear region causing increased losses and possibly damage the device. 8.3.7.4 BOOT Controlled internal Pull-Down Each time VBOOT ≤ VBOOT-UVLO an internal pull-down (IPD BOOTx = 5 mA typical) from the SWx pin to ground is enabled. This behavior occurs during drop-out conditions such as Full Drop-Out (Boot Capacitor Voltage reaching VBOOT-UVLO) . This behavior also occurs at Start-Up if the output is pre-charged. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TPS92518-Q1 19 TPS92518-Q1 SLUSCZ1 – MAY 2017 www.ti.com If the TPS92518-Q1 application uses an output capacitor and the output is disabled and re-enabled before the output voltage reduces (or is otherwise pre-charged) a condition can be created where the SWx pin voltage is not low enough for the BOOT capacitor to charge. (VSWx
TPS92518HVQPWPTQ1 价格&库存

很抱歉,暂时无法提供与“TPS92518HVQPWPTQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货