0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS3USB221RSER

TS3USB221RSER

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    UFQFN10

  • 描述:

    IC USB SWITCH DUAL 1X2 10UQFN

  • 数据手册
  • 价格&库存
TS3USB221RSER 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 TS3USB221 High-Speed USB 2.0 (480-Mbps) 1:2 Multiplexer – Demultiplexer Switch With Single Enable 1 Features 3 Description • • • • • • • • • • The TS3USB221 is a high-bandwidth switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os. The wide bandwidth (1.1 GHz) of this switch allows signals to pass with minimum edge and phase distortion. The device multiplexes differential outputs from a USB host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. The TS3USB221 is designed for low bit-to-bit skew and high channel to channel noise isolation. The TS3USB221 is also compatible with various standards, such as high-speed USB 2.0 (480 Mbps). 1 VCC Operation from 2.3 V and 3.6 V VI/O Accepts Signals up to 5.5 V 1.8-V Compatible Control-Pin Inputs Low-Power Mode When OE Is Disabled (1 μA) rON = 6 Ω Maximum ΔrON = 0.2 Ω Typical Cio(on) = 6 pF Maximum Low Power Consumption (30 μA Maximum) ESD > 2000-V Human-Body Model (HBM) High Bandwidth (1.1 GHz Typical) 2 Applications • • • Routes Signals for USB 1.0, 1.1, and 2.0 Mobile Industry Processor Interface (MIPI™) Signal Routing MHL 1.0 Device Information(1) PART NUMBER TS3USB221 PACKAGE BODY SIZE (NOM) VSON (10) 3.00 mm × 3.00 mm UQFN (10) 1.50 mm × 2.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Block Diagram Simplified Schematic, Each FET Switch (SW) D+ 1D+ D− 1D− A 2D+ B VCC 2D− Digital Control Charge Pump S OE EN (see Note A) A. EN is the internal enable signal applied to the switch. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 10 Power Supply Recommendations ..................... 15 11 Layout................................................................... 15 6 12 Device and Documentation Support ................. 17 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions ...................... Thermal Information .................................................. Electrical Characteristics........................................... Dynamic Electrical Characteristics, VCC = 3.3 V ± 10% ........................................................................... 6.7 Dynamic Electrical Characteristics, VCC = 2.5 V ± 10% ........................................................................... 6.8 Switching Characteristics, VCC = 3.3 V ± 10% ........ 6.9 Switching Characteristics, VCC = 2.5 V ± 10% ........ 6.10 Typical Characteristics ............................................ 7 6 6 6 7 Parameter Measurement Information .................. 8 8 Detailed Description ............................................ 12 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 12 12 12 12 Application and Implementation ........................ 13 9.1 Application Information............................................ 13 9.2 Typical Application ................................................. 13 11.1 Layout Guidelines ................................................. 15 11.2 Layout Example .................................................... 16 12.1 12.2 12.3 12.4 Documentation Support ........................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 17 17 17 17 13 Mechanical, Packaging, and Orderable Information ........................................................... 17 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision H (February 2015) to Revision I • Page Changed VIH Max from 5.5 to VCC in Recommended Operating Conditions table ................................................................. 