0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TRS3222CDBR

TRS3222CDBR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SSOP20

  • 描述:

    IC TRANSCEIVER FULL 2/2 20SSOP

  • 数据手册
  • 价格&库存
TRS3222CDBR 数据手册
www.ti.com TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION FEATURES • • • • • • • • • RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM) Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards Operates With 3-V to 5.5-V VCC Supply Operates up to 250 kbit/s Two Drivers and Two Receivers Low Standby Current . . . 1 μA Typical External Capacitors . . . 4 × 0.1 μF Accepts 5-V Logic Input With 3.3-V Supply Alternative High-Speed Pin-Compatible Device (1 Mbit/s) – TRSF3222 SLLS815 – JULY 2007 DB, DW, OR PW PACKAGE (TOP VIEW) EN C1+ V+ C1− C2+ C2− V− DOUT2 RIN2 ROUT2 1 20 2 3 19 18 4 17 5 16 6 7 15 14 8 9 13 12 10 11 PWRDOWN VCC GND DOUT1 RIN1 ROUT1 NC DIN1 DIN2 NC NC − No internal connection APPLICATIONS • • • • • • Battery-Powered Systems PDAs Notebooks Laptops Palmtop PCs Hand-Held Equipment DESCRIPTION/ORDERING INFORMATION The TRS3222 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/μs driver output slew rate. The TRS3222 can be placed in the power-down mode by setting PWRDOWN low, which draws only 1 μA from the power supply. When the device is powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to VCC, and V– is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting EN high. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007, Texas Instruments Incorporated TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 ORDERING INFORMATION PACKAGE (1) (2) TA SOIC – DW 0°C to 70°C SSOP – DB TSSOP – PW SOIC – DW –40°C to 85°C SSOP – DB TSSOP – PW (1) (2) ORDERABLE PART NUMBER Tube of 25 TRS3222CDW Reel of 2000 TRS3222CDWR Tube of 70 TRS3222CDB Reel of 2000 TRS3222CDBR Tube of 70 TRS3222CPW Reel of 2000 TRS3222CPWR Tube of 25 TRS3222IDW SSOP – DB TRS3222IDWR Tube of 70 TRS3222IDB Reel of 2000 TRS3222IDBR Tube of 70 TRS3222IPW Reel of 2000 TRS3222IPWR TRS3222C RS22C RS22C TRS3222I RS22I RS22I Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. FUNCTION TABLES Each Driver (1) INPUTS DIN (1) PWRDOWN OUTPUT DOUT X L Z L H H H H L H = high level, L = low level, X = irrelevant, Z = high impedance Each Receiver (1) INPUTS (1) 2 TOP-SIDE MARKING RIN EN OUTPUT ROUT L L H H L L X H Z Open L H H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 LOGIC DIAGRAM (POSITIVE LOGIC) DIN1 DIN2 PWRDOWN EN ROUT1 ROUT2 13 17 12 8 20 DOUT1 DOUT2 Powerdown 1 15 16 10 9 Submit Documentation Feedback RIN1 RIN2 3 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range (2) –0.3 6 V V+ Positive output supply voltage range (2) –0.3 7 V 0.3 –7 V 13 V V– Negative output supply voltage range V+ – V– Supply voltage difference (2) VI Input voltage range VO Output voltage range θJA Package thermal impedance (3) (4) (2) Tstg Storage temperature range (4) 6 Receivers –25 25 Receivers Operating virtual junction temperature (2) (3) –0.3 Drivers TJ (1) Drivers, EN, PWRDOWN –13.2 13.2 –0.3 VCC + 0.3 DB package 70 DW package 58 PW package 83 –65 UNIT V V °C/W 150 °C 150 °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions (1) See Figure 5 VCC = 3.3 V Supply voltage VCC = 5 V VIH Driver and control high-level input voltage DIN, EN, PWRDOWN VIL Driver and control low-level input voltage DIN, EN, PWRDOWN VI Driver and control input voltage DIN, EN, PWRDOWN VI Receiver input voltage TA Operating free-air temperature (1) VCC = 3.3 V VCC = 5 V TRS222C TRS222I MIN NOM MAX 3 3.3 3.6 4.5 5 5.5 UNIT V 2 V 2.4 0.8 V 0 5.5 V –25 25 V 0 70 –40 85 °C Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER II ICC (1) (2) 4 TEST CONDITIONS Input leakage current (EN, PWRDOWN) Supply current No load, PWRDOWN at VCC Supply current (powered off) No load, PWRDOWN at GND MIN TYP (2) MAX ±0.01 ±1 μA 0.3 1 mA 1 10 μA Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Submit Documentation Feedback UNIT TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 DRIVER SECTION Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS MIN TYP (2) VOH High-level output voltage DOUT at RL = 3 kΩ to GND, DIN = GND 5 5.4 VOL Low-level output voltage DOUT at RL = 3 kΩ to GND, DIN = VCC –5 –5.4 IIH High-level input current VI = VCC IIL Low-level