0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TRF371125IRGZT

TRF371125IRGZT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN48_EP

  • 描述:

    IC IQ DEMODULATOR W/PGA 48VQFN

  • 数据手册
  • 价格&库存
TRF371125IRGZT 数据手册
TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 INTEGRATED IQ DEMODULATOR Check for Samples: TRF371125 FEATURES DESCRIPTION • • The TRF371125 is a highly linear and integrated direct-conversion quadrature demodulator. The TRF371125 integrates balanced I and Q mixers, LO buffers, and phase splitters to convert an RF signal directly to I and Q baseband. The on-chip programmable-gain amplifiers allow adjustment of the output signal level without the need for external variable-gain (attenuator) devices. The TRF371125 integrates programmable baseband low-pass filters that attenuate nearby interference, eliminating the need for an external baseband filter. 1 2 • • • • • • • Frequency Range: 700 MHz to 4000 MHz Integrated Baseband Programmable-Gain Amplifier On-Chip Programmable Baseband Filter High Out-of-Band IP3: 24 dBm at 2400 MHz High Out-of-Band IP2: 60 dBm at 2400 MHz Hardware and Software Power Down Three-Wire Serial Interface Single Supply: 4.5-V to 5.5-V Operation Silicon Germanium Technology Housed in a 7-mm × 7-mm QFN package, the TRF371125 provides the smallest and most integrated receiver solution available for highperformance equipment. APPLICATIONS • • • • Multicarrier Wireless Infrastructure WiMAX High-Linearity Direct-Downconversion Receiver LTE (Long Term Evolution) To Microcontroller READBACK NC Gain_B1 Gain_B2 NC Gain_B0 MIXIoutn NC STROBE MIXIoutp CLOCK RFin DATA To Microcontroller 48 47 46 45 44 43 42 41 40 39 38 37 36 GNDDIG 1 VCCDIG 2 35 GND CHIP_EN 3 34 BBIoutn VCCMIX1 4 33 BBIoutp VCCBBI To ADC I GND 5 32 GND MIXinp 6 31 LOip MIXinn 7 30 LOin GND 8 29 VCCLO VCCMIX2 9 28 BBQoutp NC 10 27 BBQoutn NC 11 26 LOin TRF371125 NC GND VCCBBQ VCM GNDBIAS REXT VCCBIAS NC NC MIXQoutn GND MIXQoutp GND 25 12 13 14 15 16 17 18 19 20 21 22 23 24 GND GND To ADC Q 30 kW 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2010, Texas Instruments Incorporated TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. AVAILABLE DEVICE OPTIONS (1) PRODUCT PACKAGE LEAD PACKAGE DESIGNATOR(1) SPECIFIED TEMPERATURE RANGE PACKAGE MARKING TRF371125 QFN-48 RGZ –40°C to 85°C TRF371125 ORDERING NUMBER TRANSPORT MEDIA, QUANTITY TRF371125IRGZR Tape and Reel, 2500 TRF371125IRGZT Tape and Reel, 500 MIXIoutn 44 45 MIXIoutp FUNCTIONAL DIAGRAM ADC Driver VCCs PGA 33 BBIoutp 34 BBIoutn 24 VCM 30 LOin 31 LOip 27 BBQoutn 28 BBQoutp 48 CLOCK GND DC Offset Control I 0° MIXinp 6 MIXinn 7 90° DC Offset Control Q PGA ADC Driver CHIP_EN 3 Power Down DC Offset Control 47 LPFADJ Control 46 37 DATA STROBE READBACK Gain_B2 39 40 Gain_B1 41 Gain_B0 17 MIXQoutn MIXQoutp 16 PGA Control Q SPI B0385-01 (1) 2 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 DEVICE INFORMATION PIN ASSIGNMENTS space GNDDIG 1 VCCDIG 2 NC READBACK Gain_B2 Gain_B0 Gain_B1 NC NC MIXIoutn STROBE MIXIoutp DATA CLOCK RGZ PACKAGE QFN-48 (TOP VIEW) 48 47 46 45 44 43 42 41 40 39 38 37 36 VCCBBI 35 GND 3 34 BBIoutn VCCMIX1 4 33 BBIoutp GND 5 32 GND MIXinp 6 31 LOip CHIP_EN TRF371125 MIXinn 7 30 LOin GND 8 29 VCCLO VCCMIX2 9 28 BBQoutp NC 10 27 BBQoutn NC 11 26 GND VCCBBQ VCM NC GNDBIAS VCCBIAS REXT NC NC MIXQoutn GND MIXQoutp GND 25 12 13 14 15 16 17 18 19 20 21 22 23 24 GND GND PIN FUNCTIONS PIN NO. NAME I/O DESCRIPTION 1 GNDDIG Digital ground 2 VCCDIG Digital power supply 3 CHIP_EN 4 VCCMIX1 Mixer power supply 5 GND Ground 6 MIXinp I Mixer input: positive terminal 7 MIXinn I Mixer input: negative terminal 8 GND Ground I Chip enable 9 VCCMIX2 Mixer power supply 10 NC No connect 11 NC No connect 12 GND Ground 13 GND Ground 14 GND Ground 15 GND Ground Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 3 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com PIN FUNCTIONS (continued) PIN NO. 4 NAME I/O DESCRIPTION 16 MIXQoutp O Mixer Q output: positive terminal 17 MIXQoutn O Mixer Q output: negative terminal 18 NC 19 NC 20 REXT 21 VCCBIAS Bias block power supply 22 GNDBIAS Bias block ground 23 NC 24 VCM 25 VCCBBQ 26 GND 27 BBQoutn O Baseband Q (in quadrature) output: negative terminal 28 BBQoutp O Baseband Q (in quadrature) output: positive terminal 29 VCCLO 30 Loin I Local oscillator input: negative terminal 31 Loip I Local oscillator input: positive terminal 32 GND 33 BBIoutp O Baseband I (in-phase) output: positive terminal 34 BBIoutn O Baseband I (in-phase) output: negative terminal 35 GND Ground 36 VCCBBI Baseband I (in phase) power supply 37 NC 38 READBACK O SPI readback data 39 Gain_B2 I PGA fast gain control bit 2 40 Gain_B1 I PGA fast gain control bit 1 41 Gain_B0 I PGA fast gain control bit 0 42 NC 43 NC 44 MIXIoutn O Mixer I output: negative terminal 45 MIXIoutp O Mixer I output: positive terminal 46 STROBE I SPI enable 47 DATA I SPI data input 48 CLOCK I SPI clock input No connect No connect O Reference bias