4 Changes from Revision G (September 2010) to Revision H Page • Changed first bullet of the Features FROM: VCC Operation at 2.5 V and 3.3 V TO: VCC Operation at 2.3 V and 3.6 V ....... 1 • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • Removed the Ordering Information table ............................................................................................................................... 1 2 Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 5 Pin Configuration and Functions DRC Package 10-Pin VSON (Top View) RSE Package 10-Pin UQFN (Top View) 1D+ 1 10 VCC 1D– 2 9 S 2D+ 3 8 D+ 2D– 4 7 D– GND 5 6 OE VCC 10 9 S 2 8 D+ 2D+ 3 7 D– 2D– 4 6 OE 1D+ 1 1D– 5 GND RSE Package 10-Pin UQFB (Bottom View) VCC S 9 D+ 10 1 1D+ 8 2 1D– D– 7 3 2D+ OE 6 4 2D– 5 GND Pin Functions PIN NAME NO. I/O 1D+ 1 I/O 1D– 2 I/O 2D+ 3 I/O 2D– 4 I/O GND 5 — OE 6 I D– 7 I/O D+ 8 I/O S 9 I VCC 10 — DESCRIPTION USB port 1 USB port 2 Ground Bus-switch enable Common USB port Select input Supply voltage Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 3 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) VCC Supply voltage MIN MAX UNIT –0.5 4.6 V –0.5 7 V –0.5 7 V –50 mA VIN Control input voltage (2) (3) VI/O Switch I/O voltage (2) (3) (4) IIK Control input clamp current VIN < 0 II/OK I/O port clamp current VI/O < 0 –50 mA II/O ON-state switch current (5) ±120 mA Continuous current through VCC or GND ±100 mA 150 °C Tstg (1) (2) (3) (4) (5) Storage temperature –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to ground, unless otherwise specified. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. VI and VO are used to denote specific conditions for VI/O. II and IO are used to denote specific conditions for II/O. 6.2 ESD Ratings V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 VALUE UNIT 2000 V 6.3 Recommended Operating Conditions (1) See . VCC Supply voltage VIH High-level control input voltage VIL Low-level control input voltage VI/O Data input/output voltage TA Operating free-air temperature (1) VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V MIN MAX 2.3 3.6 V 0.46 × VCC VCC V 0 0.25 × VCC V 0 5.5 V –40 85 °C VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V UNIT All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 6.4 Thermal Information TS3USB221 THERMAL METRIC (1) DRC (VSON) RSE (UQFN) 10 PINS 10 PINS RθJA Junction-to-ambient thermal resistance 57.7 169.8 RθJC(top) Junction-to-case (top) thermal resistance 87.7 84.7 RθJB Junction-to-board thermal resistance 32.6 94.9 ψJT Junction-to-top characterization parameter 8.2 5.7 ψJB Junction-to-board characterization parameter 32.8 94.9 RθJC(bot) Junction-to-case (bottom) thermal resistance 18.5 N/A (1) 4 UNIT °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 6.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) (1) PARAMETER VIK Control inputs IIN IOZ (3) TEST CONDITIONS MIN TYP (2) MAX UNIT –1.8 V VCC = 3.6 V, 2.7 V, II = –18 mA VCC = 3.6 V, 2.7 V, 0 V, VIN = 0 V to 3.6 V ±1 μA VCC = 3.6 V, 2.7 V, VO = 0 V to 3.6 V, VI = 0 V, VIN = VCC or GND, Switch OFF ±1 μA VI/O = 0 V to 3.6 V ±2 VI/O = 0 V to 2.7 V ±1 μA IOFF VCC = 0 V ICC VCC = 3.6 V, 2.7 V, VIN = VCC or GND, II/O = 0 V, Switch ON or OFF 30 μA ICC (low power mode) VCC = 3.6 V, 2.7 V, VIN = VCC or GND Switch disabled (OE in high state) 1 μA Control inputs One input at 1.8 V, Other inputs at VCC or GND VCC = 3.6 V 20 VCC = 2.7 V 0.5 Control inputs VCC = 3.3 V, 2.5 V, VIN = 3.3 V or 0 V Cio(OFF) VCC = 3.3 V, 2.5 V, VI/O = 3.3 V or 0 V, Cio(ON) VCC = 3.3 V, 2.5 V, ΔICC (4) Cin ron (5) VCC = 3 V, 2.3 V Δron VCC = 3 V, 2.3 V ron(flat) VCC = 3 V, 2.3 V (1) (2) (3) (4) (5) μA 1 2 pF Switch OFF 3 4 pF VI/O = 3.3 V or 0 V, Switch ON 5 6 pF VI = 0 V, IO = 30 mA 6 VI = 2.4 V, IO = –15 mA 6 VI = 0 V, IO = 30 mA 0.2 VI = 1.7, IO = –15 mA 0.2 VI = 0 V, IO = 30 mA 1 VI = 1.7, IO = –15 mA 1 Ω Ω Ω VIN and IIN refer to control inputs. VI, VO, II, and IO refer to data pins. All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C. For I/O ports, the parameter IOZ includes the input leakage current. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals. Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 5 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com 6.6 Dynamic Electrical Characteristics, VCC = 3.3 V ± 10% over operating range, TA = –40°C to 85°C, VCC = 3.3 V ± 10%, GND = 0 V PARAMETER TYP (1) TEST CONDITIONS UNIT XTALK Crosstalk RL = 50 Ω, f = 250 MHz –40 OIRR OFF isolation RL = 50 Ω, f = 250 MHz –41 dB BW Bandwidth (–3 dB) RL = 50 Ω 1.1 GHz (1) dB For Maximum or Minimum conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type. 6.7 Dynamic Electrical Characteristics, VCC = 2.5 V ± 10% over operating range, TA = –40°C to 85°C, VCC = 2.5 V ± 10%, GND = 0 V PARAMETER TYP (1) TEST CONDITIONS UNIT XTALK Crosstalk RL = 50 Ω, f = 250 MHz –39 OIRR OFF isolation RL = 50 Ω, f = 250 MHz –40 dB BW Bandwidth (–3 dB) RL = 50 Ω 1.1 GHz (1) dB For Maximum or Minimum conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type. 6.8 Switching Characteristics, VCC = 3.3 V ± 10% over operating range, TA = –40°C to 85°C, VCC = 3.3 V ± 10%, GND = 0 V PARAMETER tpd Propagation delay MIN (2) (3) Line enable time tOFF Line disable time tSK(O) Output skew between center port to any other port (2) (1) (2) (3) MAX 0.25 tON tSK(P) TYP (1) ns S to D, nD 30 OE to D, nD 17 S to D, nD 12 OE to D, nD 10 Skew between opposite transitions of the same output (tPHL – tPLH) (2) UNIT ns ns 0.1 0.2 ns 0.1 0.2 ns For Maximum or Minimum conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type. Specified by design The bus switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10-pF load. This time constant adds very little propagational delay to the system because it is much smaller than the rise/fall times of typical driving signals. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side. 6.9 Switching Characteristics, VCC = 2.5 V ± 10% over operating range, TA = –40°C to 85°C, VCC = 2.5 V ± 10%, GND = 0 V PARAMETER tpd Propagation delay MIN (2) (3) TYP (1) MAX 0.25 UNIT ns S to D, nD 50 OE to D, nD 32 S to D, nD 23 OE to D, nD 12 tON Line enable time tOFF Line disable time tSK(O) Output skew between center port to any other port (2) 0.1 0.2 ns tSK(P) Skew between opposite transitions of the same output (tPHL – tPLH) (2) 0.1 0.2 ns (1) (2) (3) 6 ns ns For Maximum or Minimum conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type. Specified by design The bus switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10-pF load. The time constraint adds very little propagational delay to the system because it is much smaller than the rise and fall times of typical driving signals. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side. Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 6.10 Typical Characteristics 0 0 –1 VCC = 3.3 V VCC = 2.5 V –20 –40 Attenuation (dB) Gain (dB) –2 –3 –4 –60 –80 –5 VCC = 3.3 V VCC = 2.5 V –6 –100 –120 –7 100.0E+3 1.0E+6 10.0E+6 100.0E+6 1.0E+9 100.0E+3 10.0E+9 1.0E+6 10.0E+6 100.0E+6 1.0E+9 10.0E+9 Frequency (Hz) Frequency (Hz) Figure 2. OFF Isolation vs Frequency Figure 1. Gain vs Frequency 0 3.5 3.4 –20 ron (Ω) Attenuation (dB) 3.3 –40 –60 3.2 3.1 –80 3.0 –100 VCC = 3.3 V VCC = 2.5 V 2.9 –120 100.0E+3 VCC = 3.0 V VCC = 2.3 V 2.8 1.0E+6 10.0E+6 100.0E+6 1.0E+9 0.0 10.0E+9 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VIN (V) Frequency (Hz) Figure 4. ron vs VIN (IOUT = –15 mA) Figure 3. Crosstalk vs Frequency 3.5 3.4 ron (Ω) 3.3 3.2 3.1 3.0 2.9 VCC = 3.0 V VCC = 2.3 V 2.