input current VI at GND IOS Short-circuit output current (3) ro Output resistance Ioff (1) (2) (3) Output leakage current MAX V V ±0.01 ±1 μA ±0.01 ±1 μA ±35 ±60 mA VCC = 3.6 V, VO = 0 V VCC = 5.5 V, VO = 0 V VCC, V+, and V– = 0 V, VO = ±2 V PWRDOWN = GND, VCC = 3 V to 3.6 V VO = ±12 V ±25 PWRDOWN = GND, VCC = 4.5 V to 5.5 V VO = ±10 V ±25 300 UNIT Ω 10 M μA Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. Switching Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS Maximum data rate CL = 1000 pF, One DOUT switching, tsk(p) Pulse skew (3) CL = 150 pF to 2500 pF, RL = 3 kΩ to 7 kΩ, See Figure 2 SR(tr) Slew rate, transition region (see Figure 1) RL = 3 kΩ to 7 kΩ, VCC = 3.3 V (1) (2) (3) RL = 3 kΩ, See Figure 1 MIN TYP (2) 150 250 kbit/s 300 ns MAX CL = 150 pF to 1000 pF 6 30 CL = 150 pF to 2500 pF 4 30 UNIT V/μs Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Pulse skew is defined as |tPLH – tPHL| of each channel of the same device. Submit Documentation Feedback 5 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 RECEIVER SECTION Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = –1 mA VOL Low-level output voltage IOH = 1.6 mA TYP (2) VCC – 0.6 VCC – 0.1 MAX 1.5 2.4 VCC = 5 V 1.8 2.4 Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input hysteresis (VIT+ – VIT– ) Ioff Output leakage current EN = VCC rI Input resistance VI = ±3 V to ±25 V VCC = 3.3 V 0.6 1.2 VCC = 5 V 0.8 1.5 V V V 0.3 3 UNIT V 0.4 VCC = 3.3 V VIT+ (1) (2) MIN V ±0.05 ±10 μA 5 7 kΩ Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Switching Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER MIN TYP (2) MAX UNIT tPLH Propagation delay time, low- to high-level output CL = 150 pF, See Figure 3 300 ns tPHL Propagation delay time, high- to low-level output CL = 150 pF, See Figure 3 300 ns ten Output enable time CL = 150 pF, RL = 3 kΩ, See Figure 4 200 ns tdis Output disable time CL = 150 pF, RL = 3 kΩ, See Figure 4 200 ns tsk(p) Pulse skew (3) See Figure 3 300 ns (1) (2) (3) 6 TEST CONDITIONS Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Pulse skew is defined as |tPLH – tPHL| of each channel of the same device. Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 PARAMETER MEASUREMENT INFORMATION 3V Input Generator (see Note B) 1.5 V RS-232 Output 50 Ω RL 1.5 V 0V CL (see Note A) tTHL 3V PWRDOWN tTLH VOH 3V 3V Output −3 V −3 V VOL TEST CIRCUIT VOLTAGE WAVEFORMS SR(tr) + t THL 6V or t TLH A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 1. Driver Slew Rate 3V Generator (see Note B) RS-232 Output 50 Ω RL Input 1.5 V 1.5 V 0V CL (see Note A) tPHL tPLH VOH 3V PWRDOWN 50% 50% Output VOL TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 2. Driver Pulse Skew EN 0V 3V Input 1.5 V 1.5 V −3 V Output Generator (see Note B) 50 Ω tPHL CL (see Note A) tPLH VOH 50% Output 50% VOL TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 3. Receiver Propagation Delay Times Submit Documentation Feedback 7 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 PARAMETER MEASUREMENT INFORMATION (continued) VCC GND S1 3V Input 1.5 V RL 3 V or 0 V 0V tPZH (S1 at GND) tPHZ Output CL (see Note A) EN S1 at GND) VOH Output 50% 0.3 V Generator (see Note B) 1.5 V 50 Ω tPLZ (S1 at VCC) 0.3 V Output 50% VOL tPZL (S1 at VCC) TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 4. Receiver Enable and Disable Times 8 Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 APPLICATION INFORMATION 1 EN 2 + C1 − 3 C3† + 20 Powerdown VCC C1+ V+ GND PWRDOWN 19 18 + C BYPASS − = 0.1 µF − 4 5 17 C1− 16 C2+ DOUT1 RIN1 + C2 − 6 7 C4 DOUT2 RIN2 ROUT2 − 15 C2− 14 V− ROUT1 NC + 8 13 9 12 10 11 DIN1 DIN2 NC † C3 can be connected to V CC or GND. NOTES: A. Resistor values shown are nominal. B. NC − No internal connection C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. VCC vs CAPACITOR VALUES VCC 3.3 V " 0.3 V C1 0.1 µF C2, C3, and C4 0.1 µF 5 V " 0.5 V 0.047 µF 0.33 µF 3 V to 5.5 V 0.1 µF 0.47 µF Figure 5. Typical Operating Circuit and Capacitor Values Submit Documentation Feedback 9 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TRS3222CDBR ACTIVE SSOP DB 20 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 RS22C (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TRS3222CDBR 价格&库存

很抱歉,暂时无法提供与“TRS3222CDBR”相匹配的价格&库存,您可以联系我们找货

免费人工找货