external resistor No connect I Baseband common-mode input voltage Baseband Q chain power supply Ground Local oscillator power supply Ground No connect No connect No connect Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) Supply voltage range (2) VALUE UNIT –0.3 to 6 V Digital I/O voltage range –0.3 to 6 V Operating free-air temperature range, TA –40 to 85 °C Operating virtual junction temperature range, TJ –40 to 150 °C Storage temperature range, Tstg –65 to 150 °C (1) (2) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted) VCC Power supply voltage MIN NOM MAX 4.5 5 5.5 V 940 µVpp Power supply voltage ripple UNIT TA Operating free-air temperature range –40 85 °C TJ Operating virtual junction temperature range –40 150 °C MAX UNIT THERMAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) PARAMETER (1) TEST CONDITIONS Soldered slug, no airflow RqJA Thermal resistance, junction-to-ambient RqJA (2) RqJB (1) (2) Thermal resistance, junction-to-board MIN TYP 26 Soldered slug, 200-LFM airflow 20.1 Soldered slug, 400-LFM airflow 17.4 7-mm × 7-mm 48-pin PDFP 25 7-mm × 7-mm 48-pin PDFP 12 °C/W °C/W Determined using JEDEC standard JESD-51 with high-K board 16 layers, high-K board Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 5 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com ELECTRICAL CHARACTERISTICS VCC = 5 V, LO power = 0 dBm, TA = 25°C (unless otherwise noted) PARAMETERS TEST CONDITIONS MIN TYP MAX UNIT DC PARAMETERS ICC Total supply current 360 mA Power-down current 2 mA IQ DEMODULATOR AND BASEBAND SECTION fRF Frequency range 700 Gain range 22 Gain step See (1) Pinmax Max. RF power input OIP3 4000 24 MHz dB 1 dB Before damage 25 dBm Output third-order intercept point Gain setting = 24 (2) 30 dBVrms P1dBmin Min. output compression point 1 tone (3) 3 dBVrms fmin Min. baseband low-pass filter cutoff frequency 1–dB point (4) fmax Max. baseband low-pass filter cutoff frequency 3–dB point (4) fbypass Baseband low-pass filter cutoff frequency in bypass mode 3–dB point (5) 700 15 8 2 × fC 32 3 × fC 54 4 × fC 75 5 × fC 90 Image suppression Vcm Output, common-mode Baseband harmonic level dB –40 Output BB attenuator Output load impedance MHz 1 1.5 × fC Baseband relative attenuation at LPF cutoff frequency (fC) (6) MHz 30 1 × fC Fsel kHz dB 3 dB 1 kΩ Parallel capacitance 20 pF Measured at I- and Q-channel baseband outputs 1.5 V Parallel resistance Second harmonic (7) Third harmonic (7) –100 dBc –93 dBc LOCAL OSCILLATOR PARAMETERS Local oscillator frequency 700 (8) LO input level See LO leakage At MIXinn/p at 0-dBm LO drive level –3 0 4000 MHz 6 dBm –58 dBm VCC V 0.8 V DIGITAL INTERFACE VIH High-level input voltage 0.6 × VCC VIL Low-level input voltage 0 VOH High-level output voltage VOL Low-level output voltage (1) (2) (3) (4) (5) (6) (7) (8) 6 5 0.8 × VCC V 0.2 × VCC V Two consecutive gain settings Two CW tones at an offset from LO frequency smaller than the baseband-filter cutoff frequency. Performance is set by baseband circuitry regardless of LO frequency. Single CW tone at an offset from LO frequency smaller than the baseband-filter cutoff frequency. Performance is set by baseband circuitry regardless of LO frequency. Baseband low-pass filter cutoff frequency is programmable through SPI register LPFADJ. LPFADJ = 0 corresponds to max bandwidth; LPFADJ = 255 corresponds to minimum BW. Filter Ctrl setting equal to 0 Attenuation relative to passband gain LO frequency set to 2.4 GHz. Power-in set to –40 dBm. Gain setting at 24. DC offset calibration engaged. Input signal set at 2.5-MHz offset. LO power outside of this range is possible but may introduce degraded performance. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 ELECTRICAL CHARACTERISTICS VCC = 5 V, LO power = 0 dBm, TA = 25°C (1) (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fLO = 700 MHz Gmax Maximum gain (2) Gain setting = 24 50 NF Noise figure Gain setting = 24 8.5 dB IIP3 Third-order input intercept point Gain setting = 24 (3) (4) 14 dBm IIP2 Second-order input intercept point Gain setting = 24 (4) (5) 60 dBm Gmax Maximum gain (2) Gain setting = 24 44 dB NF Noise figure Gain setting = 24 11 dB (3) (4) dB fLO = 1740 MHz IIP3 Third-order input intercept point Gain setting = 24 22 dBm IIP2 Second-order input intercept point Gain setting = 24 (4) (5) 60 dBm Gmax Maximum gain (2) Gain setting = 24 43 dB NF Noise figure Gain setting = 24 12 dB IIP3 Third-order input intercept point Gain setting = 24 (3) (4) 23 dBm IIP2 Second-order input intercept point Gain Setting = 24 (4) (5) 60 dBm Gmax Maximum gain (2) Gain setting = 24 42.5 dB N3F Noise figure Gain setting = 24 12.5 dB fLO = 1950 MHz fLO = 2025 MHz (3) (4) 22 dBm 60 dBm IIP3 Third-order input intercept point Gain setting = 24 IIP2 Second-order input intercept point Gain setting = 24 (4) (5) Maximum gain (2) Gain setting = 24 40 dB Gain setting = 24 13.5 dB Gain setting = 16 15 dB fLO = 2400 MHz Gmax NF Noise figure IIP3 Third-order input intercept