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VIN (V) Figure 5. ron vs VIN (IOUT = –30 mA) Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 7 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com 7 Parameter Measurement Information VCC VOUT1 or VOUT2 1D or 2D TEST RL CL VCOM tON 500 Ω 50 pF V+ tOFF 500 Ω 50 pF V+ D VIN CL(2) 1D or 2D RL S VCTRL CL(2) Logic Input(1) 1.8 V Logic Input (VI) RL GND 50% 50% 0 tON Switch Output (VOUT1 or VOUT2) (1) (2) tOFF 90% 90% VOH VOL All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, ZO = 50W, t r < 5 ns, t f < 5 ns. CL includes probe and jig capacitance. Figure 6. Turnon (tON) and Turnoff Time (tOFF) VCC Network Analyzer Channel OFF: 1D to D 50 Ω VOUT1 1D VCTRL = VCC or GND VIN D Source Signal 50 Ω 2D Network Analyzer Setup Source Power = 0 dBm (632-mV P-P at 50-Ω load) VCTRL S 50 Ω + GND DC Bias = 350 mV Figure 7. OFF Isolation (OISO) VCC Network Analyzer Channel ON: 1D to D 50 Ω VOUT1 1D Channel OFF: 2D to D VIN Source Signal VCTRL = VCC or GND VOUT2 2D 50 VCTRL S 50 Ω + GND Network Analyzer Setup Source Power = 0 dBm (632-mV P-P at 50-Ω load) DC Bias = 350 mV Figure 8. Crosstalk (XTALK) 8 Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 Parameter Measurement Information (continued) VCC Network Analyzer 50 Ω VOUT1 1D Channel ON: 1D to D VIN D Source Signal VCTRL = VCC or GND 2D Network Analyzer Setup 50 Ω VCTRL Source Power = 0 dBm (632-mV P-P at 50-Ω load) S + GND DC Bias = 350 mV Figure 9. Bandwidth (BW) 800 mV 50% Input 50% 400 mV tPLH Output tPHL 50% 50% Figure 10. Propagation Delay Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 9 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com Parameter Measurement Information (continued) 800 mV 50% 50% Input 400 mV tPLH tPHL VOH 50% Output VOL tSK(P) = | tPHL – tPLH | PULSE SKEW tSK(P) 800 mV 50% 50% Input 400 mV tPLH1 tPHL1 VOH 50% 50% Output 1 VOL tSK(O) tSK(O) VOH 50% 50% Output 2 tPLH2 VOL tPHL2 tSK(O) = | tPLH1 – tPLH2 | or | tPHL1 – tPHL2 | OUTPUT SKEW tSK(P) Figure 11. Skew Test VCC VOUT1 1D D + VIN Channel ON VOUT2 2D r on – VCTRL IIN S VIN VOUT2 or VOUT1 Ω IIN VCTRL = VIH or VIL + GND Figure 12. ON-State Resistance (ron) 10 Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 Parameter Measurement Information (continued) VCC VOUT1 1D D + VOUT2 2D VCTRL VIN + S OFF-State Leakage Current Channel OFF VCTRL = VIH or VIL + GND Figure 13. OFF-State Leakage Current VCC VOUT1 1D Capacitance Meter VBIAS VBIAS = VCC or GND VOUT2 2D VCTRL = VCC or GND VIN D Capacitance is measured at 1D, 2D, D, and S inputs during ON and OFF conditions. VCTRL S GND Figure 14. Capacitance Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 11 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com 8 Detailed Description 8.1 Overview The TS3USB221 device is a 2-channel SPDT switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os. The wide bandwidth (1.1 GHz) of this switch allows signals to pass with minimum edge and phase distortion. The device multiplexes differential outputs from a USB host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. The device also has a low power mode that reduces the power consumption to 1 μA for portable applications with a battery or limited power