point Gain setting = 24 (3) (4) 24 dBm IIP2 Second-order input intercept point Gain setting = 24 (4) (5) 60 dBm (1) (2) (3) (4) (5) For broadband frequency sweeps, the Picosecond balun (model #5310A) is used at the RF and LO input. For frequency band between 2100 MHz and 2700 MHz the Murata balun LDB212G4005C-001 is used. Performance parameters adjusted for balun insertion loss. Recommended baluns for respective frequency band is shown below: 700 MHz: Murata LDB21897M005C-001 (or equivalent) 1740 MHz: Murata LDB211G8005C-001 (or equivalent) 1950 MHz: Murata LDB211G9005C-001 (or equivalent) 2025 MHz: Murata LDB211G9005C-001 (or equivalent) 2500 MHz: Murata LDB212G4005C-001 (or equivalent) 3500 MHz: Johanson 3600BL14M050E (or equivalent) Gain defined as voltage gain from Mixin (Vrms) to either baseband output: BBI/Qout (Vrms) Two CW tones of –30 dBm at fRF1 = fLO ±(2 × fC) and fRF2 = fLO ±[(4 × fC) + 100 kHz] (fC = baseband filter 1-dB cutoff frequency). Because the 2-tone interferers are outside of the baseband filter bandwidth, the results are inherently independent of the gain setting. Intermodulation parameters are recorded at maximum gain setting, where measurement accuracy is best. Two CW tones at –30 dBm at fRF1 = fLO ±2 × fC and fRF2 = fLO ±[(2 × fC) + 100 kHz]; IM2 product measured at 100-kHz output frequency (fC = baseband filter 1-dB cutoff frequency) TIMING REQUIREMENTS VCC = 5 V, LO power = 0 dBm, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT t(CLK) Clock period 50 ns tsu1 Setup time, data 10 ns th Hold time, data 10 ns tw Pulse width, STROBE 20 ns tsu2 Setup time, STROBE 10 ns Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 7 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) Table of Graphs Gain vs LO frequency (1) (2) Figure 1, Figure 2, Figure 3 (1) (2) Figure 4, Figure 5, Figure 6 Noise figure vs LO frequency IIP3 vs LO frequency (3) (4) (5) Figure 7, Figure 8, Figure 9 IIP2 vs LO frequency (3) (4) (5) Figure 10, Figure 11, Figure 12 Gain vs LO frequency IIP3 vs LO frequency (4) (5) Figure 16, Figure 17, Figure 18, Figure 19 IIP2 vs LO frequency (4) (5) Figure 20, Figure 21, Figure 22, Figure 23 Figure 13, Figure 14, Figure 15 (4) (5) (6) Optimized IIP2 vs LO frequency Optimized IIP3 vs LO frequency (4) (5) (6) Figure 24 Noise figure vs LO frequency OIP3 vs Frequency offset (7) Noise figure vs BB gain setting Gain vs BB gain setting Gain vs Frequency offset Figure 35, Figure 36 Gain vs Frequency offset (bypass mode) Figure 37, Figure 38 1-dB LPF corner frequency vs LPFADJ setting Figure 39 Relative LPF group delay vs Frequency offset (8) Figure 40 Image rejection vs BB frequency offset Figure 41 DC offset limit vs Temperature (9) Figure 42 Out-of-band P1dB vs Relative offset multiplier to corner frequency (10) Figure 43 Figure 25 Figure 26, Figure 27, Figure 28 Figure 29, Figure 30, Figure 31, Figure 32 Figure 33 Figure 34 (1) Measured with broadband Picosecond 5310A balun on the LO input and single ended connection on the RF input. Performance gain adjusted for the 3 dB differential to single-ended insertion loss. (2) Performance ripple due to impedance mismatch on the RF input. (3) Measured with broadband Picosecond 5310A balun on the LO input and RF input. Balun insertion loss is compensated for in the measurement. (4) Out-of-band intercept point is defined with tones that are at least 2 times farther out than the programmed LPF corner frequency that generate an intermodulation tone that falls inside the LPF passband. (5) Out-of-band intercept point is dependent on the demodulator performance and not the baseband circuitry; the measurement is taken at max gain but is valid across all PGA settings. (6) Optimized intercept point within the band 2.5 to 2.7 GHz is achieved by setting trim values Mix GM trim, Mix LO Trim, LO Trim, Mix Buff Trim, Filter trim, Out Buff Trim to: 2, 3, 0, 1, 2, 1 respectively. (7) Measured with filter in bypass mode to characterize the passband circuitry across baseband frequencies. (8) Relative to the low frequency offset group delay in bypass mode. (9) Idet set to 50 µA; RF signal is off; LO at 2.4 GHz at 0 dBm; Det filter set to 1 kHz; Clk Div set to 1024. (10) In-band tone set to 1 MHz; out-of-band jammer tone set to specified relative offset ratio from the programmed corner frequency. Jammer tone is increased until in-band tone compresses 1 dB. 8 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) GAIN vs LO FREQUENCY GAIN vs LO FREQUENCY 52 52 T A = −40°C T A = −10°C T A = 25°C T A = 85°C 50 48 48 46 Gain (dB) 46 Gain (dB) VCC = 4.5V VCC = 5V VCC = 5.5V 50 44 42 44 42 40 40 38 38 36 See Notes 1 and 2 34 500 1000 1500 36 See Notes 1 and 2 34 500 1000 1500 2000 2500 3000 LO Frequency (MHz) 3500 4000 G001 2000 2500 3000 LO Frequency (MHz) Figure 1. GAIN vs LO FREQUENCY G002 NOISE FIGURE vs LO FREQUENCY 22 LO Pwr = −3dBm LO Pwr = 0dBm LO Pwr = 3dBm LO Pwr = 6dBm 50 20 18 Noise Figure (dB) 48 46 Gain (dB) 4000 Figure 2. 52 44 42 40 T A = −40°C T A = −10°C T A = 25°C T A = 85°C 16 14 12 10 38 8 36 See Notes 1 and 2 34 500 1000 1500 See Notes 1 and 2 2000 2500 3000 LO Frequency (MHz) 3500 6 500 4000 1000 1500 G003 2000 2500 3000 LO Frequency (MHz) Figure 3. NOISE FIGURE vs LO FREQUENCY 20 4000 G004 NOISE FIGURE vs LO FREQUENCY 22 VCC = 4.5V VCC = 5 V VCC = 5.5V 20 18 Noise Figure (dB) 18 16 14 12 10 LO Pwr = −3dBm LO Pwr = 0dBm LO Pwr = 3dBm LO Pwr = 6dBm 16 14 12 10 8 8 See Notes 1 and 2 6 500 3500 Figure 4. 22 Noise Figure (dB) 3500 1000 1500 2000 2500 3000 LO Frequency (MHz) 3500 See Notes 1 and 2 4000 6 500 1000 G005 Figure 5. 1500 2000 2500 3000 LO Frequency (MHz) 3500 4000 G006 Figure 6. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 9 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 36 34 32 30 TA = −40°C TA = −10°C TA = 25°C TA = 85°C IIP3 (dBm) 28 26 24 22 20 18 16 14 12 10 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 36 34 32 30 IIP3 (dBm) 28 26 24 22 20 18 16 14 12 10 500 See Notes 3, 4 and 5 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G007 Figure 7. 10 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 VCC = 4.5V VCC = 5V VCC = 5.5V 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 See Notes 3, 4 and 5 12 500 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G008 Figure 8. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 11 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 LO Pwr = −3dB LO Pwr = 0dB LO Pwr = 3dB LO Pwr = 6dB 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 See Notes 3, 4 and 5 12 500 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G009 Figure 9. 12 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 TA = −40°C TA = −10°C TA = 25°C TA = 85°C IIP2 (dBm) 80 70 60 50 40 30 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 100 90 IIP2 (dBm) 80 70 60 50 40 See Notes 3, 4 and 5 30 500 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G010 Figure 10. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 13 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 VCC = 4.5V VCC = 5V VCC = 5.5V IIP2 (dBm) 80 70 60 50 40 30 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 100 90 IIP2 (dBm) 80 70 60 50 40 See Notes 3, 4 and 5 30 500 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G011 Figure 11. 14 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 LO Pwr = −3dB LO Pwr = 0dB LO Pwr = 3dB LO Pwr = 6dB IIP2 (dBm) 80 70 60 50 40 30 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 350 4000 400 Q 100 90 IIP2 (dBm) 80 70 60 50 40 See Notes 3, 4 and 5 30 500 1000 1500 2000 2500 LO Frequency (MHz) 3000 3500 4000 G012 Figure 12. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 15 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) GAIN vs LO FREQUENCY GAIN vs LO FREQUENCY 44 44 T A = −40°C T A = −10°C T A = 25°C T A = 85°C 43 42 41 Gain (dB) Gain (dB) 42 40 39 41 40 39 38 38 37 37 36 2100 2200 2300 2400 2500 LO Frequency (MHz) 2600 VCC = 4.5V VCC = 5V VCC = 5.5V 43 2700 36 2100 2200 G013 2300 2400 2500 LO Frequency (MHz) Figure 13. 2600 2700 G014 Figure 14. GAIN vs LO FREQUENCY 44 LO Pwr = −3dBm LO Pwr = 0dBm LO Pwr = 3dBm LO Pwr = 6dBm 43 Gain (dB) 42 41 40 39 38 37 36 2100 2200 2300 2400 2500 LO Frequency (MHz) 2600 2700 G015 Figure 15. 16 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 TA = −40°C TA = −10°C TA = 25°C TA = 85°C 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 12 See Notes 4 and 5 10 2100 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 G016 Figure 16. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 17 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 VCC = 4.5V VCC = 5V VCC = 5.5V 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 See Notes 4 and 5 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 G017 Figure 17. 18 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 LO Pwr = −3dB LO Pwr = 0dB LO Pwr = 3dB LO Pwr = 6dB 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 See Notes 4 and 5 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 G018 Figure 18. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 19 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP3 vs LO FREQUENCY W I 34 32 30 LPFADJ = 0 LPFADJ = 24 LPFADJ = 82 LPFADJ = 142 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 34 32 30 28 IIP3 (dBm) 26 24 22 20 18 16 14 12 10 2100 See Notes 4 and 5 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 G019 Figure 19. 20 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 TA = −40°C TA = −10°C TA = 25°C TA = 85°C 90 80 IIP2 (dBm) 70 60 50 40 30 20 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 See Notes 4 and 5 20 2100 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 100 90 80 IIP2 (dBm) 70 60 50 40 30 G020 Figure 20. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 21 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 VCC = 4.5V VCC = 5V VCC = 5.5V 80 IIP2 (dBm) 70 60 50 40 30 20 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 100 90 80 IIP2 (dBm) 70 60 50 40 30 See Notes 4 and 5 20 2100 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 G021 Figure 21. 