budget. The device is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps). The TS3USB221 device integrates ESD protection cells on all pins, is available in a tiny μQFN package (2 mm × 1.5 mm) and is characterized over the free-air temperature range from –40°C to 85°C. 8.2 Functional Block Diagram D+ 1D+ D− 1D− 2D+ 2D− Digital Control S OE 8.3 Feature Description 8.3.1 Low Power Mode The TS3USB221 has a low power mode that reduces the power consumption to 1 μA when the device is not in use. The bus-switch enable pin OE must be supplied with a logic high signal to put the device in low power mode and disable the switch. 8.4 Device Functional Modes Table 1. Truth Table 12 S OE FUNCTION X H Disconnect L L D = 1D H L D = 2D Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information There are many USB applications in which the USB hubs or controllers have a limited number of USB I/Os. The TS3USB221 solution can effectively expand the limited USB I/Os by switching between multiple USB buses in order to interface them to a single USB hub or controller. TS3USB221 can also be used to connect a single controller to two USB connectors. 9.2 Typical Application 3.3 V 0.1 μF 0.1 μF VCC System Controller Switch Control Logic TS3USB221 2-channel SPDT S OE 1D+ 1D- USB Port 1 2D+ 2D- USB Port 2 D+ USB Controller D- GND Figure 15. Simplified Schematic 9.2.1 Design Requirements Design requirements of the USB 1.0, 1.1, and 2.0 standards should be followed. TI recommends that the digital control pins S and OE be pulled up to VCC or down to GND to avoid undesired switch positions that could result from the floating pin. 9.2.2 Detailed Design Procedure The TS3USB221 may be properly operated without any external components. However, it is recommended that unused pins be connected to ground through a 50-Ω resistor to prevent signal reflections back into the device. Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 13 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com Typical Application (continued) 0.5 0.5 0.4 0.4 0.3 0.3 Differential Signal (V) Differential Signal (V) 9.2.3 Application Curves 0.2 0.1 0.0 –0.1 –0.2 0.2 0.1 0.0 –0.1 –0.2 –0.3 –0.3 –0.4 –0.4 –0.5 –0.5 0.0 0.2 0.4 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 –9 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 –9 Time (X 10 ) (s) Time (X 10 ) (s) Figure 16. Eye Pattern: 480-Mbps USB Signal With No Switch (Through Path) Figure 17. Eye Pattern: 480-Mbps USB Signal With Switch NC Path 0.5 0.4 Differential Signal (V) 0.3 0.2 0.1 0.0 –0.1 –0.2 –0.3 –0.4 –0.5 0.0 0.2 0.4 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 –9 Time (X 10 ) (s) Figure 18. Eye Pattern: 480-Mbps USB Signal With Switch NO Path 14 Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 10 Power Supply Recommendations Power to the device is supplied through the VCC pin and should follow the USB 1.0, 1.1, and 2.0 standards. TI recommends placing a bypass capacitor as close as possible to the supply pin VCC to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum. 11 Layout 11.1 Layout Guidelines Place supply bypass capacitors as close to VCC pin as possible. Avoid placing the bypass caps near the D+/D– traces. The high-speed D+/D– traces should always be matched lengths and must be no more than 4 inches, otherwise the eye diagram performance may be degraded. A high-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic impedance. In the layout, the impedance of D+ and D– traces should match the cable characteristic differential impedance for optimal performance. Route the high-speed USB signals using a minimum of vias and corners which will reduce signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance discontinuities. Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC’s that use or duplicate clock signals. Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then the stub should be less than 200 mm. Route all high-speed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits. A printed circuit board with at least four layers is recommended because of high frequencies associated with the USB; two signal layers separated by a ground and power layer as shown in Figure 19. Signal 1 GND Plane Power Plane Signal 2 Figure 19. Four-Layer Board Stack-Up The majority of signal traces should run on a single layer, preferably Signal 1. Immediately next to this layer should be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies. For more information on layout guidelines, see High Speed Layout Guidelines (SCAA082) and USB 2.0 Board Design and Layout Guidelines (SPRAAR7). Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 15 TS3USB221 SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 www.ti.com 11.2 Layout Example LEGEND VIA to Power Plane Polygonal Copper Pour VIA to GND Plane Bypass Capacitor V+ To Microcontroller 10 1 1D+ VCC S 9 2 1D- D+ 8 3 2D+ D- 7 USB Port 1 To USB Host USB Port 2 4 2D- OE 6 GND 5 To Microcontroller Figure 20. Package Layout Diagram 16 Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 TS3USB221 www.ti.com SCDS220I – NOVEMBER 2006 – REVISED JANUARY 2016 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • High Speed Layout Guidelines, SCAA082 • USB 2.0 Board Design and Layout Guidelines, SPRAAR7 12.2 Trademarks MIPI is a trademark of Mobile Industry Processor Interface Alliance. All other trademarks are the property of their respective owners. 12.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated Product Folder Links: TS3USB221 17 PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) SN080104RSER ACTIVE UQFN RSE 10 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (L57 ~ L5O ~ L5R ~ L5V) TS3USB221DRCR ACTIVE VSON DRC 10 3000 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-2-260C-1 YEAR -40 to 85 ZWG TS3USB221DRCRG4 ACTIVE VSON DRC 10 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ZWG TS3USB221RSER ACTIVE UQFN RSE 10 3000 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -40 to 85 (L57 ~ L5O ~ L5R ~ L5V) TS3USB221RSERG4 ACTIVE UQFN RSE 10 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (L57 ~ L5O ~ L5R ~ L5V) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2017 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TS3USB221DRCR VSON DRC 10 3000 330.0 12.4 3.3 3.3 1.0 8.0 12.0 Q2 TS3USB221RSER UQFN RSE 10 3000 180.0 9.5 1.7 2.2 0.75 4.0 8.0 Q1 TS3USB221RSER UQFN RSE 10 3000 180.0 9.5 1.7 2.3 0.75 4.0 8.0 Q1 TS3USB221RSER UQFN RSE 10 3000 180.0 8.4 1.68 2.13 0.76 4.0 8.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2017 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TS3USB221DRCR VSON DRC 10 3000 370.0 355.0 55.0 TS3USB221RSER UQFN RSE 10 3000 189.0 185.0 36.0 TS3USB221RSER UQFN RSE 10 3000 184.0 184.0 19.0 TS3USB221RSER UQFN RSE 10 3000 202.0 201.0 28.0 Pack Materials-Page 2 www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated
TS3USB221RSER 价格&库存

很抱歉,暂时无法提供与“TS3USB221RSER”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS3USB221RSER
  •  国内价格 香港价格
  • 1+8.868151+1.10009
  • 10+6.1797010+0.76659
  • 25+5.4976325+0.68198
  • 100+4.74970100+0.58920
  • 250+4.39213250+0.54485
  • 500+4.17666500+0.51812
  • 1000+3.999201000+0.49610

库存:18703

TS3USB221RSER
    •  国内价格
    • 1+0.94125

    库存:242