22 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 LO Pwr = −3dB LO Pwr = 0dB LO Pwr = 3dB LO Pwr = 6dB 80 IIP2 (dBm) 70 60 50 40 30 20 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 See Notes 4 and 5 20 2100 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 100 90 80 IIP2 (dBm) 70 60 50 40 30 G022 Figure 22. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 23 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) IIP2 vs LO FREQUENCY W I 100 90 LPFADJ = 0 LPFADJ = 24 LPFADJ = 82 LPFADJ = 142 80 IIP2 (dBm) 70 60 50 40 30 20 2100 210 2200 220 2300 230 2400 240 Q 2500 250 2600 260 2700 270 100 90 80 IIP2 (dBm) 70 60 50 40 30 See Notes 4 and 5 20 2100 2200 2300 2400 LO Frequency (MHz) 2500 2600 2700 G023 Figure 23. 24 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) OPTIMIZED IIP2 vs LO FREQUENCY W I 90 TA = −40°C TA = −10°C TA = 25°C TA = 85°C 85 80 Optimized IIP2 (dBm) 75 70 65 60 55 50 45 40 35 30 2500 250 2525 2520 2550 2550 2575 2575 2550 2575 2600 2600 Q 2625 2625 2650 2650 2675 2675 2700 270 2600 2625 LO Frequency (MHz) 2650 2675 2700 90 85 80 Optimized IIP2 (dBm) 75 70 65 60 55 50 45 40 35 See Notes 4, 5 and 6 30 2500 2525 G024 Figure 24. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 25 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) OPTIMIZED IIP3 vs LO FREQUENCY W I 34 TA = −40°C TA = −10°C TA = 25°C TA = 85°C 32 30 Optimized IIP3 (dBm) 28 26 24 22 20 18 16 14 12 2500 250 2525 2520 2550 2550 2575 2575 2550 2575 2600 2600 Q 2625 2625 2650 2650 2675 2675 2700 270 2600 2625 LO Frequency (MHz) 2650 2675 2700 34 32 30 Optimized IIP3 (dBm) 28 26 24 22 20 18 16 14 See Notes 4, 5 and 6 12 2500 2525 G025 Figure 25. 26 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) NOISE FIGURE vs LO FREQUENCY NOISE FIGURE vs LO FREQUENCY 20 20 T A = −40°C T A = −10°C T A = 25°C T A = 85°C 19 18 17 Noise Figure (dB) Noise Figure (dB) 18 VCC = 4.5V VCC = 5 V VCC = 5.5V 19 16 15 14 13 12 17 16 15 14 13 12 11 11 10 2100 10 2100 2200 2300 2400 2500 LO Frequency (MHz) 2600 2700 2200 G026 Figure 26. 2700 G027 OIP3 vs FREQUENCY OFFSET NOISE FIGURE vs LO FREQUENCY 52 LO Pwr = −3dBm LO Pwr = 0dBm LO Pwr = 3dBm LO Pwr = 6dBm 19 18 T A = −40°C T A = 25°C T A = 85°C 50 48 46 17 OIP3 (dBm) Noise Figure (dB) 2600 Figure 27. 20 16 15 14 44 42 40 13 38 12 36 11 34 10 2100 32 2200 2300 2400 2500 LO Frequency (MHz) 2600 See Note 7 0 2700 5 G028 Figure 28. 10 15 Frequency Offset (MHz) 20 25 G029 Figure 29. OIP3 vs FREQUENCY OFFSET OIP3 vs FREQUENCY OFFSET 52 50 VCC = 4.5V VCC = 5V VCC = 5.5V 50 48 BB Gain = 12dB BB Gain = 16dB BB Gain = 20dB BB Gain = 24dB 48 46 46 44 OIP3 (dBm) OIP3 (dBm) 2300 2400 2500 LO Frequency (MHz) 44 42 40 42 40 38 38 36 36 34 34 See Note 7 See Note 7 32 32 0 5 10 15 Frequency Offset (MHz) 20 25 0 G030 Figure 30. 5 10 15 Frequency Offset (MHz) 20 25 G031 Figure 31. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 27 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) OIP3 vs FREQUENCY OFFSET NOISE FIGURE vs BB GAIN SETTING 50 28 3dB Attn On 3dB Attn Off 48 3dB Attn On 3dB Attn Off 25 Noise Figure (dB) 46 OIP3 (dBm) 44 42 40 38 36 22 19 16 34 See Note 7 32 13 0 5 10 15 Frequency Offset (MHz) 20 25 0 2 4 6 8 G032 Figure 32. 22 24 G033 20 3dB Attn On 3dB Attn Off 40 0 37 34 -20 31 Gain (dB) Gain (dB) 20 GAIN vs FREQUENCY OFFSET GAIN vs BB GAIN SETTING 28 25 -40 -60 22 19 -80 16 0 2 4 6 8 10 12 14 16 BB Gain Setting 18 20 22 LPFADJ = 0 LPFADJ = 25 LPFADJ = 85 LPFADJ = 142 -100 0.1 13 24 1 10 Frequency Offset (MHz) G034 Figure 34. 3 20 LPFADJ = 0 LPFADJ = 25 LPFADJ = 85 LPFADJ = 142 0 2 -20 Gain (dB) 1 0 -1 -40 -60 -2 -3 -80 -4 -5 0.1 G035 GAIN vs FREQUENCY OFFSET GAIN vs FREQUENCY OFFSET 4 100 Figure 35. 5 Gain (dB) 18 Figure 33. 43 1 10 Frequency Offset (MHz) 100 Filter Ctrl 0 Filter Ctrl 1 Filter Ctrl 2 Filter Ctrl 3 -100 0.1 G036 Figure 36. 28 10 12 14 16 BB Gain Setting 1 10 100 Frequency Offset (MHz) 1000 G037 Figure 37. Bypass Mode Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 TYPICAL CHARACTERISTICS (continued) VCC = 5 V, LO power = 0 dBm, TA = 25°C, balun = Murata LDB212G4005C-001 (unless otherwise noted) 1-dB LPF CORNER FREQUENCY vs LPFADJ SETTING GAIN vs FREQUENCY OFFSET 16 5 3 1-dB LPF Corner Frequency (MHz) Filter Ctrl 0 Filter Ctrl 1 Filter Ctrl 2 Filter Ctrl 3 4 Gain (dB) 2 1 0 -1 -2 -3 -4 14 12 10 8 6 4 2 0 -5 0.1 1 10 Frequency Offset (MHz) 0 100 50 100 150 LPFADJ Setting G038 Figure 38. Bypass Mode RELATIVE LPF GROUP DELAY vs FREQUENCY OFFSET G039 IMAGE REJECTION vs BB FREQUENCY OFFSET 0 See Note 8 Bypass LPFADJ = 0 LPFADJ = 25 LPFADJ = 85 LPFADJ = 142 400 300 -10 Image Rejection (dB) Relative LPF Group Delay (ns) 250 Figure 39. 500 200 100 0 -20 -30 -40 -50 -100 0.1 1 10 Frequency Offset (MHz) -60 -25 100 -20 G040 -15 -10 -5 0 5 10 BB Frequency Offset (MHz) Figure 40. 15 20 25 G041 Figure 41. OUT-OF-BAND P1dB vs REL OFFSET MULTIPLIER to CORNER FREQUENCY DC OFFSET LIMIT vs TEMPERATURE 60 See Note 9 15 40 LPFADJ = 0 LPFADJ = 25 LPFADJ = 85 LPFADJ = 142 10 Out-of-Band P1dB (dBm) DC Offset Limit (mV) 200 20 0 -20 -40 5 0 -5 -10 -15 -20 -60 -45 -35 -25 -15 -5 See Note 10 5 15 25 35 45 55 65 75 85 Temperature (°C) G042 -25 0 0.5 1 1.5 2 2.5 3 3.5 4 Relative Offset Multiplier to Corner Frequency Figure 42. 4.5 G043 Figure 43. Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 29 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com REGISTER INFORMATION SERIAL INTERFACE PROGRAMMING REGISTERS DEFINITION The TRF371125 features a three-wire serial programming interface (SPI) that controls an internal 32-bit shift register. There are three signals that must be applied: CLOCK (pin 48), serial DATA (pin 47), and STROBE (pin 46). DATA (DB0–DB31) is loaded LSB-first and is read on the rising edge of CLOCK. STROBE is asynchronous to CLOCK, and at its rising edge the data in the shift register is loaded into the selected internal register. The first two bits (DB0–DB1) are the address to select the available internal registers. READBACK Mode The TRF371125 implements the capability to read back the content of the serial programming interface registers. In addition, it is possible to read back the status of the internal DAC registers that are automatically set after an auto dc-offset calibration. Each readback is composed by two phases: writing followed by the actual reading of the internal data (see timing diagram in Figure 44). During the writing phase, a command is sent to the TRF371125 to set it in readback mode and to specify which register is to be read. In the proper reading phase, at each rising clock edge, the internal data is transferred into the READBACK pin and can be read at the following falling edge (LSB first). The first clock after LE goes high (end of writing cycle) is idle, and the following 32 clock pulses transfer the internal register content to the READBACK pin. tsu1 t(CL) t(CLK) th t(CH) st Register Write CLOCK DATA nd 1 Write CLOCK Pulse 32 Write CLOCK Pulse DB0 (LSB) Address Bit 0 DB1 Address Bit 1 DB3 Address Bit 3 DB2 Address Bit 2 DB30 DB29 READBACK DATA READBACK DATA Bit 30 Bit 29 DB31 (MSB) READBACK DATA Bit 31 tsu2 "End of Write Cycle"Pulse Latch Enable nd CLOCK 32 Write CLOCK Pulse tsu2 READBACK tw st 1 Read CLOCK Pulse nd nd 2 Read CLOCK Pulse rd 32 Read CLOCK Pulse 33 Read CLOCK Pulse tw td STROBE "End of Write Cycle" Pulse READBACK Data Bit 0 READBACK DATA READ BACK Data Bit 1 READ BACK Data Bit 29 READBACK Data Bit 30 READBACK Data Bit 31 T0265-02 Figure 44. Serial Programming Timing Diagram 30 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 Table 1. Register Summary (1) Bit # Reg 1 Reg 2 Bit # Bit0 Bit1 Register address Register address Bit1 Bit2 Reg 5 Bit3 SPI bank addr SPI bank addr Bit5 PWD RF En auto-cal Bit6 NU Bit6 Bit7 PWD buf Bit7 Bit8 P Bit8 Bit9 NU Bit9 Bit10 PWD DC OFF DIG Bit11 NU Bit4 Bit4 Register address Register address SPI bank addr SPI bank addr Mix GM trim ILoadA Mix LO trim LO trim Bit10 Bit11 Bit12 Mix buf trim Bit12 Bit13 Bit13 Bit14 BB gain Bit14 Bit1 ILoadB Fltr trim Bit3 Bit4 Bit5 Bit6 Bit9 Bit11 Bit13 Bit14 Bit17 Bit17 Bit17 Bit18 Bit18 Bit19 Bit20 Bit20 LPFADJ Bit21 Bit22 IDet Bit23 Bit24 Bit25 Bit26 DC detector bandwidth Bit27 Fast gain Bit28 Gain sel Bit29 Osc test Bit30 NU Bit31 En 3dB attn Bit21 Bit21 Bit22 Bit22 Bit25 Cal clk sel Bit26 NU Bit24 Bit25 QLoadB Bit26 Bit27 Bit27 Bit28 Bit28 Bit29 Osc trim Bit30 Bit31 DC offset Q DAC Bit23 Bit24 CLK div ratio Bit16 Bit20 Bit23 Cal sel Bit15 Bit19 QLoadA NU Bit12 Bit16 Bit19 ID Bit10 Bit15 Out buf trim SPI bank addr Bit8 Bit16 Bit18 Register address Bit7 Bit15 QDAC for dc offset Reg 0 Bit2 Bit5 IDAC for dc offset Bit # Bit0 Bit2 Bit3 (1) Reg 3 Bit0 Bypass DC offset I DAC Bit29 Bit30 Fltr ctrl Bit31 Register 4 is not used. Table 2. Register 1 Device Setup REGISTER 1 NAME RESET VALUE Bit0 ADDR 1 WORKING DESCRIPTION Bit1 ADDR 0 Bit2 ADDR 0 Bit3 ADDR 1 Bit4 ADDR 0 Bit5 PWD_MIX 0 Mixer power down (Off = 1) Bit6 NU 0 Not used Bit7 PWD_BUF 1 Mixer out test buffer power down (Off = 1) Bit8 PWD_FILT 0 Baseband filter power down (Off = 1) Bit9 NU 0 Not used Bit10 PWD_DC_OFF_DIG 1 DC offset calibration power down (Off = 1) Register address SPI bank address Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 31 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com Table 2. Register 1 Device Setup (continued) REGISTER 1 NAME RESET VALUE Bit11 NU 1 WORKING DESCRIPTION Bit12 BBGAIN_0 1 Bit13 BBGAIN_1 1 Bit14 BBGAIN_2 1 Bit15 BBGAIN_3 1 Bit16 BBGAIN_4 0 Bit17 LPFADJ_0 0 Bit18 LPFADJ_1 0 Bit19 LPFADJ_2 0 Bit20 LPFADJ_3 0 Bit21 LPFADJ_4 0 Bit22 LPFADJ_5 0 Bit23 LPFADJ_6 0 Bit24 LPFADJ_7 1 Bit25 EN_FLT_B0 0 Bit26 EN_FLT_B1 0 Selects dc offset detector filter bandwidth. Setting {00, 01, 11} = {10 MHz, 10 kHz, 1 kHz} Bit27 EN_FASTGAIN 0 Enable external fast-gain control Bit28 GAIN_SEL 0 Fast-gain control multiplier bit (×2 = 1) Bit29 OSC_TEST 0 Enables osc out on readback pin if = 1 Bit30 NU 0 Not used Bit31 EN 3dB Attn 0 Enables output 3-dB attenuator Not used Baseband gain setting. Default = 15. Range is from 0 (minimum gain setting) to 24 (maximum gain setting). See the Application Information section for more information on gain setting and fast gain control options. Sets programmable low-pass filter corner frequency. Range = 255 (lowest corner frequency) to 0 (highest corner frequency). Default value is 128. EN_FLT_B0/1: These bits control the bandwidth of the detector used to measure the dc offset during the automatic calibration. There is an RC filter in front of the detector that can be fully bypassed. EN_FLT_B0 controls the resistor (bypass = 1), while EN_FLT_B1 controls the capacitor (bypass = 1). The typical 3-dB cutoff frequencies of the detector bandwidth are summarized in the following table (see the Application Information section for more detail on the dc offset calibration and the detector bandwidth). EN_FLT_B1 EN_FLT_B0 TYPICAL 3-dB CUTOFF FREQ x 0 10 MHz NOTES Maximum bandwidth, bypass R, C 0 1 10 kHz Enable R 1 1 1 kHz Minimum bandwidth, enable R, C Table 3. Register 2 Device Setup 32 REGISTER 2 NAME RESET VALUE Bit0 ADDR 0 Bit1 ADDR 1 Bit2 ADDR 0 Bit3 ADDR 1 Bit4 ADDR 0 Bit5 EN_AUTOCAL 0 Bit6 IDAC_BIT0 0 Bit7 IDAC_BIT1 0 Bit8 IDAC_BIT2 0 Bit9 IDAC_BIT3 0 Bit10 IDAC_BIT4 0 Bit11 IDAC_BIT5 0 Bit12 IDAC_BIT6 0 Bit13 IDAC_BIT7 1 WORKING DESCRIPTION Register address SPI bank address Enable autocal when = 1; reset to 0 when done. I-DAC bits to be set during manual dc offset cal Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 Table 3. Register 2 Device Setup (continued) REGISTER 2 NAME RESET VALUE Bit14 QDAC_BIT0 0 WORKING DESCRIPTION Bit15 QDAC_BIT1 0 Bit16 QDAC_BIT2 0 Bit17 QDAC_BIT3 0 Bit18 QDAC_BIT4 0 Bit19 QDAC_BIT5 0 Bit20 QDAC_BIT6 0 Bit21 QDAC_BIT7 1 Bit22 IDET_B0 1 Bit23 IDET_B1 1 Set reference current for digital calibration; Settings {00 to 11} = {50 µA to 200 µA}. Setting 00 = highest resolution. Bit24 CAL_SEL 1 DC offset calibration select. 0 = manual cal; 1 = autocal. Bit25 Clk_div_ratio 0 Bit26 Clk_div_ratio 0 Bit27 Clk_div_ratio 0 Bit28 Cal_clk_sel 1 Bit29 Osc_trim 1 Bit30 Osc_trim 1 Bit31 Osc_trim 0 Q-DAC bits to be set during manual dc offset cal Clk divider ratio. Setting {000 to 111} = {1, 8, 16, 128, 256, 1024, 2048, 16684}. A higher div ratio (slower clk) improves cal accuracy and reduces speed. Select internal oscillator when 1, SPI clk when 0 Internal oscillator frequency trimming; Setting {000} = ~300 kHz; Setting {111} = ~1.8 MHz. Nominal setting {110} = ~900 kHz. Table 4. Register 3 Device Setup REGISTER 3 NAME RESET VALUE Bit0 ADDR 1 Bit1 ADDR 1 Bit2 ADDR 0 Bit3 ADDR 1 Bit4 ADDR 0 Bit5 ILOAD_a 0 Bit6 ILOAD_a 0 Bit7 ILOAD_a 0 Bit8 ILOAD_a 0 Bit9 ILOAD_a 0 Bit10 ILOAD_a 0 Bit11 ILOAD_b 0 Bit12 ILOAD_b 0 Bit13 ILOAD_b 0 Bit14 ILOAD_b 0 Bit15 ILOAD_b 0 Bit16 ILOAD_b 0 Bit17 QLOAD_a 0 Bit18 QLOAD_a 0 Bit19 QLOAD_a 0 Bit20 QLOAD_a 0 Bit21 QLOAD_a 0 Bit22 QLOAD_a 0 WORKING DESCRIPTION Register address SPI bank address I mixer offset side A I mixer offset side B Q mixer offset side A Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 33 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com Table 4. Register 3 Device Setup (continued) REGISTER 3 NAME RESET VALUE Bit23 QLOAD_b 0 WORKING DESCRIPTION Bit24 QLOAD_b 0 Bit25 QLOAD_b 0 Bit26 QLOAD_b 0 Bit27 QLOAD_b 0 Bit28 QLOAD_b 0 Bit29 Bypass 0 Engage filter bypass Bit30 Fltr Ctrl_b 1 Bit31 Fltr Ctrl_b 0 Used to adjust for filter peaking response; set to 0 in bypass mode, 1 otherwise Q mixer offset side B I/Q Mixer Load A/B: these bits adjust the load on the mixer output. All values should be 0. No modification is necessary. Register 4: No programming required for Register 4 Table 5. Register 5 Device Setup REGISTER 5 NAME RESET VALUE Bit0 ADDR 1 Bit1 ADDR 0 Bit2 ADDR 1 Bit3 ADDR 1 Bit4 ADDR 0 Bit5 MIX_GM_TRIM 1 Bit6 MIX_GM_TRIM 0 Bit7 MIX_LO_TRIM 1 Bit8 MIX_LO_TRIM 0 Bit9 LO_TRIM 1 Bit10 LO_TRIM 0 Bit11 MIX_BUFF_TRIM 1 Bit12 MIX_BUFF_TRIM 0 Bit13 FLTR_TRIM 1 Bit14 FLTR_TRIM 0 Bit15 OUT_BUFF_TRIM 1 Bit16 OUT_BUFF_TRIM 0 Bit17 0 Bit18 0 Bit19 0 Bit20 0 Bit21 0 Bit22 0 Bit23 Bit24 34 WORKING DESCRIPTION Register address SPI bank address Mixer gm current trim Mixer switch core VCM trim LO buffers current trim Mixer output buffer current trim Filter current trim Filter output buffer current trim 0 NU 0 Bit25 0 Bit26 0 Bit27 0 Bit28 0 Bit29 0 Bit30 0 Bit31 0 Not used Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 Trims: the trim values allow for minor bias adjustments of internal stages. Generally it is recommended to leave all trim values at the default value of 1. Linearity performance improvement over a small band of frequencies is possible by selective adjustment of the trim values. Optimized intercept point within the band 2.5 GHz to 2.7 GHz is achieved by setting trim values Mix GM trim, Mix LO Trim, LO Trim, Mix Buff Trim, Filter Trim, Out Buff Trim to: 2, 3, 0, 1, 2, 1, respectively. Readback (Write Command) 0 0 0 1 0 Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Zero Fill Bit16 Bit17 Bit18 Bit19 Bit20 Bit21 Bit6 Bit7 Bit8 Bit9 Bit10 Bit11 Bit12 Bit23 Bit24 Bit25 Bit26 Bit27 Bit28 Bit29 Bit30 Bit31 Bit12 Bit13 Bit14 Bit15 Bit29 Bit30 Bit31 Zero fill Bit22 Bit13 Bit14 Register address Bit15 1 Reg 0:DAC/Device ID Readback Register Address Bit0 Bit1 SPI Bank Addr Bit2 Bit3 ID Bit4 Bit5 NU Bit6 Bit7 Bit8 Bit9 Bit10 DC offset Q DAC Bit16 Bit17 Bit18 Bit19 Bit11 DC offset I DAC Bit20 Bit21 Bit22 Bit23 Bit24 Bit25 Bit26 Bit27 Bit28 Table 6. Register 0 Device Setup (Read-Only) READBACK REGISTER NAME RESET VALUE Bit0 ADDR 0 Bit1 ADDR 0 Bit2 ADDR 0 Bit3 ADDR 1 Bit4 ADDR 0 Bit5 ID 1 Bit6 ID 0 Bit7 0 Bit8 0 Bit9 0 Bit10 WORKING DESCRIPTION Select SPI reg 1 to 5 Select SPI bank 1 to 3 Version ID: 01 = –25 0 Bit11 NU 0 Bit12 0 Bit13 0 Bit14 0 Bit15 0 Bit16 DC_OFFSET_Q 0 Bit17 DC_OFFSET_Q 0 Bit18 DC_OFFSET_Q 0 Bit19 DC_OFFSET_Q 0 Bit20 DC_OFFSET_Q 0 Bit21 DC_OFFSET_Q 0 Bit22 DC_OFFSET_Q 0 Bit23 DC_OFFSET_Q 1 Not used DC offset DAC Q register Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 35 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com Table 6. Register 0 Device Setup (Read-Only) (continued) 36 READBACK REGISTER NAME RESET VALUE Bit24 DC_OFFSET_I 0 Bit25 DC_OFFSET_I 0 Bit26 DC_OFFSET_I 0 Bit27 DC_OFFSET_I 0 Bit28 DC_OFFSET_I 0 Bit29 DC_OFFSET_I 0 Bit30 DC_OFFSET_I 0 Bit31 DC_OFFSET_I 1 WORKING DESCRIPTION DC offset DAC I register Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 TRF371125 www.ti.com SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 APPLICATION INFORMATION Gain Control The TRF371125 integrates a baseband programmable-gain amplifier (PGA) that provides 24 dB of gain range with 1-dB steps. The PGA gain is controlled through SPI by a 5-bit word (register 1 bits). Alternatively, the PGA can be programmed by a combination of 5 bits programmed through the SPI and 3 parallel external bits (pins Gain_B2, Gain_B1, Gain_B0). The external bits are used to reduce the PGA setting quickly without having to reprogram the SPI registers. The fast gain control multiplier bit (register 1, bit 28) sets the step size of each bit to either 1 dB or 2 dB. This allows a fast gain reduction of 0 dB to 7 dB in 1-dB steps or 0 dB to 14 dB in 2-dB steps. The PGA gain control word (BBgain) can be programmed to a setting between 0 and 24. This word is the SPI programmed gain (register 1 bits) minus the parallel external 3 bits as shown in Figure 45. Note that the PGA gain setting rails at 0 and does not go any lower. Typical applications set the nominal PGA gain setting to 17 and use the fast-gain control bits to protect the analog-to-digital converter in the event of a strong input jammer signal. Composite PGA Setting (min: 0, max 24) + SPI X (x1, x2) Gain_B0 Gain_B1 Gain_B2 Fast Gain Select B0386-01 Figure 45. PGA Gain Control Word For example, if a PGA gain setting of 19 is desired, then the SPI can be programmed directly to a value of 19. Alternatively, the SPI gain register can be programmed to 24 and the parallel external bits set to 101 (binary) corresponding to 5-dB reduction. Automated DC Offset Calibration The TRF371125 provides an automatic calibration procedure for adjusting the dc offset in the baseband I/Q paths. The internal calibration requires a clock in order to function. The TRF371125 can use the internal relaxation oscillator or the external SPI clock. Using the internal oscillator is the preferred method, which is selected by setting the Cal_Sel_Clk (register 2, bit 28) to 1. The internal oscillator frequency is set through the Osc_Trim bits (register 2, bits ). The frequency of the oscillator is detailed in Table 7; however, it is expected the actual frequency of operation can vary plus or minus 35% due to process variations. The oscillator frequency can be monitored on the READBACK pin when the Osc_Test register (Register 1, bit 29) is set to 1. Table 7. Internal Oscillator Frequency Control Osc_Trim Osc_Trim Osc_Trim FREQUENCY 0 0 0 300 kHz 0 0 1 500 kHz 0 1 0 700 kHz 0 1 1 900 kHz 1 0 0 1.1 MHz 1 0 1 1.3 MHz 1 1 0 1.5 MHz 1 1 1 1.8 MHz Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated Product Folder Link(s): TRF371125 37 TRF371125 SLWS219B – JANUARY 2010 – REVISED DECEMBER 2010 www.ti.com The default setting of these registers corresponds to a 900-kHz oscillator frequency. This is sufficient for autocalibration; modification is not required except for faster calibration convergence. The output full-scale range of the internal dc offset correction DACs is programmable (IDET_B
TRF371125IRGZT 价格&库存

很抱歉,暂时无法提供与“TRF371125IRGZT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TRF371125IRGZT
  •  国内价格 香港价格
  • 1+250.423991+30.40657
  • 10+230.9389610+28.04069
  • 25+220.5577325+26.78020
  • 100+197.20319100+23.94448

库存:0